/external/tensorflow/tensorflow/python/ops/losses/ |
D | util.py | 34 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument 84 if sample_weight is None: 87 weights_shape = sample_weight.shape 90 return y_pred, y_true, sample_weight 95 sample_weight = array_ops.squeeze(sample_weight, [-1]) 97 sample_weight = array_ops.expand_dims(sample_weight, [-1]) 98 return y_pred, y_true, sample_weight 101 weights_rank_tensor = array_ops.rank(sample_weight) 103 maybe_squeeze_weights = lambda: array_ops.squeeze(sample_weight, [-1]) 106 expand_weights = lambda: array_ops.expand_dims(sample_weight, [-1]) [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | losses_test.py | 199 sample_weight = constant_op.constant([1.2, 0.5]) 200 loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) 223 sample_weight = constant_op.constant([1.2, 0.5]) 226 def tf_functioned_loss_fn(y_true, y_pred, sample_weight=None): argument 227 return mse_obj(y_true, y_pred, sample_weight=sample_weight) 229 loss = tf_functioned_loss_fn(y_true, y_pred, sample_weight=sample_weight) 335 loss = mse_obj(y_true, y_pred, sample_weight=2.3) 344 sample_weight = constant_op.constant([1.2, 3.4], shape=(2, 1)) 345 loss = mse_obj(y_true, y_pred, sample_weight=sample_weight) 353 sample_weight = constant_op.constant([1.2, 0.5]) [all …]
|
D | metrics_test.py | 88 result_t = m(100, sample_weight=0.5) 93 result_t = m([1, 5], sample_weight=[1, 0.2]) 99 result_t = m([1, 2], sample_weight=0.5) 104 result_t = m([1, 5], sample_weight=[[1], [0.2]]) 109 result_t = m([[1], [5]], sample_weight=[1, 0.2]) 114 result_t = m([[[1., 2.], [3., 2.], [0.5, 4.]]], sample_weight=[0.5]) 128 result_t = m(v, sample_weight=w) 236 result_t = m(100, sample_weight=0.5) 242 result_t = m([1, 5], sample_weight=[1, 0.2]) 249 result_t = m([1, 2], sample_weight=0.5) [all …]
|
D | metrics_correctness_test.py | 197 sample_weight={ 209 sample_weight={'output_2': self.sample_weight_2}, 227 sample_weight={ 238 sample_weight={ 248 mse1 = model.evaluate([x, x], [y, y], sample_weight=[w, w], batch_size=5)[3] 249 mse2 = model.evaluate([x, x], [y, y], sample_weight=[w, w], 261 sample_weight={ 269 sample_weight={ 283 sample_weight={ 291 sample_weight={ [all …]
|
D | metrics.py | 367 def update_state(self, values, sample_weight=None): argument 377 [values], sample_weight = \ 379 [values], sample_weight) 381 if sample_weight is not None: 382 sample_weight = math_ops.cast(sample_weight, self._dtype) 384 values, _, sample_weight = losses_utils.squeeze_or_expand_dimensions( 385 values, sample_weight=sample_weight) 388 sample_weight = weights_broadcast_ops.broadcast_weights( 389 sample_weight, values) 393 weight_ndim = K.ndim(sample_weight) [all …]
|
D | metrics_confusion_matrix_test.py | 76 sample_weight = constant_op.constant((1., 1.5, 2., 2.5)) 77 result = fp_obj(y_true, y_pred, sample_weight=sample_weight) 102 sample_weight = ((1.0, 2.0, 3.0, 5.0), (7.0, 11.0, 13.0, 17.0), 105 result = fp_obj(y_true, y_pred, sample_weight=sample_weight) 156 sample_weight = constant_op.constant((1., 1.5, 2., 2.5)) 157 result = fn_obj(y_true, y_pred, sample_weight=sample_weight) 182 sample_weight = ((3.0,), (5.0,), (7.0,), (4.0,)) 184 result = fn_obj(y_true, y_pred, sample_weight=sample_weight) 224 sample_weight = constant_op.constant((1., 1.5, 2., 2.5)) 225 result = tn_obj(y_true, y_pred, sample_weight=sample_weight) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | losses_utils.py | 146 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument 196 if sample_weight is None: 199 weights_shape = sample_weight.shape 202 return y_pred, y_true, sample_weight 207 sample_weight = array_ops.squeeze(sample_weight, [-1]) 209 sample_weight = array_ops.expand_dims(sample_weight, [-1]) 210 return y_pred, y_true, sample_weight 213 weights_rank_tensor = array_ops.rank(sample_weight) 215 maybe_squeeze_weights = lambda: array_ops.squeeze(sample_weight, [-1]) 218 expand_weights = lambda: array_ops.expand_dims(sample_weight, [-1]) [all …]
