• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include <cstdio>
28 #include <cstring>
29 #include <string>
30 
31 #include "test-runner.h"
32 #include "test-utils.h"
33 #include "aarch64/test-utils-aarch64.h"
34 
35 #include "aarch64/macro-assembler-aarch64.h"
36 #include "aarch64/registers-aarch64.h"
37 #include "aarch64/simulator-aarch64.h"
38 
39 #define __ masm.
40 #define TEST(name) TEST_(AARCH64_API_##name)
41 
42 
43 namespace vixl {
44 namespace aarch64 {
45 
46 // Check compiler intrinsics helpers.
47 
TEST(count_leading_sign_bits)48 TEST(count_leading_sign_bits) {
49   class Helper {
50    public:
51     static void Check(int64_t value, int non_sign_bits) {
52       VIXL_ASSERT((0 <= non_sign_bits) && (non_sign_bits < 64));
53 
54       for (int width = 1; width <= 64; width *= 2) {
55         // Note that leading_sign_bits does not include the topmost bit.
56         int leading_sign_bits = width - non_sign_bits - 1;
57         if (leading_sign_bits < 0) continue;
58 
59         int64_t result = CountLeadingSignBits(value, width);
60         int64_t fallback_result = CountLeadingSignBitsFallBack(value, width);
61         VIXL_CHECK(result == leading_sign_bits);
62         VIXL_CHECK(fallback_result == leading_sign_bits);
63       }
64     }
65   };
66 
67   // Basic positive (and zero) cases. Sign bits are all zeroes.
68   Helper::Check(0, 0);  // 0b++++
69   Helper::Check(1, 1);  // 0b+++1
70   Helper::Check(2, 2);  // 0b++10
71   Helper::Check(3, 2);  // 0b++11
72   Helper::Check(4, 3);  // 0b+100
73 
74   // Basic negative cases. Sign bits are all ones.
75   Helper::Check(-1, 0);  // 0b----
76   Helper::Check(-2, 1);  // 0b---0
77   Helper::Check(-3, 2);  // 0b--01
78   Helper::Check(-4, 2);  // 0b--00
79   Helper::Check(-5, 3);  // 0b-011
80 
81   // Boundary conditions.
82   Helper::Check(INT8_MAX, 7);
83   Helper::Check(INT8_MIN, 7);
84   Helper::Check(static_cast<int64_t>(INT8_MAX) + 1, 8);
85   Helper::Check(static_cast<int64_t>(INT8_MIN) - 1, 8);
86 
87   Helper::Check(INT16_MAX, 15);
88   Helper::Check(INT16_MIN, 15);
89   Helper::Check(static_cast<int64_t>(INT16_MAX) + 1, 16);
90   Helper::Check(static_cast<int64_t>(INT16_MIN) - 1, 16);
91 
92   Helper::Check(INT32_MAX, 31);
93   Helper::Check(INT32_MIN, 31);
94   Helper::Check(static_cast<int64_t>(INT32_MAX) + 1, 32);
95   Helper::Check(static_cast<int64_t>(INT32_MIN) - 1, 32);
96 
97   Helper::Check(INT64_MAX, 63);
98   Helper::Check(INT64_MIN, 63);
99 
100   // Check automatic width detection.
101   VIXL_CHECK(CountLeadingSignBits(static_cast<int8_t>(42)) == 1);  // 0b00101010
102   VIXL_CHECK(CountLeadingSignBits(static_cast<int16_t>(42)) == 9);
103   VIXL_CHECK(CountLeadingSignBits(static_cast<int32_t>(42)) == 25);
104   VIXL_CHECK(CountLeadingSignBits(static_cast<int64_t>(42)) == 57);
105 }
106 
107 // Check SimFloat16 class mechanics.
