/external/tensorflow/tensorflow/python/keras/layers/ |
D | __init__.py | 216 from tensorflow.python.keras.layers.recurrent import RNN 217 from tensorflow.python.keras.layers.recurrent import AbstractRNNCell 218 from tensorflow.python.keras.layers.recurrent import StackedRNNCells 219 from tensorflow.python.keras.layers.recurrent import SimpleRNNCell 220 from tensorflow.python.keras.layers.recurrent import PeepholeLSTMCell 221 from tensorflow.python.keras.layers.recurrent import SimpleRNN 228 from tensorflow.python.keras.layers.recurrent import GRU as GRUV1 229 from tensorflow.python.keras.layers.recurrent import GRUCell as GRUCellV1 230 from tensorflow.python.keras.layers.recurrent import LSTM as LSTMV1 231 from tensorflow.python.keras.layers.recurrent import LSTMCell as LSTMCellV1 [all …]
|
D | rnn_cell_wrapper_v2.py | 28 from tensorflow.python.keras.layers import recurrent 34 class _RNNCellWrapperV2(recurrent.AbstractRNNCell): 104 if isinstance(self.cell, recurrent.LSTMCell):
|
D | BUILD | 52 ":recurrent", 109 ":recurrent", 168 ":recurrent", 380 name = "recurrent", 381 srcs = ["recurrent.py"], 415 ":recurrent", 442 ":recurrent", 453 ":recurrent",
|
D | recurrent_v2.py | 34 from tensorflow.python.keras.layers import recurrent 109 class GRUCell(recurrent.GRUCell): 221 class GRU(recurrent.DropoutRNNCellMixin, recurrent.GRU): 843 class LSTMCell(recurrent.LSTMCell): 959 class LSTM(recurrent.DropoutRNNCellMixin, recurrent.LSTM):
|
D | serialization.py | 45 from tensorflow.python.keras.layers import recurrent 72 preprocessing_text_vectorization_v1, recurrent, wrappers,
|
/external/deqp-deps/SPIRV-Tools/source/opt/ |
D | scalar_analysis.cpp | 438 SERecurrentNode* recurrent = node->AsSERecurrentNode(); in BuildGraphWithoutRecurrentTerm() local 439 if (recurrent) { in BuildGraphWithoutRecurrentTerm() 440 if (recurrent->GetLoop() == loop) { in BuildGraphWithoutRecurrentTerm() 441 return recurrent->GetOffset(); in BuildGraphWithoutRecurrentTerm() 450 recurrent = itr->AsSERecurrentNode(); in BuildGraphWithoutRecurrentTerm() 451 if (recurrent && recurrent->GetLoop() == loop) { in BuildGraphWithoutRecurrentTerm() 452 new_children.push_back(recurrent->GetOffset()); in BuildGraphWithoutRecurrentTerm() 597 const SERecurrentNode* recurrent = node->AsSERecurrentNode(); in operator ()() local 601 if (recurrent) { in operator ()() 602 PushToString(reinterpret_cast<uintptr_t>(recurrent->GetLoop()), in operator ()() [all …]
|
D | scalar_analysis_simplification.cpp | 105 SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, 288 SERecurrentNode* recurrent, int64_t coefficient_update) const { in UpdateCoefficient() argument 290 recurrent->GetParentAnalysis(), recurrent->GetLoop())}; in UpdateCoefficient() 293 recurrent->GetCoefficient(), in UpdateCoefficient() 303 analysis_.CreateNegation(recurrent->GetOffset())); in UpdateCoefficient() 305 new_recurrent_node->AddOffset(recurrent->GetOffset()); in UpdateCoefficient()
|
/external/swiftshader/third_party/SPIRV-Tools/source/opt/ |
D | scalar_analysis.cpp | 438 SERecurrentNode* recurrent = node->AsSERecurrentNode(); in BuildGraphWithoutRecurrentTerm() local 439 if (recurrent) { in BuildGraphWithoutRecurrentTerm() 440 if (recurrent->GetLoop() == loop) { in BuildGraphWithoutRecurrentTerm() 441 return recurrent->GetOffset(); in BuildGraphWithoutRecurrentTerm() 450 recurrent = itr->AsSERecurrentNode(); in BuildGraphWithoutRecurrentTerm() 451 if (recurrent && recurrent->GetLoop() == loop) { in BuildGraphWithoutRecurrentTerm() 452 new_children.push_back(recurrent->GetOffset()); in BuildGraphWithoutRecurrentTerm() 597 const SERecurrentNode* recurrent = node->AsSERecurrentNode(); in operator ()() local 601 if (recurrent) { in operator ()() 602 PushToString(reinterpret_cast<uintptr_t>(recurrent->GetLoop()), in operator ()() [all …]
|
D | scalar_analysis_simplification.cpp | 105 SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, 288 SERecurrentNode* recurrent, int64_t coefficient_update) const { in UpdateCoefficient() argument 290 recurrent->GetParentAnalysis(), recurrent->GetLoop())}; in UpdateCoefficient() 293 recurrent->GetCoefficient(), in UpdateCoefficient() 303 analysis_.CreateNegation(recurrent->GetOffset())); in UpdateCoefficient() 305 new_recurrent_node->AddOffset(recurrent->GetOffset()); in UpdateCoefficient()
|
/external/angle/third_party/vulkan-deps/spirv-tools/src/source/opt/ |
