/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 55 ragged_reduce_op=ragged_math_ops.reduce_sum, 62 ragged_reduce_op=ragged_math_ops.reduce_sum, 69 ragged_reduce_op=ragged_math_ops.reduce_sum, 76 ragged_reduce_op=ragged_math_ops.reduce_sum, 157 ragged_reduce_op=ragged_math_ops.reduce_sum, 164 ragged_reduce_op=ragged_math_ops.reduce_sum, 171 ragged_reduce_op=ragged_math_ops.reduce_sum, 178 ragged_reduce_op=ragged_math_ops.reduce_sum, 272 ragged_reduce_op=ragged_math_ops.reduce_sum, 303 ragged_reduce_op=ragged_math_ops.reduce_sum, [all …]
|
D | ragged_map_fn_op_test.py | 61 fn=lambda x: array_ops.stack([mo.reduce_mean(x), mo.reduce_sum(x)]), 106 fn=lambda x: ragged_math_ops.reduce_sum(x, axis=1), 114 fn=lambda x: ragged_math_ops.reduce_sum(x, axis=0), 122 fn=ragged_math_ops.reduce_sum, 198 return mo.reduce_sum(f['batman']) + mo.reduce_sum(f['robin']) 280 fn = lambda x: ragged_math_ops.reduce_sum(x, axis=0)
|
D | ragged_math_ops.py | 567 def reduce_sum(input_tensor, axis=None, keepdims=None, name=None): function 571 reduce_op=math_ops.reduce_sum, 615 total = reduce_sum(input_tensor, axis, keepdims) 623 count = reduce_sum(ones, axis, keepdims) 650 reduce_sum(_cast(input_tensor, dtypes.int32), axis, keepdims), 662 _set_ragged_reduce_docstring(reduce_sum, 'sum', 'summed', '0',
|
/external/tensorflow/tensorflow/python/ops/ |
D | random_grad.py | 76 return (None, math_ops.reduce_sum( 120 math_ops.reduce_sum( 206 grad_mean = math_ops.reduce_sum(grad * dmean, axis=extra_dims) 207 grad_stddev = math_ops.reduce_sum(grad * dstddev, axis=extra_dims) 208 grad_minval = math_ops.reduce_sum(grad * dminval, axis=extra_dims) 209 grad_maxval = math_ops.reduce_sum(grad * dmaxval, axis=extra_dims) 221 math_ops.reduce_sum(grad_mean, axis=rmean, keepdims=True), mean_shape) 224 math_ops.reduce_sum(grad_stddev, axis=rstddev, keepdims=True), 228 math_ops.reduce_sum(grad_minval, axis=rminval, keepdims=True), 232 math_ops.reduce_sum(grad_maxval, axis=rmaxval, keepdims=True),
|
D | math_grad.py | 236 math_ops.reduce_sum(indicators, op.inputs[1]), output_shape_kept_dims) 717 return (array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx), 718 array_ops.reshape(math_ops.reduce_sum(partial_y * grad, ry), sy)) 734 return (array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx), 735 array_ops.reshape(math_ops.reduce_sum(partial_y * grad, ry), sy)) 751 return (array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx), 752 array_ops.reshape(math_ops.reduce_sum(partial_y * grad, ry), sy)) 1082 return (array_ops.reshape(math_ops.reduce_sum(partial_a * grad, ra), sa), 1083 array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) 1118 array_ops.reshape(math_ops.reduce_sum(partial_x * grad, rx), sx)) [all …]
|
D | clip_ops.py | 148 gx = array_ops.reshape(math_ops.reduce_sum(xgrad, rx), sx) 149 gy = array_ops.reshape(math_ops.reduce_sum(ygrad, ry), sy) 150 gz = array_ops.reshape(math_ops.reduce_sum(zgrad, rz), sz) 220 l2sum = math_ops.reduce_sum(values * values, axes, keepdims=True) 279 half_squared_norm = math_ops.reduce_sum(array_ops.stack(half_squared_norms)) 421 math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
|