TEST(float16_operators)108 TEST(float16_operators) {
109   ::vixl::internal::SimFloat16 f1 = kFP16DefaultNaN;
110   ::vixl::internal::SimFloat16 f2 = kFP16DefaultNaN;
111   ::vixl::internal::SimFloat16 f3 = kFP16PositiveInfinity;
112   ::vixl::internal::SimFloat16 f4 = kFP16NegativeInfinity;
113   VIXL_CHECK(!(f1 == f2));
114   VIXL_CHECK(f1 != f2);
115   VIXL_CHECK(!(f3 == f4));
116   VIXL_CHECK(f3 != f4);
117   VIXL_CHECK(::vixl::internal::SimFloat16(kFP16PositiveZero) ==
118              ::vixl::internal::SimFloat16(kFP16NegativeZero));
119   VIXL_CHECK(!(::vixl::internal::SimFloat16(kFP16PositiveZero) !=
120                ::vixl::internal::SimFloat16(kFP16NegativeZero)));
121 }
122 
TEST(rawbits_conversions)123 TEST(rawbits_conversions) {
124   VIXL_CHECK(RawbitsToInt64(0x0) == 0x0);
125   VIXL_CHECK(RawbitsToInt64(0x123) == 0x123);
126   VIXL_CHECK(RawbitsToInt64(INT64_MAX) == INT64_MAX);
127   VIXL_CHECK(RawbitsToInt64(UINT64_C(0xffffffffffffffff)) == -1);
128   VIXL_CHECK(RawbitsToInt64(UINT64_C(0x8000000000000000)) == INT64_MIN);
129   VIXL_CHECK(RawbitsToInt64(UINT64_C(0x8000000000000001)) == -INT64_MAX);
130 
131   VIXL_CHECK(RawbitsToInt32(0x0) == 0x0);
132   VIXL_CHECK(RawbitsToInt32(0x123) == 0x123);
133   VIXL_CHECK(RawbitsToInt32(INT32_MAX) == INT32_MAX);
134   VIXL_CHECK(RawbitsToInt32(UINT32_C(0xffffffff)) == -1);
135   VIXL_CHECK(RawbitsToInt32(UINT32_C(0x80000000)) == INT32_MIN);
136   VIXL_CHECK(RawbitsToInt32(UINT32_C(0x80000001)) == -INT32_MAX);
137 }
138 
139 // Check moved FP constants are still accessible via the AArch64 namespace.
TEST(float_constants_scope)140 TEST(float_constants_scope) {
141   VIXL_CHECK(vixl::aarch64::kFP64PositiveInfinity ==
142              vixl::kFP64PositiveInfinity);
143   VIXL_CHECK(vixl::aarch64::kFP64NegativeInfinity ==
144              vixl::kFP64NegativeInfinity);
145   VIXL_CHECK(vixl::aarch64::kFP32PositiveInfinity ==
146              vixl::kFP32PositiveInfinity);
147   VIXL_CHECK(vixl::aarch64::kFP32NegativeInfinity ==
148              vixl::kFP32NegativeInfinity);
149   VIXL_CHECK(Float16ToRawbits(vixl::aarch64::kFP16PositiveInfinity) ==
150              Float16ToRawbits(vixl::aarch64::kFP16PositiveInfinity));
151   VIXL_CHECK(Float16ToRawbits(vixl::aarch64::kFP16NegativeInfinity) ==
152              Float16ToRawbits(vixl::aarch64::kFP16NegativeInfinity));
153   VIXL_CHECK(DoubleToRawbits(vixl::aarch64::kFP64DefaultNaN) ==
154              DoubleToRawbits(vixl::kFP64DefaultNaN));
155   VIXL_CHECK(FloatToRawbits(vixl::aarch64::kFP32DefaultNaN) ==
156              FloatToRawbits(vixl::kFP32DefaultNaN));
157   VIXL_CHECK(IsNaN(vixl::aarch64::kFP16DefaultNaN) ==
158              IsNaN(vixl::kFP16DefaultNaN));
159   VIXL_CHECK(vixl::aarch64::kDoubleExponentBits == vixl::kDoubleExponentBits);
160   VIXL_CHECK(vixl::aarch64::kDoubleMantissaBits == vixl::kDoubleMantissaBits);
161   VIXL_CHECK(vixl::aarch64::kFloatExponentBits == vixl::kFloatExponentBits);
162   VIXL_CHECK(vixl::aarch64::kFloatMantissaBits == vixl::kFloatMantissaBits);
163   VIXL_CHECK(vixl::aarch64::kFloat16ExponentBits == vixl::kFloat16ExponentBits);
164   VIXL_CHECK(vixl::aarch64::kFloat16MantissaBits == vixl::kFloat16MantissaBits);
165 }
166 
167 
TEST(register_bit)168 TEST(register_bit) {
169   VIXL_CHECK(x0.GetBit() == (UINT64_C(1) << 0));
170   VIXL_CHECK(x1.GetBit() == (UINT64_C(1) << 1));
171   VIXL_CHECK(x10.GetBit() == (UINT64_C(1) << 10));
172 
173   // AAPCS64 definitions.
