/external/tensorflow/tensorflow/python/ops/ |
D | confusion_matrix.py | 33 labels, predictions, expected_rank_diff=0, name=None): argument 59 [labels, predictions]): 60 predictions = ops.convert_to_tensor(predictions) 62 predictions_shape = predictions.get_shape() 71 predictions = array_ops.squeeze(predictions, [-1]) 75 return labels, predictions 78 rank_diff = array_ops.rank(predictions) - array_ops.rank(labels) 81 predictions = control_flow_ops.cond( 83 lambda: array_ops.squeeze(predictions, [-1]), 84 lambda: predictions) [all …]
|
D | metrics_impl.py | 88 def _remove_squeezable_dimensions(predictions, labels, weights): argument 111 predictions = ops.convert_to_tensor(predictions) 113 labels, predictions = confusion_matrix.remove_squeezable_dimensions( 114 labels, predictions) 115 predictions.get_shape().assert_is_compatible_with(labels.get_shape()) 118 return predictions, labels, None 124 return predictions, labels, weights 126 predictions_shape = predictions.get_shape() 137 rank_diff = weights_rank_tensor - array_ops.rank(predictions) 161 return predictions, labels, weights [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | in_topk_op_test.py | 30 def _validateInTopK(self, predictions, target, k, expected): argument 33 precision = nn_ops.in_top_k(predictions, target, k) 39 predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] 41 self._validateInTopK(predictions, target, 1, [True, False]) 44 predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] 46 self._validateInTopK(predictions, target, 2, [False, True]) 50 predictions = [[0.1, 0.3, 0.2, 0.2], [0.1, 0.3, 0.2, 0.2]] 52 self._validateInTopK(predictions, target, 2, [True, True]) 55 predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] 57 self._validateInTopK(predictions, target, 2, [False, True]) [all …]
|
D | metrics_test.py | 563 predictions=array_ops.ones((10, 1)), 573 predictions=array_ops.ones((10, 1)), 582 predictions=array_ops.ones((10, 1)), 589 predictions = array_ops.ones((10, 3)) 592 metrics.accuracy(labels, predictions) 596 predictions = array_ops.ones((10, 3)) 600 metrics.accuracy(labels, predictions, weights) 604 predictions = random_ops.random_uniform( 608 accuracy, update_op = metrics.accuracy(labels, predictions) 632 predictions = preds_queue.dequeue() [all …]
|
D | confusion_matrix_test.py | 47 labels=[1, 2, 4], predictions=[2, 2, 4]))) 49 def _testConfMatrix(self, labels, predictions, truth, weights=None, argument 52 dtype = predictions.dtype 54 labels, predictions, dtype=dtype, weights=weights, 61 predictions = np.arange(5, dtype=dtype) 71 self._testConfMatrix(labels=labels, predictions=predictions, truth=truth) 125 predictions = np.asarray([1, 2, 3], dtype=dtype) 137 self._testConfMatrix(labels=labels, predictions=predictions, truth=truth) 149 predictions = np.asarray([1, 1, 2, 3, 5, 6, 1, 2, 3, 4], dtype=dtype) 161 self._testConfMatrix(labels=labels, predictions=predictions, truth=truth) [all …]
|
D | losses_test.py | 112 predictions = constant_op.constant([4, 8, 12, 8, 1, 3], shape=(2, 3)) 114 losses.absolute_difference(labels, predictions) 659 predictions = np.asarray([.9, .2, .2, .8, .4, .6]).reshape((2, 3)) 662 self._np_predictions = predictions 667 labels, np.log(predictions + epsilon)) + np.multiply( 668 1 - labels, np.log(1 - predictions + epsilon)) 670 self._predictions = constant_op.constant(predictions) 870 predictions = constant_op.constant([[-1.0], [2.1]]) 873 _ = losses.huber_loss(labels, predictions).eval() 878 predictions = constant_op.constant([1.5, -1.4, -1.0, 0.0]) [all …]
|
/external/tensorflow/tensorflow/python/distribute/ |
D | metrics_v1_test.py | 157 predictions = x["predictions"] 158 return metrics.accuracy(labels, predictions) 172 predictions = x["predictions"] 174 labels, predictions, num_classes=5) 191 predictions = x["predictions"] 193 labels, predictions, num_classes=5) 228 predictions = x["predictions"] 229 return metrics.auc(labels, predictions, num_thresholds=8, curve="ROC", 242 predictions = x["predictions"] 243 return metrics.auc(labels, predictions, num_thresholds=8, curve="PR", [all …]