|
D | metrics_utils.py | 242 sample_weight=None, argument 324 sample_weight) 345 if sample_weight is None: 349 sample_weight = math_ops.cast(sample_weight, dtype=variable_dtype) 350 y_pred, y_true, sample_weight = ( 352 y_pred, y_true, sample_weight=sample_weight)) 405 if sample_weight is not None: 406 sample_weight = weights_broadcast_ops.broadcast_weights( 407 math_ops.cast(sample_weight, dtype=variable_dtype), y_pred) 409 array_ops.reshape(sample_weight, thresh_tiles), data_tiles)
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_v1.py | 628 sample_weight=None, argument 808 sample_weight=sample_weight, 822 sample_weight=None, argument 916 sample_weight=sample_weight, 1013 sample_weight=None, argument 1069 x, y, sample_weight=sample_weight, class_weight=class_weight, 1104 def test_on_batch(self, x, y=None, sample_weight=None, reset_metrics=True): argument 1151 x, y, sample_weight=sample_weight, extract_tensors_from_dataset=True) 1388 sample_weight=val_sample_weights, 1594 sample_weight = endpoint.sample_weight [all …]
|
D | compile_utils.py | 168 sample_weight=None, argument 185 sample_weight = self._conform_to_outputs(y_pred, sample_weight) 192 sample_weight = nest.flatten(sample_weight) 197 zip_args = (y_true, y_pred, sample_weight, self._losses, self._loss_weights, 205 loss_value = loss_obj(y_t, y_p, sample_weight=sw) 219 metric_obj.update_state(loss_metric_value, sample_weight=batch_dim) 244 total_loss_metric_value, sample_weight=batch_dim) 403 def update_state(self, y_true, y_pred, sample_weight=None): argument 406 sample_weight = self._conform_to_outputs(y_pred, sample_weight) 413 sample_weight = nest.flatten(sample_weight) [all …]
|
D | training_utils_v1.py | 727 def standardize_sample_weights(sample_weight, output_names): argument 728 return standardize_sample_or_class_weights(sample_weight, output_names, 949 sample_weight=None, argument 974 if isinstance(sample_weight, tuple): 975 sample_weight = sample_weight[0] 988 if sample_weight is not None and len(sample_weight.shape) != 2: 990 str(sample_weight.shape) + '. ' 994 if sample_weight is not None and len(sample_weight.shape) != 1: 1001 sample_weight.shape, sample_weight_mode)) 1003 if sample_weight is not None: [all …]
|
D | training_generator_v1.py | 566 sample_weight=None, argument 576 y, sample_weight, validation_split=validation_split) 601 sample_weight=None, argument 608 training_utils_v1.check_generator_arguments(y, sample_weight) 656 sample_weight=None, argument 664 training_utils_v1.validate_dataset_input(x, y, sample_weight, 692 sample_weight=None, argument 698 training_utils_v1.validate_dataset_input(x, y, sample_weight) 736 sample_weight=None, argument 747 sample_weight=sample_weight, [all …]
|
D | compile_utils_test.py | 60 total_loss = loss_container(y_t, y_p, sample_weight=sw) 93 total_loss = loss_container(y_t, y_p, sample_weight=sw) 119 total_loss = loss_container(y_t, y_p, sample_weight=sw) 142 total_loss = loss_container(y_t, y_p, sample_weight=sw) 177 total_loss = loss_container(y_t, y_p, sample_weight=sw) 200 total_loss = loss_container(y_t, y_p, sample_weight=sw) 317 total_loss = loss_container(y_t, y_p, sample_weight=sw) 334 total_loss = loss_container(y_t, y_p, sample_weight=sw) 425 metric_container.update_state(y_t, y_p, sample_weight=sw) 480 metric_container.update_state(y_t, y_p, sample_weight=sw) [all …]
