/external/tensorflow/tensorflow/python/keras/layers/ |
D | recurrent.py | 1741 recurrent_activation='hard_sigmoid', argument 1764 self.recurrent_activation = activations.get(recurrent_activation) 1879 z = self.recurrent_activation(x_z + recurrent_z) 1880 r = self.recurrent_activation(x_r + recurrent_r) 1917 z = self.recurrent_activation(x_z + recurrent_z) 1918 r = self.recurrent_activation(x_r + recurrent_r) 1937 activations.serialize(self.recurrent_activation), 2057 recurrent_activation='hard_sigmoid', argument 2091 recurrent_activation=recurrent_activation, 2133 def recurrent_activation(self): member in GRU [all …]
|
D | convolutional_recurrent.py | 499 recurrent_activation='hard_sigmoid', argument 523 self.recurrent_activation = activations.get(recurrent_activation) 643 i = self.recurrent_activation(x_i + h_i) 644 f = self.recurrent_activation(x_f + h_f) 646 o = self.recurrent_activation(x_o + h_o) 675 self.recurrent_activation), 836 recurrent_activation='hard_sigmoid', argument 863 recurrent_activation=recurrent_activation, 921 def recurrent_activation(self): member in ConvLSTM2D 922 return self.cell.recurrent_activation [all …]
|
D | recurrent_v2.py | 184 recurrent_activation='sigmoid', argument 202 recurrent_activation=recurrent_activation, 352 recurrent_activation='sigmoid', argument 381 recurrent_activation=recurrent_activation, 407 self.recurrent_activation in (activations.sigmoid, nn.sigmoid) and 922 recurrent_activation='sigmoid', argument 940 recurrent_activation=recurrent_activation, 1075 recurrent_activation='sigmoid', argument 1104 recurrent_activation=recurrent_activation, 1133 self.recurrent_activation in (activations.sigmoid, nn.sigmoid) and
|
D | gru_v2_test.py | 74 def test_could_use_defun_backend(self, activation, recurrent_activation, argument 79 recurrent_activation=recurrent_activation, 91 layer = rnn.GRU(1, recurrent_activation=nn.sigmoid) 180 recurrent_activation='sigmoid', 192 recurrent_activation='sigmoid', 272 recurrent_activation='sigmoid', 301 recurrent_activation='sigmoid', 684 recurrent_activation='sigmoid',
|
D | lstm_v2_test.py | 73 def test_could_use_defun_backend(self, activation, recurrent_activation, argument 78 recurrent_activation=recurrent_activation, 89 layer = rnn.LSTM(1, recurrent_activation=nn.sigmoid) 353 recurrent_activation='sigmoid') 455 recurrent_activation='sigmoid', 572 layer = rnn_v1.LSTM(rnn_state_size, recurrent_activation='sigmoid')
|
D | recurrent_test.py | 1285 recurrent_activation='sigmoid', 1290 recurrent_activation='sigmoid', 1295 recurrent_activation='sigmoid',
|
/external/rnnoise/training/ |
D | rnn_train.py | 65 vad_gru = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='v… 68 noise_gru = GRU(48, activation='relu', recurrent_activation='sigmoid', return_sequences=True, name=… 71 denoise_gru = GRU(96, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, nam…
|
/external/rnnoise/src/ |
D | rnn_train.py | 24 x = GRU(128, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
|
/external/libopus/scripts/ |
D | rnn_train.py | 30 x = GRU(12, dropout=0.1, recurrent_dropout=0.1, activation='tanh', recurrent_activation='sigmoid', …
|
/external/libopus/training/ |
D | rnn_dump.py | 42 x = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
|
D | rnn_train.py | 61 x = GRU(24, recurrent_activation='sigmoid', activation='tanh', return_sequences=True, kernel_constr…
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.layers.-g-r-u.pbtxt | 128 name: "recurrent_activation" 205 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-l-s-t-m.pbtxt | 128 name: "recurrent_activation" 205 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt | 145 name: "recurrent_activation" 222 …'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bi…
|
D | tensorflow.keras.layers.-l-s-t-m-cell.pbtxt | 133 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxt | 134 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-g-r-u-cell.pbtxt | 133 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.layers.-g-r-u.pbtxt | 130 name: "recurrent_activation" 207 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-conv-l-s-t-m2-d.pbtxt | 145 name: "recurrent_activation" 222 …'padding\', \'data_format\', \'dilation_rate\', \'activation\', \'recurrent_activation\', \'use_bi…
|
D | tensorflow.keras.layers.-l-s-t-m.pbtxt | 130 name: "recurrent_activation" 207 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-l-s-t-m-cell.pbtxt | 134 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.layers.-g-r-u-cell.pbtxt | 134 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
D | tensorflow.keras.experimental.-peephole-l-s-t-m-cell.pbtxt | 134 …argspec: "args=[\'self\', \'units\', \'activation\', \'recurrent_activation\', \'use_bias\', \'ker…
|
/external/tensorflow/ |
D | RELEASE.md | 1826 …r 1.x pre-trained checkpoint, please construct the layer with GRU(recurrent_activation='hard_sigmo… 2465 GRU(recurrent_activation='hard_sigmoid', reset_after=False) to fallback 2675 construct the layer with LSTM(recurrent_activation='hard_sigmoid') to
|