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 211 labels, predictions, weights=1.0, scope=None, argument 250 if predictions is None: 253 (predictions, labels, weights)) as scope: 254 predictions = math_ops.cast(predictions, dtype=dtypes.float32) 256 predictions.get_shape().assert_is_compatible_with(labels.get_shape()) 257 losses = math_ops.abs(math_ops.subtract(predictions, labels)) 266 labels, predictions, axis=None, weights=1.0, scope=None, argument 305 if predictions is None: 308 (predictions, labels, weights)) as scope: 309 predictions = math_ops.cast(predictions, dtype=dtypes.float32) [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.metrics.pbtxt | 5 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 9 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'num_thresholds\', \'metrics_collection… 13 …argspec: "args=[\'labels\', \'predictions\', \'k\', \'weights\', \'metrics_collections\', \'update… 17 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 21 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 25 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 29 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 37 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 41 …argspec: "args=[\'labels\', \'predictions\', \'dim\', \'weights\', \'metrics_collections\', \'upda… 45 …argspec: "args=[\'labels\', \'predictions\', \'num_classes\', \'weights\', \'metrics_collections\'… [all …]
|
D | tensorflow.losses.pbtxt | 9 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'scope\', \'loss_collection\', \'reduct… 21 …argspec: "args=[\'labels\', \'predictions\', \'axis\', \'weights\', \'scope\', \'loss_collection\'… 45 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'delta\', \'scope\', \'loss_collection\… 49 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'epsilon\', \'scope\', \'loss_collectio… 53 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'scope\', \'loss_collection\'], varargs… 57 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'scope\', \'loss_collection\', \'reduct…
|
/external/libtextclassifier/native/annotator/translate/ |
D | translate_test.cc | 85 const auto predictions = in TEST_F() local 87 EXPECT_EQ(predictions->size(), 1); in TEST_F() 88 EXPECT_EQ(predictions->Get(0)->language_tag()->str(), "cs"); in TEST_F() 89 EXPECT_GT(predictions->Get(0)->confidence_score(), 0); in TEST_F() 90 EXPECT_LE(predictions->Get(0)->confidence_score(), 1); in TEST_F() 102 const auto predictions = in TEST_F() local 104 EXPECT_EQ(predictions->size(), 2); in TEST_F() 105 EXPECT_EQ(predictions->Get(0)->language_tag()->str(), "zh"); in TEST_F() 106 EXPECT_GT(predictions->Get(0)->confidence_score(), 0); in TEST_F() 107 EXPECT_LE(predictions->Get(0)->confidence_score(), 1); in TEST_F() [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | losses_utils.py | 84 labels, predictions, expected_rank_diff=0, name=None): argument 110 if not isinstance(predictions, ragged_tensor.RaggedTensor): 111 predictions = ops.convert_to_tensor_v2_with_dispatch(predictions) 114 predictions_shape = predictions.shape 123 predictions = array_ops.squeeze(predictions, [-1]) 127 return labels, predictions 130 rank_diff = array_ops.rank(predictions) - array_ops.rank(labels) 133 predictions = control_flow_ops.cond( 135 lambda: array_ops.squeeze(predictions, [-1]), 136 lambda: predictions) [all …]
|
/external/tensorflow/tensorflow/python/saved_model/model_utils/ |
D | export_output_test.py | 245 predictions = {u'output1': constant_op.constant(['foo'])} 252 outputter = MockSupervisedOutput(loss, predictions, metrics) 255 outputter.predictions['predictions/output1'], predictions['output1']) 263 loss['my_loss'], predictions['output1'], metrics['metrics']) 266 outputter.predictions, {'predictions': predictions['output1']}) 274 self.assertIsNone(outputter.predictions) 291 predictions = {(u'output1', '2'): constant_op.constant(['foo'])} 299 outputter = MockSupervisedOutput(loss, predictions, metrics) 301 self.assertEqual(set(outputter.predictions.keys()), 314 predictions = {u'predictions': constant_op.constant(['foo'])} [all …]
|
D | export_utils.py | 251 mode, serving_export_outputs=None, predictions=None, loss=None, argument 285 return get_export_outputs(serving_export_outputs, predictions) 288 loss=loss, predictions=predictions, metrics=metrics)} 291 loss=loss, predictions=predictions, metrics=metrics)} 294 def get_export_outputs(export_outputs, predictions): argument 310 default_output = export_output_lib.PredictOutput(predictions)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | in_topk_op.h | 48 typename TTypes<T, 2>::ConstTensor predictions, in operator() 56 typename TTypes<T, 2>::ConstTensor predictions, 59 const Eigen::Index num_targets = predictions.dimension(0); 60 const Eigen::Index num_classes = predictions.dimension(1); 75 !std::isfinite(predictions(batch_idx, target)); 79 const T target_prediction = predictions(batch_idx, target); 82 T pred = predictions(batch_idx, class_idx);
|
D | in_topk_op_gpu.cu.cc | 40 const T* __restrict__ predictions, // dims: [ num_targets x num_classes ] in ComputePredictionMaskKernel() argument 53 T prediction = ldg(predictions + i); in ComputePredictionMaskKernel() 55 ldg(predictions + batch_index * num_classes + target_idx); in ComputePredictionMaskKernel() 92 typename TTypes<T, 2>::ConstTensor predictions, in operator ()() 95 const Eigen::Index num_targets = predictions.dimension(0); in operator ()() 96 const Eigen::Index num_classes = predictions.dimension(1); in operator ()() 131 d.stream(), predictions.data(), targets.data(), in operator ()()