D | linalg_grad.py | 367 math_ops.reduce_sum(grad_x, bx_start + rx), x_shape) 369 math_ops.reduce_sum(grad_y, by_start + ry), y_shape) 672 grad_a = array_ops.reshape(math_ops.reduce_sum(grad_a, axis=ra), a_shape) 673 grad_b = array_ops.reshape(math_ops.reduce_sum(grad_b, axis=rb), b_shape) 702 grad_a = array_ops.reshape(math_ops.reduce_sum(grad_a, axis=ra), a_shape) 703 grad_b = array_ops.reshape(math_ops.reduce_sum(grad_b, axis=rb), b_shape) 965 superdiag_grad = math_ops.reduce_sum(_LeftShift(rhs_conj) * grad, axis=-1) 966 maindiag_grad = math_ops.reduce_sum(rhs_conj * grad, axis=-1) 967 subdiag_grad = math_ops.reduce_sum(_RightShift(rhs_conj) * grad, axis=-1) 1044 diag = math_ops.reduce_sum(x * y_tr, axis=-1) [all …]
|
D | metrics_impl.py | 376 num_values = math_ops.reduce_sum(weights) 378 update_total_op = state_ops.assign_add(total, math_ops.reduce_sum(values)) 581 math_ops.reduce_sum( 593 math_ops.reduce_sum( 605 math_ops.reduce_sum( 617 math_ops.reduce_sum( 800 return math_ops.reduce_sum( 829 return math_ops.reduce_sum( 834 return math_ops.reduce_sum( 839 return math_ops.reduce_sum( [all …]
|
D | nccl_ops_test.py | 153 self._Test(partial(_NcclReduce, nccl_ops.reduce_sum), lambda x, y: x + y) 156 self._TestGradient(partial(_NcclReduce, nccl_ops.reduce_sum), 189 single_reduce_tensors = _NcclReduce(nccl_ops.reduce_sum, tensors, devices)
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | reduction.py | 39 return math_ops.reduce_sum 100 input_sum = math_ops.reduce_sum(weighted_inputs, axis=self.axis) 101 weight_sum = math_ops.reduce_sum(weights, axis=self.axis) 110 input_sum = math_ops.reduce_sum(weighted_inputs, axis=self.axis) 112 squared_weights_sum = math_ops.reduce_sum(squared_weights, axis=self.axis)
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | dirichlet.py | 201 self._total_concentration = math_ops.reduce_sum(self._concentration, -1) 240 return gamma_sample / math_ops.reduce_sum(gamma_sample, -1, keepdims=True) 252 return math_ops.reduce_sum(math_ops.xlogy(self.concentration - 1., x), -1) 263 - math_ops.reduce_sum( 333 math_ops.reduce_sum(x, -1), 406 math_ops.reduce_sum(d1.concentration, axis=-1, keepdims=True)) 410 return (math_ops.reduce_sum(concentration_diff * digamma_diff, axis=-1) -
|
D | multinomial.py | 266 x = math_ops.reduce_sum(array_ops.one_hot(x, depth=k), axis=-2) # [n, k] 285 return math_ops.reduce_sum(counts * nn_ops.log_softmax(self.logits), -1) 314 self.total_count, math_ops.reduce_sum(counts, -1),
|
D | dirichlet_multinomial.py | 222 self._total_concentration = math_ops.reduce_sum(self._concentration, -1) 275 x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2) 353 self.total_count, math_ops.reduce_sum(counts, -1),
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduce_benchmark_test.py | 59 backprop.gradients_function(math_ops.reduce_sum, [0])(tensor) 68 backprop.gradients_function(math_ops.reduce_sum, [0])(tensor) 80 reduction = math_ops.reduce_sum(tensor) 97 reduction = math_ops.reduce_sum(tensor)
|
/external/tensorflow/tensorflow/python/eager/ |
D | tape_test.py | 41 r = math_ops.reduce_sum(mm) 92 return math_ops.reduce_sum(mm) 106 return math_ops.reduce_sum(mm) 120 return math_ops.reduce_sum(mm) 135 return r + math_ops.reduce_sum(mm) 144 tf_rr = 2 * math_ops.reduce_sum(tf_mm)
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | control_flow_test.py | 41 if math_ops.reduce_sum(inputs) > 0: 75 if math_ops.reduce_sum(inputs) > 0: 90 if math_ops.reduce_sum(inputs) > 0: 101 if math_ops.reduce_sum(inputs) > 0:
