/external/tensorflow/tensorflow/python/keras/layers/ |
D | cudnn_recurrent.py | 57 return_sequences=False, argument 66 self.return_sequences = return_sequences 126 'return_sequences': self.return_sequences, 211 return_sequences=False, argument 220 return_sequences=return_sequences, 310 if self.return_sequences: 396 return_sequences=False, argument 405 return_sequences=return_sequences, 512 if self.return_sequences:
|
D | convolutional_recurrent_test.py | 36 return_sequences=[True, False])) 37 def test_conv_lstm(self, data_format, return_sequences): argument 58 'return_sequences': return_sequences, 79 'return_sequences': return_sequences, 210 return_sequences=False, return_state=True) 217 return_sequences=False, return_state=False)
|
D | serialization_test.py | 142 lstm = layer(5, return_sequences=True) 147 self.assertEqual(new_layer.return_sequences, True) 156 gru = layer(5, return_sequences=True) 161 self.assertEqual(new_layer.return_sequences, True)
|
D | cudnn_recurrent_test.py | 45 return_sequences=[True, False])) 47 def test_cudnn_rnn_return_sequence(self, layer_class, return_sequences): argument 55 'return_sequences': return_sequences}, 113 layer = layer_class(units, time_major=True, return_sequences=True) 177 return_sequences=False, 187 return_sequences=False, 217 units, return_sequences=False, stateful=True, weights=None) 431 rnn(output_dim, return_sequences=True),
|
D | gru_v2_test.py | 139 model.add(rnn.GRU(10, return_sequences=True, unroll=False)) 140 model.add(rnn.GRU(5, return_sequences=True, unroll=False)) 303 return_sequences=True, 337 model.add(layer_class(units=5, return_sequences=True, unroll=False)) 352 model.add(rnn.GRU(10, return_sequences=True, unroll=False)) 353 model.add(rnn.GRU(5, return_sequences=True, unroll=False)) 426 return_sequences=False, 454 return_sequences=False, 490 units, return_sequences=False, stateful=True, weights=None) 561 rnn.GRU(units, return_sequences=True, stateful=True), [all …]
|
D | lstm_test.py | 75 layer = keras.layers.LSTM(units, return_sequences=True) 134 return_sequences=False, 156 model.add(layer_class(units=5, return_sequences=True, unroll=unroll)) 172 lstm_cells, return_sequences=True, unroll=unroll)) 327 layer = keras.layers.LSTM(units, return_state=True, return_sequences=True) 372 return_sequences=False, 406 units, return_sequences=False, stateful=True, weights=None)
|
D | simplernn_test.py | 108 return_sequences=False, 126 model.add(layer_class(units=5, return_sequences=True, unroll=False)) 148 return_sequences=False, 180 units, return_sequences=False, stateful=True, weights=None)
|
D | lstm_v2_test.py | 102 layer = rnn.LSTM(units, return_sequences=True) 125 model.add(rnn.LSTM(10, return_sequences=True, unroll=False)) 126 model.add(rnn.LSTM(5, return_sequences=True, unroll=False)) 287 units, return_state=True, return_sequences=True) 397 return_sequences=False, 414 model.add(layer_class(units=5, return_sequences=True, unroll=False)) 429 model.add(rnn.LSTM(10, return_sequences=True, unroll=False)) 430 model.add(rnn.LSTM(5, return_sequences=True, unroll=False)) 457 return_sequences=True, 619 return_sequences=False, [all …]
|
D | gru_test.py | 145 model.add(layer_class(units=5, return_sequences=True, unroll=False)) 170 units, return_sequences=False, stateful=True, weights=None) 239 return_sequences=False, 268 return_sequences=False,
|
D | convolutional_recurrent.py | 159 return_sequences=False, argument 173 return_sequences, 211 if not self.return_sequences: 339 if self.return_sequences: 360 if self.return_sequences: 849 return_sequences=False, argument 879 return_sequences=return_sequences,
|