D | scalar_analysis.cpp | 438 SERecurrentNode* recurrent = node->AsSERecurrentNode(); in BuildGraphWithoutRecurrentTerm() local 439 if (recurrent) { in BuildGraphWithoutRecurrentTerm() 440 if (recurrent->GetLoop() == loop) { in BuildGraphWithoutRecurrentTerm() 441 return recurrent->GetOffset(); in BuildGraphWithoutRecurrentTerm() 450 recurrent = itr->AsSERecurrentNode(); in BuildGraphWithoutRecurrentTerm() 451 if (recurrent && recurrent->GetLoop() == loop) { in BuildGraphWithoutRecurrentTerm() 452 new_children.push_back(recurrent->GetOffset()); in BuildGraphWithoutRecurrentTerm() 597 const SERecurrentNode* recurrent = node->AsSERecurrentNode(); in operator ()() local 601 if (recurrent) { in operator ()() 602 PushToString(reinterpret_cast<uintptr_t>(recurrent->GetLoop()), in operator ()() [all …]
|
D | scalar_analysis_simplification.cpp | 105 SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, 288 SERecurrentNode* recurrent, int64_t coefficient_update) const { in UpdateCoefficient() argument 290 recurrent->GetParentAnalysis(), recurrent->GetLoop())}; in UpdateCoefficient() 293 recurrent->GetCoefficient(), in UpdateCoefficient() 303 analysis_.CreateNegation(recurrent->GetOffset())); in UpdateCoefficient() 305 new_recurrent_node->AddOffset(recurrent->GetOffset()); in UpdateCoefficient()
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | layer_correctness_test.py | 42 from tensorflow.python.keras.layers import recurrent 133 ('SimpleRNN', lambda: recurrent.SimpleRNN(units=4), 135 ('GRU', lambda: recurrent.GRU(units=4), (4, 4, 4)), 136 ('LSTM', lambda: recurrent.LSTM(units=4), (4, 4, 4)), 142 lambda: wrappers.Bidirectional(recurrent.SimpleRNN(units=4)), (2, 2, 2)),
|
/external/tensorflow/tensorflow/python/keras/feature_column/ |
D | sequence_feature_column_integration_test.py | 35 from tensorflow.python.keras.layers import recurrent 106 rnn_layer = recurrent.RNN(recurrent.SimpleRNNCell(10))
|
/external/tensorflow/tensorflow/python/keras/saving/saved_model/ |
D | serialized_attributes.py | 39 recurrent = LazyLoader( variable 149 elif isinstance(obj, recurrent.RNN):
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxt | 3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.PeepholeLSTMCell\'>" 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.LSTMCell\'>" 5 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
D | tensorflow.keras.layers.-simple-r-n-n-cell.pbtxt | 3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.SimpleRNNCell\'>" 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
D | tensorflow.keras.layers.-l-s-t-m-cell.pbtxt | 3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.LSTMCell\'>" 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
D | tensorflow.keras.layers.-g-r-u-cell.pbtxt | 3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.GRUCell\'>" 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxt | 3 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.PeepholeLSTMCell\'>" 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.LSTMCell\'>" 5 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
D | tensorflow.keras.layers.-g-r-u.pbtxt | 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>" 5 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.GRU\'>" 6 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.RNN\'>"
|
D | tensorflow.keras.layers.-l-s-t-m.pbtxt | 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>" 5 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.LSTM\'>" 6 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.RNN\'>"
|
D | tensorflow.keras.layers.-l-s-t-m-cell.pbtxt | 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.LSTMCell\'>" 5 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
D | tensorflow.keras.layers.-g-r-u-cell.pbtxt | 4 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.GRUCell\'>" 5 is_instance: "<class \'tensorflow.python.keras.layers.recurrent.DropoutRNNCellMixin\'>"
|
/external/rnnoise/ |
D | README | 1 RNNoise is a noise suppression library based on a recurrent neural network.
|
/external/tensorflow/tensorflow/lite/g3doc/convert/ |
D | rnn.md | 82 1. The dimension 0 of the **recurrent\_weight** tensor is the number of 84 1. The **weight** and **recurrent\_kernel** tensors are transposed. 85 1. The transposed weight, transposed recurrent\_kernel and **bias** tensors are 172 1. The **{input, recurrent}** to **{cell, input gate, forget gate, output
|