|
/external/tensorflow/tensorflow/python/keras/ |
D | regularizers.py | 251 regularization += self.l1 * math_ops.reduce_sum(math_ops.abs(x)) 253 regularization += self.l2 * math_ops.reduce_sum(math_ops.square(x)) 288 return self.l1 * math_ops.reduce_sum(math_ops.abs(x)) 322 return self.l2 * math_ops.reduce_sum(math_ops.square(x))
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 87 total_loss = math_ops.reduce_sum(losses) 125 return math_ops.reduce_sum( 130 return math_ops.reduce_sum(present, name=scope) 192 loss = math_ops.reduce_sum(weighted_losses) 195 loss, math_ops.reduce_sum(array_ops.ones_like(losses) * weights)) 314 losses = 1 - math_ops.reduce_sum(radial_diffs, axis=(axis,), keepdims=True) 573 sum_squares_diff_per_batch = math_ops.reduce_sum( 582 sum_diff = math_ops.reduce_sum(diffs, axis=axis, keepdims=True) 591 loss = math_ops.reduce_sum(weighted_losses) 594 math_ops.reduce_sum(num_present_per_batch) > 0,
|
/external/tensorflow/tensorflow/python/grappler/ |
D | layout_optimizer_test.py | 354 output = math_ops.reduce_sum(split[0]) 420 reduce_sum = math_ops.reduce_sum(conv) 421 output = array_ops.identity(reduce_sum) 481 reduce_sum = math_ops.reduce_sum(conv, axis=[1, 2]) 482 squeeze = array_ops.squeeze(reduce_sum) 512 reduce_sum = math_ops.reduce_sum(conv, axis=[1, 2], keepdims=True) 513 squeeze = array_ops.squeeze(reduce_sum, axis=[1, 2]) 543 reduce_sum = math_ops.reduce_sum(conv, axis=[0, 1, 2], keepdims=True) 544 squeeze = array_ops.squeeze(reduce_sum, axis=[0, 1, 2]) 574 reduce_sum = math_ops.reduce_sum(conv, axis=[1, 2, 3]) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | kernelized_utils.py | 85 diff_squared_l2_norm = math_ops.reduce_sum( 115 diff_l1_norm = math_ops.reduce_sum(
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/benchmarks/ |
D | normalization_adapt_benchmark.py | 46 sum_v = math_ops.reduce_sum(values, axis=0) 47 sum_v2 = math_ops.reduce_sum(math_ops.square(values), axis=0) 49 batch_size = math_ops.reduce_sum(ones, axis=0)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_StopGradient.pbtxt | 22 denominator = tf.reduce_sum(numerator) 35 denominator = tf.reduce_sum(numerator) 49 denominator = tf.reduce_sum(numerator)
|
/external/tensorflow/tensorflow/python/keras/legacy_tf_layers/ |
D | convolutional_test.py | 215 reg = lambda x: 0.1 * math_ops.reduce_sum(x) 228 reg = lambda x: 0.1 * math_ops.reduce_sum(x) 313 k_constraint = lambda x: x / math_ops.reduce_sum(x) 324 k_constraint = lambda x: x / math_ops.reduce_sum(x) 335 k_constraint = lambda x: x / math_ops.reduce_sum(x) 470 reg = lambda x: 0.1 * math_ops.reduce_sum(x) 483 reg = lambda x: 0.1 * math_ops.reduce_sum(x) 496 reg = lambda x: 0.1 * math_ops.reduce_sum(x) 516 d_constraint = lambda x: x / math_ops.reduce_sum(x) 517 p_constraint = lambda x: x / math_ops.reduce_sum(x) [all …]
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 57 tf.reduce_sum( 60 tf.reduce_sum( 62 self.assertAllEqual(tf.reduce_sum(a, [0, 1]).eval(), 21.0) 221 tf.scalar_summary("scalar_reduce_var", tf.reduce_sum(var)),
|
/external/tensorflow/tensorflow/python/data/experimental/ops/ |
D | resampling.py | 148 proportion_rejected = math_ops.reduce_sum((1 - accept_dist) * initial_dist) 221 num_examples_per_class_seen, math_ops.reduce_sum( 225 math_ops.reduce_sum(num_examples_per_class_seen))
|