174   VIXL_CHECK(lr.GetBit() == (UINT64_C(1) << kLinkRegCode));
175 
176   // Fixed (hardware) definitions.
177   VIXL_CHECK(xzr.GetBit() == (UINT64_C(1) << kZeroRegCode));
178 
179   // Internal ABI definitions.
180   VIXL_CHECK(sp.GetBit() == (UINT64_C(1) << kSPRegInternalCode));
181   VIXL_CHECK(sp.GetBit() != xzr.GetBit());
182 
183   // xn.GetBit() == wn.GetBit() at all times, for the same n.
184   VIXL_CHECK(x0.GetBit() == w0.GetBit());
185   VIXL_CHECK(x1.GetBit() == w1.GetBit());
186   VIXL_CHECK(x10.GetBit() == w10.GetBit());
187   VIXL_CHECK(xzr.GetBit() == wzr.GetBit());
188   VIXL_CHECK(sp.GetBit() == wsp.GetBit());
189 }
190 
191 
TEST(noreg)192 TEST(noreg) {
193   VIXL_CHECK(NoReg.Is(NoVReg));
194   VIXL_CHECK(NoVReg.Is(NoReg));
195 
196   VIXL_CHECK(NoVReg.Is(NoReg));
197   VIXL_CHECK(NoReg.Is(NoVReg));
198 
199   VIXL_CHECK(NoReg.Is(NoCPUReg));
200   VIXL_CHECK(NoCPUReg.Is(NoReg));
201 
202   VIXL_CHECK(NoVReg.Is(NoCPUReg));
203   VIXL_CHECK(NoCPUReg.Is(NoVReg));
204 
205   VIXL_CHECK(NoVReg.Is(NoCPUReg));
206   VIXL_CHECK(NoCPUReg.Is(NoVReg));
207 
208   VIXL_CHECK(NoReg.IsNone());
209   VIXL_CHECK(NoVReg.IsNone());
210   VIXL_CHECK(NoCPUReg.IsNone());
211 }
212 
213 
TEST(constructors)214 TEST(constructors) {
215   // *Register(code)
216   VIXL_CHECK(WRegister(0).Is(w0));
217   VIXL_CHECK(XRegister(1).Is(x1));
218 
219   VIXL_CHECK(BRegister(2).Is(b2));
220   VIXL_CHECK(HRegister(3).Is(h3));
221   VIXL_CHECK(SRegister(4).Is(s4));
222   VIXL_CHECK(DRegister(5).Is(d5));
223   VIXL_CHECK(QRegister(6).Is(q6));
224 
225   VIXL_CHECK(ZRegister(7).Is(z7));
226   VIXL_CHECK(PRegister(8).Is(p8));
227 }
228 
229 
TEST(constructors_r)230 TEST(constructors_r) {
231   // Register(code, size_in_bits)
232   VIXL_CHECK(Register(0, kWRegSize).Is(w0));
233   VIXL_CHECK(Register(1, kXRegSize).Is(x1));
234 }
235 
236 
TEST(constructors_v)237 TEST(constructors_v) {
238   // VRegister(code)
239   VIXL_CHECK(VRegister(0).Is(v0));
240   VIXL_CHECK(VRegister(1).Is(v1));
241   VIXL_CHECK(VRegister(2).Is(v2));
242   VIXL_CHECK(VRegister(3).Is(v3));
243   VIXL_CHECK(VRegister(4).Is(v4));
244 
245   // VRegister(code, size_in_bits)
246   VIXL_CHECK(VRegister(0, kBRegSize).Is(b0));
247   VIXL_CHECK(VRegister(1, kHRegSize).Is(h1));
248   VIXL_CHECK(VRegister(2, kSRegSize).Is(s2));