|
/external/tensorflow/tensorflow/python/saved_model/ |
D | signature_def_utils_impl.py | 71 def regression_signature_def(examples, predictions): argument 92 if predictions is None: 100 output_tensor_info = utils.build_tensor_info(predictions) 213 inputs, loss, predictions=None, metrics=None): argument 216 predictions=predictions, metrics=metrics) 220 inputs, loss, predictions=None, metrics=None): argument 223 predictions=predictions, metrics=metrics) 227 method_name, inputs, loss=None, predictions=None, argument 256 for output_set in (loss, predictions, metrics):
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_InTopKV2.pbtxt | 4 name: "predictions" 27 summary: "Says whether the targets are in the top `K` predictions." 30 prediction for the target class is among the top `k` predictions among 31 all predictions for example `i`. Note that the behavior of `InTopK` differs 38 \\(predictions_i\\) be the predictions for all classes for example `i`,
|
D | api_def_InTopK.pbtxt | 4 name: "predictions" 27 summary: "Says whether the targets are in the top `K` predictions." 30 prediction for the target class is among the top `k` predictions among 31 all predictions for example `i`. Note that the behavior of `InTopK` differs 38 \\(predictions_i\\) be the predictions for all classes for example `i`,
|
/external/libtextclassifier/native/lang_id/ |
D | lang-id.cc | 102 if (lang_id_result.predictions.empty()) { in FindLanguage() 106 const std::string &language = lang_id_result.predictions[0].first; in FindLanguage() 107 const float probability = lang_id_result.predictions[0].second; in FindLanguage() 133 result->predictions.clear(); in FindLanguages() 135 result->predictions.emplace_back(LangId::kUnknownLanguageCode, 1); in FindLanguages() 146 result->predictions.emplace_back(LangId::kUnknownLanguageCode, 1); in FindLanguages() 164 result->predictions.emplace_back(language, probability); in FindLanguages() 172 result->predictions.emplace_back(GetLanguageForSoftmaxLabel(index), in FindLanguages()
|
D | lang-id-wrapper.cc | 75 for (int i = 0; i < langid_result.predictions.size(); i++) { in GetPredictions() 76 const auto& prediction = langid_result.predictions[i]; in GetPredictions() 86 const std::vector<std::pair<std::string, float>>& predictions = in GetLanguageTags() local 92 for (int i = 0; i < predictions.size(); i++) { in GetLanguageTags() 93 const auto& prediction = predictions[i]; in GetLanguageTags()
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | integration_test.py | 85 predictions = model.predict(x_train) 86 self.assertEqual(predictions.shape, (x_train.shape[0], 2)) 124 predictions = model.predict(x_train) 125 self.assertEqual(predictions.shape, (x_train.shape[0], 2)) 175 predictions = model.predict(x_train) 176 self.assertEqual(predictions.shape, (x_train.shape[0], 2)) 210 predictions = model.predict(x_train) 211 self.assertEqual(predictions.shape, (x_train.shape[0], 2)) 241 predictions = model.predict(x_train) 242 self.assertEqual(predictions.shape, (x_train.shape[0], 2)) [all …]
|
/external/tensorflow/tensorflow/python/feature_column/ |
D | feature_column_test.py | 355 predictions = fc.linear_model(features, [price]) 361 self.assertAllClose([[0.], [0.]], self.evaluate(predictions)) 363 self.assertAllClose([[10.], [50.]], self.evaluate(predictions)) 369 predictions = get_keras_linear_model_predictions(features, [price]) 375 self.assertAllClose([[0.], [0.]], self.evaluate(predictions)) 377 self.assertAllClose([[10.], [50.]], self.evaluate(predictions)) 549 predictions = fc.linear_model(features, [bucketized_price]) 558 self.evaluate(predictions)) 566 self.evaluate(predictions)) 569 self.evaluate(predictions)) [all …]
|
/external/tensorflow/tensorflow/lite/micro/examples/image_recognition_experimental/ |
D | util.h | 28 int get_top_prediction(const uint8_t* predictions, int num_categories) { in get_top_prediction() argument 29 int max_score = predictions[0]; in get_top_prediction() 34 const uint8_t category_score = predictions[category_index]; in get_top_prediction()
|
/external/tensorflow/tensorflow/python/eager/benchmarks/resnet50/ |
D | resnet50_graph_test.py | 58 predictions = model(images, training=False) 65 out = sess.run(predictions, feed_dict={images: np_images}) 83 predictions = model(images, training=False) 93 sess.run(predictions, feed_dict={images: np_images}) 99 sess.run(predictions, feed_dict={images: np_images})
|