/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 56 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 63 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 70 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 77 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 84 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 91 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 98 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 105 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 112 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], 119 rt_input=[[3, 1, 4], [1, 5], [9], [2, 6]], [all …]
|
D | ragged_row_lengths_op_test.py | 37 rt_input=[[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []], 40 rt_input=[[[3, 1, 4], [1]], [], [[5, 9], [2]], [[6]], []], 46 rt_input=[['a'], ['b', 'c', 'd'], ['e'], [], ['f']], 49 rt_input=[['a'], ['b', 'c', 'd'], ['e'], [], ['f']], 53 rt_input=[['a', 'b', 'c', 'd', 'e', 'f', 'g']], 56 rt_input=[[], ['a', 'b', 'c', 'd', 'e', 'f', 'g'], []], 59 rt_input=[], 63 rt_input=[], 70 rt_input=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10]]], 75 rt_input=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10]]], [all …]
|
D | ragged_tile_op_test.py | 42 rt_input=[[1, 2], [3]], 53 rt_input=[[[1, 2], [3]], [], [[4]]], 59 rt_input=[[[1, 2], [3]], [], [[4]]], 64 rt_input=[[[1, 2], [3]], [], [[4]]], 69 rt_input=[[[1, 2], [3]], [], [[4]]], 75 rt_input=[[[1, 2], [3]], [], [[4]]], 81 rt_input=[[[1, 2], [3]], [], [[4]]], 87 rt_input=[[['a', 'b'], ['c']], [], [['d']]], 96 rt_input=[[[1, 2], [3, 4]], [], [[5, 6]]], 103 rt_input=[[[1, 2], [3, 4]], [], [[5, 6]]], [all …]
|
D | ragged_tensor_shape.py | 181 def from_tensor(cls, rt_input, dim_size_dtype=None): argument 183 with ops.name_scope(None, 'RaggedTensorDynamicShapeFromTensor', [rt_input]): 184 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 185 if not ragged_tensor.is_ragged(rt_input): 186 return cls([], array_ops.shape(rt_input)) 189 (rt_input.nrows(),) + rt_input.nested_row_lengths()) 192 array_ops.shape(rt_input.flat_values)[1:], 476 def broadcast_to(rt_input, shape, broadcast_inner_dimensions=True): argument 495 rt_input = ragged_tensor.convert_to_tensor_or_ragged_tensor(rt_input) 499 return _broadcast_to_uniform_shape(rt_input, shape, [all …]
|
D | ragged_getitem.py | 106 def _ragged_getitem(rt_input, key_list): argument 125 return rt_input 130 expanded_key_list = _expand_ellipsis(key_list, rt_input.shape.ndims) 131 return _ragged_getitem(rt_input, expanded_key_list) 136 inner_rt = _ragged_getitem(rt_input, inner_keys) 149 sliced_rt_input = _slice_ragged_row_dimension(rt_input, row_key) 150 if rt_input.uniform_row_length is not None: 156 sliced_rt_input.values, rt_input.uniform_row_length, 163 starts = rt_input.row_splits[:-1] 164 limits = rt_input.row_splits[1:] [all …]
|
D | ragged_expand_dims_op_test.py | 50 dict(rt_input=[[1, 2], [3]], 54 dict(rt_input=[[1, 2], [3]], 58 dict(rt_input=[[1, 2], [3]], 65 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 70 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 75 dict(rt_input=[[1, 2], [3, 4], [5, 6]], 84 dict(rt_input=EXAMPLE4D, 89 dict(rt_input=EXAMPLE4D, 94 dict(rt_input=EXAMPLE4D, 99 dict(rt_input=EXAMPLE4D, [all …]
|
D | ragged_math_ops.py | 436 rt_input, argument 479 if not ragged_tensor.is_ragged(rt_input): 481 return reduce_op(rt_input, axis, keepdims=keepdims, name=name) 486 rt_input, axis, keepdims=keepdims, name=name, separator=separator) 497 result = reduce_op(rt_input.flat_values, None, keepdims=keepdims, name=name) 500 for _ in rt_input.shape[1:]: 504 with ops.name_scope(name, 'RaggedReduce', [rt_input, axis]): 507 return rt_input 516 array_ops.get_positive_axis(a, rt_input.shape.ndims, 'axis[%s]' % i, 526 rt_input, axis[-1], keepdims, [all …]
|
D | ragged_concat_ops.py | 145 rt_input, name='rt_input') for rt_input in rt_inputs 200 splits = [[rt_input.row_splits] for rt_input in rt_inputs] 300 def _increase_ragged_rank_to(rt_input, ragged_rank, row_splits_dtype): argument 303 if not ragged_tensor.is_ragged(rt_input): 304 rt_input = ragged_tensor.RaggedTensor.from_tensor( 305 rt_input, row_splits_dtype=row_splits_dtype) 306 if rt_input.ragged_rank < ragged_rank: 307 rt_input = rt_input.with_values( 308 _increase_ragged_rank_to(rt_input.values, ragged_rank - 1, 310 return rt_input
|
D | ragged_conversion_ops.py | 48 def to_tensor(rt_input, default_value=None, name=None): argument 49 if ragged_tensor.is_ragged(rt_input): 50 return rt_input.to_tensor(default_value, name) 52 return rt_input 55 def ragged_to_dense(rt_input, default_value=None, shape=None): argument 57 return rt_input.to_tensor(default_value=default_value, shape=shape) 140 def to_sparse(rt_input, name=None): argument 141 return rt_input.to_sparse(name)
|
D | ragged_where_op.py | 248 def _nrows(rt_input, out_type): argument 249 if isinstance(rt_input, ragged_tensor.RaggedTensor): 250 return rt_input.nrows(out_type=out_type) 252 return array_ops.shape(rt_input, out_type=out_type)[0]
|
D | ragged_array_ops.py | 253 def _tile_ragged_values(rt_input, multiples, const_multiples=None): argument 277 ragged_rank = rt_input.ragged_rank 278 nested_splits = rt_input.nested_row_splits 303 ragged_tiled_values = array_ops.gather(rt_input.flat_values, inner_value_ids) 312 def _tile_ragged_splits(rt_input, multiples, const_multiples=None): argument 336 ragged_rank = rt_input.ragged_rank 337 nested_splits = rt_input.nested_row_splits
|
D | ragged_to_tensor_op_test.py | 325 rt_input, argument 333 rt_input, ragged_rank=ragged_rank, inner_shape=inner_shape) 391 rt_input, argument 398 rt = ragged_factory_ops.constant(rt_input, ragged_rank=ragged_rank) 779 rt_input = self._generateRaggedTensor(shape, ragged_rank, dtype, fill) 792 rt = ragged_factory_ops.constant(rt_input, dtype, ragged_rank=ragged_rank)
|
D | ragged_concat_op_test.py | 42 ragged_factory_ops.constant(rt_input, ragged_rank=rrank) 43 if rrank != 0 else constant_op.constant(rt_input) 44 for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
|
D | ragged_stack_op_test.py | 354 ragged_factory_ops.constant(rt_input, ragged_rank=rrank) # pylint: disable=g-long-ternary 355 if rrank != 0 else constant_op.constant(rt_input) 356 for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
|
D | ragged_tensor.py | 2805 def _get_row_partition_type_tensor_pairs(rt_input): argument 2818 partitions = rt_input._nested_row_partitions # pylint: disable=protected-access
|