249   VIXL_CHECK(VRegister(3, kDRegSize).Is(d3));
250   VIXL_CHECK(VRegister(4, kQRegSize).Is(q4));
251 
252   // VRegister(code, size_in_bits, lanes)
253   VIXL_CHECK(VRegister(0, kBRegSize, 1).Is(b0));
254   VIXL_CHECK(VRegister(1, kHRegSize, 1).Is(h1));
255   VIXL_CHECK(VRegister(2, kSRegSize, 1).Is(s2));
256   VIXL_CHECK(VRegister(3, kDRegSize, 1).Is(d3));
257   VIXL_CHECK(VRegister(4, kQRegSize, 1).Is(q4));
258 
259   VIXL_CHECK(VRegister(0, kSRegSize, 2).Is(v0.V2H()));
260 
261   VIXL_CHECK(VRegister(1, kDRegSize, 1).Is(v1.V1D()));
262   VIXL_CHECK(VRegister(2, kDRegSize, 2).Is(v2.V2S()));
263   VIXL_CHECK(VRegister(3, kDRegSize, 4).Is(v3.V4H()));
264   VIXL_CHECK(VRegister(4, kDRegSize, 8).Is(v4.V8B()));
265 
266   VIXL_CHECK(VRegister(5, kQRegSize, 2).Is(v5.V2D()));
267   VIXL_CHECK(VRegister(6, kQRegSize, 4).Is(v6.V4S()));
268   VIXL_CHECK(VRegister(7, kQRegSize, 8).Is(v7.V8H()));
269   VIXL_CHECK(VRegister(8, kQRegSize, 16).Is(v8.V16B()));
270 
271   // VRegister(code, format)
272   VIXL_CHECK(VRegister(0, kFormatB).Is(b0));
273   VIXL_CHECK(VRegister(1, kFormatH).Is(h1));
274   VIXL_CHECK(VRegister(2, kFormatS).Is(s2));
275   VIXL_CHECK(VRegister(3, kFormatD).Is(d3));
276   VIXL_CHECK(VRegister(4, kFormat8B).Is(v4.V8B()));
277   VIXL_CHECK(VRegister(5, kFormat16B).Is(v5.V16B()));
278   VIXL_CHECK(VRegister(6, kFormat2H).Is(v6.V2H()));
279   VIXL_CHECK(VRegister(7, kFormat4H).Is(v7.V4H()));
280   VIXL_CHECK(VRegister(8, kFormat8H).Is(v8.V8H()));
281   VIXL_CHECK(VRegister(9, kFormat2S).Is(v9.V2S()));
282   VIXL_CHECK(VRegister(10, kFormat4S).Is(v10.V4S()));
283   VIXL_CHECK(VRegister(11, kFormat1D).Is(v11.V1D()));
284   VIXL_CHECK(VRegister(12, kFormat2D).Is(v12.V2D()));
285 }
286 
287 
TEST(constructors_z)288 TEST(constructors_z) {
289   // ZRegister(code, lane_size_in_bits)
290   VIXL_CHECK(ZRegister(0, kBRegSize).Is(z0.VnB()));
291   VIXL_CHECK(ZRegister(1, kHRegSize).Is(z1.VnH()));
292   VIXL_CHECK(ZRegister(2, kSRegSize).Is(z2.VnS()));
293   VIXL_CHECK(ZRegister(3, kDRegSize).Is(z3.VnD()));
294 
295   // ZRegister(code, format)
296   VIXL_CHECK(ZRegister(0, kFormatVnB).Is(z0.VnB()));
297   VIXL_CHECK(ZRegister(1, kFormatVnH).Is(z1.VnH()));
298   VIXL_CHECK(ZRegister(2, kFormatVnS).Is(z2.VnS()));