|
D | training.py | 793 x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) 798 y, y_pred, sample_weight, regularization_losses=self.losses) 800 self.compiled_metrics.update_state(y, y_pred, sample_weight) 880 sample_weight=None, argument 1087 (x, y, sample_weight), validation_data = ( 1089 (x, y, sample_weight), validation_split=validation_split)) 1105 sample_weight=sample_weight, 1174 sample_weight=val_sample_weight, 1187 sample_weight=val_sample_weight, 1234 x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) [all …]
|
D | training_distributed_v1.py | 594 sample_weight=None, argument 616 sample_weight=sample_weight, 626 sample_weight=sample_weight, 643 sample_weight=val_sample_weights, 695 sample_weight=None, argument 706 sample_weight=sample_weight,
|
D | training_arrays_v1.py | 613 sample_weight=None, argument 625 sample_weight=sample_weight, 672 sample_weight=None, argument 680 sample_weight=sample_weight,
|
D | data_adapter.py | 856 x, y, sample_weight = unpack_x_y_sample_weight(data) 857 data = pack_x_y_sample_weight(x, y, sample_weight) 1106 sample_weight=None, argument 1165 sample_weights=sample_weight, 1574 def pack_x_y_sample_weight(x, y=None, sample_weight=None): argument 1609 elif sample_weight is None: 1612 return (x, y, sample_weight) 1618 sample_weight=None, argument 1621 x, y, sample_weight = _process_tensorlike((x, y, sample_weight)) 1624 elif sample_weight is None: [all …]
|
D | training_eager_v1.py | 175 mask, sample_weight=weights)) 182 sample_weight=weights, 200 output_loss = loss_fn(targets[i], outs[i], sample_weight=weights)
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | temporal_sample_weights_correctness_test.py | 260 sample_weight={ 277 sample_weight={ 302 sample_weight={ 308 sample_weight={ 322 sample_weight={ 327 sample_weight={ 350 sample_weight={ 364 sample_weight={ 386 sample_weight={ 391 sample_weight={ [all …]
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | losses_serialization_test.py | 142 sample_weight=[self.w, self.w]) 147 sample_weight=[self.w, self.w]) 155 [self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w]) 169 sample_weight=[self.w, self.w]) 174 sample_weight=[self.w, self.w]) 189 sample_weight=[self.w, self.w])
|
D | metrics_serialization_test.py | 188 sample_weight=[self.w, self.w]) 193 sample_weight=[self.w, self.w]) 201 [self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w]) 228 sample_weight=[self.w, self.w]) 233 sample_weight=[self.w, self.w]) 248 sample_weight=[self.w, self.w])
|
/external/tensorflow/tensorflow/python/keras/premade/ |
D | wide_deep.py | 113 x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) 114 x, y, sample_weight = data_adapter.expand_1d((x, y, sample_weight)) 119 y, y_pred, sample_weight, regularization_losses=self.losses) 120 self.compiled_metrics.update_state(y, y_pred, sample_weight)
|
/external/tensorflow/tensorflow/python/keras/preprocessing/ |
D | image.py | 433 sample_weight=None, argument 453 sample_weight=sample_weight, 822 sample_weight=None, argument 874 sample_weight=sample_weight,
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt | 11 …'x\', \'y\', \'image_data_generator\', \'batch_size\', \'shuffle\', \'sample_weight\', \'seed\', \…
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.keras.preprocessing.image.-numpy-array-iterator.pbtxt | 11 …'x\', \'y\', \'image_data_generator\', \'batch_size\', \'shuffle\', \'sample_weight\', \'seed\', \…
|