/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 83 ragged_reduce_op=ragged_math_ops.reduce_prod, 90 ragged_reduce_op=ragged_math_ops.reduce_prod, 185 ragged_reduce_op=ragged_math_ops.reduce_prod, 192 ragged_reduce_op=ragged_math_ops.reduce_prod, 278 ragged_reduce_op=ragged_math_ops.reduce_prod, 309 ragged_reduce_op=ragged_math_ops.reduce_prod, 343 ragged_reduce_op=ragged_math_ops.reduce_prod,
|
D | ragged_math_ops.py | 579 def reduce_prod(input_tensor, axis=None, keepdims=None, name=None): function 582 reduce_op=math_ops.reduce_prod, 642 reduce_prod(_cast(input_tensor, dtypes.int32), axis, keepdims), 664 _set_ragged_reduce_docstring(reduce_prod, 'product', 'multiplied', '1',
|
D | ragged_dispatch.py | 405 math_ops.reduce_prod, 520 (math_ops.reduce_prod, ragged_math_ops.reduce_prod, ['input_tensor']),
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 64 tf.reduce_prod( 67 tf.reduce_prod( 69 self.assertAllEqual(tf.reduce_prod(a, [0, 1]).eval(), 720.0)
|
/external/tensorflow/tensorflow/python/ops/ |
D | bincount_ops.py | 126 array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr)) > 0 163 array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr.values)) > 0 165 array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr)) > 0
|
D | data_flow_grad.py | 39 math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape)
|
D | math_grad_test.py | 151 outputs = math_ops.reduce_prod(inputs) 162 outputs = math_ops.reduce_prod(inputs, -1) 174 outputs = math_ops.reduce_prod(inputs) 186 outputs = math_ops.reduce_prod(inputs, -1)
|
D | math_ops.py | 2526 def reduce_prod(input_tensor, axis=None, keepdims=False, name=None): function 2629 return reduce_prod(input_tensor, axis, keepdims, name) 4712 prod_free_dims = reduce_prod(free_dims) 4713 prod_axes_dims = reduce_prod(axes_dims)
|
D | math_grad.py | 268 math_ops.reduce_prod(input_shape), math_ops.reduce_prod(output_shape)) 302 reduced_num = math_ops.reduce_prod(array_ops.gather(input_shape, reduced)) 303 other_num = math_ops.reduce_prod(array_ops.gather(input_shape, other))
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | reduction.py | 37 return math_ops.reduce_prod
|
D | normalization.py | 188 batch_count = math_ops.reduce_prod(batch_reduce_shape)
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator_circulant.py | 256 (vec_leading_shape, [math_ops.reduce_prod(vec_block_shape)]), 0) 332 n = math_ops.reduce_prod(trailing_dims) 432 det = math_ops.reduce_prod(self.spectrum, axis=axis)
|
D | linear_operator_lower_triangular.py | 201 return math_ops.reduce_prod(self._get_diag(), axis=[-1])
|
D | linear_operator_diag.py | 235 return math_ops.reduce_prod(self._diag, axis=[-1])
|
D | linalg_impl.py | 993 broadcast_batch_size = math_ops.reduce_prod(broadcast_batch_shape) 1135 batch_size = math_ops.reduce_prod(shape[:-2])
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | reduce_ops_test.py | 110 self._testReduction(math_ops.reduce_prod, np.prod, np.float32, 114 self._testReduction(math_ops.reduce_prod, np.prod, np.complex64,
|
/external/tensorflow/tensorflow/python/eager/ |
D | forwardprop_test.py | 420 return math_ops.reduce_prod( 445 return math_ops.reduce_prod(math_ops.tanh(x)**2) 478 increment = 3. / math_ops.reduce_prod( 628 return math_ops.reduce_prod(math_ops.tanh(x)**2) 656 return math_ops.reduce_prod(math_ops.tanh(x)**2) 666 return math_ops.reduce_prod(math_ops.tanh(x)**2)
|
/external/tensorflow/tensorflow/lite/testing/op_tests/ |
D | reduce.py | 254 return make_reduce_tests(tf.reduce_prod, -2, 2)(options)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization_v2.py | 161 multiplier = math_ops.cast(math_ops.reduce_prod(axes_vals),
|
D | local.py | 804 in_size = math_ops.reduce_prod(in_dims) 805 out_size = math_ops.reduce_prod(out_dims)
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduction_ops_test.py | 107 math_ops.reduce_prod, math_ops.reduce_max, 125 math_ops.reduce_prod, math_ops.reduce_max, 633 return math_ops.reduce_prod(x, reduction_axes, keepdims) 644 v = math_ops.reduce_prod([0, 0], constant_op.constant(0, dtype=dtype)) 716 y = math_ops.reduce_prod(x, [1]) 726 y = math_ops.reduce_prod(x, [0])
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | transformed_distribution.py | 470 prob = math_ops.reduce_prod(prob, self._reduce_event_indices) 548 entropy *= math_ops.cast(math_ops.reduce_prod(self._override_event_shape),
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | fft_ops.py | 205 return _math_ops.reduce_prod(_array_ops.shape(grad)[-rank:])
|
/external/tensorflow/tensorflow/python/distribute/ |
D | cross_device_utils.py | 430 num_elements = [math_ops.reduce_prod(s) for s in shapes]
|
/external/tensorflow/tensorflow/python/keras/saving/saved_model/ |
D | revive_test.py | 82 (math_ops.reduce_prod(array_ops.shape(inputs)[:-1]),
|