299   VIXL_CHECK(ZRegister(3, kFormatVnD).Is(z3.VnD()));
300 }
301 
302 
TEST(constructors_p)303 TEST(constructors_p) {
304   // ZRegister(code, lane_size_in_bits)
305   VIXL_CHECK(PRegisterWithLaneSize(0, kBRegSize).Is(p0.VnB()));
306   VIXL_CHECK(PRegisterWithLaneSize(1, kHRegSize).Is(p1.VnH()));
307   VIXL_CHECK(PRegisterWithLaneSize(2, kSRegSize).Is(p2.VnS()));
308   VIXL_CHECK(PRegisterWithLaneSize(3, kDRegSize).Is(p3.VnD()));
309 
310   // ZRegister(code, format)
311   VIXL_CHECK(PRegisterWithLaneSize(0, kFormatVnB).Is(p0.VnB()));
312   VIXL_CHECK(PRegisterWithLaneSize(1, kFormatVnH).Is(p1.VnH()));
313   VIXL_CHECK(PRegisterWithLaneSize(2, kFormatVnS).Is(p2.VnS()));
314   VIXL_CHECK(PRegisterWithLaneSize(3, kFormatVnD).Is(p3.VnD()));
315 
316   VIXL_CHECK(PRegisterZ(0).Is(p0.Zeroing()));
317   VIXL_CHECK(PRegisterM(1).Is(p1.Merging()));
318 }
319 
320 
TEST(constructors_cpu)321 TEST(constructors_cpu) {
322   // ZRegister(code, size_in_bits, type)
323   VIXL_CHECK(CPURegister(0, kWRegSize, CPURegister::kRegister).Is(w0));
324   VIXL_CHECK(CPURegister(1, kXRegSize, CPURegister::kRegister).Is(x1));
325 
326   VIXL_CHECK(CPURegister(2, kBRegSize, CPURegister::kVRegister).Is(b2));
327   VIXL_CHECK(CPURegister(3, kHRegSize, CPURegister::kVRegister).Is(h3));
328   VIXL_CHECK(CPURegister(4, kSRegSize, CPURegister::kVRegister).Is(s4));
329   VIXL_CHECK(CPURegister(5, kDRegSize, CPURegister::kVRegister).Is(d5));
330   VIXL_CHECK(CPURegister(6, kQRegSize, CPURegister::kVRegister).Is(q6));
331   VIXL_CHECK(CPURegister(7, kQRegSize, CPURegister::kVRegister).Is(v7));
332 
333   VIXL_CHECK(CPURegister(0, CPURegister::kUnknownSize, CPURegister::kVRegister)
334                  .Is(z0));
335   VIXL_CHECK(CPURegister(1, CPURegister::kUnknownSize, CPURegister::kPRegister)
336                  .Is(p1));
337 }
338 
339 
340 #ifdef __aarch64__
CPURegisterByValueHelper(CPURegister reg)341 static void CPURegisterByValueHelper(CPURegister reg) {
342   // Test that `reg` can be passed in one register. We'd like to use
343   // __attribute__((naked)) for this, but it isn't supported for AArch64, so
344   // generate a function using VIXL instead.
345 
346   MacroAssembler masm;
347   // CPURegister fn(int placeholder, CPURegister reg);
348   // Move `reg` to its result register.