D | recurrent_v2_test.py | 59 layer(units, return_sequences=True, stateful=True), 101 layer(128, stateful=True, return_sequences=True, dropout=0.2,
|
D | recurrent_test.py | 296 units, time_major=True, return_sequences=True) 321 layer = keras.layers.RNN(cells, time_major=True, return_sequences=True) 341 units, time_major=True, return_sequences=True)(mask) 354 rnn_1 = keras.layers.SimpleRNN(units, return_sequences=True) 372 units, time_major=True, return_sequences=True) 660 return_sequences=True, 807 return_sequences=True, 814 return_sequences=True, 826 return_sequences=True, 859 layer = keras.layers.RNN(cells, return_state=True, return_sequences=True) [all …]
|
D | recurrent_v2.py | 366 return_sequences=False, argument 396 return_sequences=return_sequences, 467 if self.return_sequences: 1090 return_sequences=False, argument 1120 return_sequences=return_sequences, 1279 if self.return_sequences:
|
D | recurrent.py | 396 return_sequences=False, argument 425 self.return_sequences = return_sequences 495 if self.return_sequences: 531 output_mask = mask if self.return_sequences else None 825 if self.return_sequences: 977 'return_sequences': self.return_sequences, 1539 return_sequences=False, argument 1575 return_sequences=return_sequences, 2071 return_sequences=False, argument 2111 return_sequences=return_sequences, [all …]
|
D | wrappers.py | 498 layer.zero_output_for_mask = layer.return_sequences 509 self.return_sequences = layer.return_sequences 714 if self.return_sequences: 751 if self.return_sequences:
|
D | wrappers_test.py | 251 keras.layers.SimpleRNN(7, return_sequences=True))) 253 keras.layers.SimpleRNN(8, return_sequences=False))) 254 model.add(keras.layers.SimpleRNN(1, return_sequences=False)) 382 rnn_layer = keras.layers.LSTM(4, return_sequences=True, stateful=True) 616 rnn(output_dim, return_sequences=True), 691 rnn(units, return_sequences=True), merge_mode=merge_mode) 744 forward_cell, time_major=time_major, return_sequences=True), 746 backward_cell, time_major=time_major, return_sequences=True, 800 rnn(units, return_state=True, return_sequences=True)) 829 rnn(units, return_state=True, return_sequences=True)) [all …]
|
/external/rnnoise/training/ |
D | rnn_train.py | 65 vad_gru = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='v… 68 noise_gru = GRU(48, activation='relu', recurrent_activation='sigmoid', return_sequences=True, name=… 71 denoise_gru = GRU(96, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, nam…
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | vis_utils_test.py | 48 lstm = keras.layers.LSTM(6, return_sequences=True, name='lstm') 52 keras.layers.LSTM(16, return_sequences=True, name='bilstm'))
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_architectures.py | 60 x = keras.layers.LSTM(4, return_sequences=True)(inputs) 61 x = keras.layers.LSTM(3, return_sequences=True)(x) 62 x = keras.layers.LSTM(2, return_sequences=False)(x) 110 latent_dim, return_sequences=True, return_state=True)
|
/external/rnnoise/src/ |
D | rnn_train.py | 24 x = GRU(128, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
|
/external/libopus/scripts/ |
D | rnn_train.py | 30 …recurrent_dropout=0.1, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
|
/external/libopus/training/ |
D | rnn_dump.py | 42 x = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
|
/external/tensorflow/tensorflow/python/keras/benchmarks/ |
D | optimizer_benchmarks_test.py | 34 tf.keras.layers.LSTM(64, return_sequences=True))(
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_stateful_lstm_model_correctness_test.py | 66 units=4, return_sequences=False, stateful=True)(
|
D | keras_rnn_model_correctness_test.py | 55 rnn_embed = rnn_cls(units=4, return_sequences=False)(word_embed)
|