349   __ Mov(x0, x1);
350   // Clobber all other result registers.
351   __ Mov(x1, 0xfffffffffffffff1);
352   __ Mov(x2, 0xfffffffffffffff2);
353   __ Mov(x3, 0xfffffffffffffff3);
354   __ Mov(x4, 0xfffffffffffffff4);
355   __ Mov(x5, 0xfffffffffffffff5);
356   __ Mov(x6, 0xfffffffffffffff6);
357   __ Mov(x7, 0xfffffffffffffff7);
358   __ Ret();
359   masm.FinalizeCode();
360 
361   CodeBuffer* buffer = masm.GetBuffer();
362   auto fn = buffer->GetStartAddress<CPURegister (*)(int, CPURegister)>();
363   buffer->SetExecutable();
364   CPURegister out = fn(42, reg);
365 
366   VIXL_CHECK(out.Is(reg));
367 }
368 
369 
TEST(cpureg_by_value)370 TEST(cpureg_by_value) {
371   VIXL_STATIC_ASSERT(sizeof(CPURegister) <= sizeof(void*));
372   // Check some arbitrary registers to try to exercise each encoding field.
373   CPURegisterByValueHelper(x0);
374   CPURegisterByValueHelper(v31.V8H());
375   CPURegisterByValueHelper(z16.VnD());
376   CPURegisterByValueHelper(p15.Merging());
377 }
378 #endif  // __aarch64__
379 
380 
TEST(isvalid)381 TEST(isvalid) {
382   VIXL_CHECK(!NoReg.IsValid());
383   VIXL_CHECK(!NoVReg.IsValid());
384   VIXL_CHECK(!NoCPUReg.IsValid());
385 
386   VIXL_CHECK(x0.IsValid());
387   VIXL_CHECK(w0.IsValid());
388   VIXL_CHECK(x30.IsValid());
389   VIXL_CHECK(w30.IsValid());
390   VIXL_CHECK(xzr.IsValid());
391   VIXL_CHECK(wzr.IsValid());
392 
393   VIXL_CHECK(sp.IsValid());
394   VIXL_CHECK(wsp.IsValid());
395 
396   VIXL_CHECK(d0.IsValid());
397   VIXL_CHECK(s0.IsValid());
398   VIXL_CHECK(d31.IsValid());
399   VIXL_CHECK(s31.IsValid());
400 
401   VIXL_CHECK(x0.IsValidRegister());
402   VIXL_CHECK(w0.IsValidRegister());
403   VIXL_CHECK(xzr.IsValidRegister());
404   VIXL_CHECK(wzr.IsValidRegister());
405   VIXL_CHECK(sp.IsValidRegister());
406   VIXL_CHECK(wsp.IsValidRegister());
407   VIXL_CHECK(!x0.IsValidVRegister());
408   VIXL_CHECK(!w0.IsValidVRegister());
409   VIXL_CHECK(!xzr.IsValidVRegister());
410   VIXL_CHECK(!wzr.IsValidVRegister());
411   VIXL_CHECK(!sp.IsValidVRegister());
412   VIXL_CHECK(!wsp.IsValidVRegister());
413   VIXL_CHECK(!x0.IsValidFPRegister());
414   VIXL_CHECK(!w0.IsValidFPRegister());
415   VIXL_CHECK(!xzr.IsValidFPRegister());
416   VIXL_CHECK(!wzr.IsValidFPRegister());
417   VIXL_CHECK(!sp.IsValidFPRegister());
418   VIXL_CHECK(!wsp.IsValidFPRegister());
419 
420   VIXL_CHECK(q0.IsValidVRegister());
421   VIXL_CHECK(!q0.IsValidFPRegister());
422   VIXL_CHECK(!q0.IsValidRegister());
423 
424   VIXL_CHECK(d0.IsValidVRegister());
425   VIXL_CHECK(d0.IsValidFPRegister());
426   VIXL_CHECK(!d0.IsValidRegister());
427 
428   VIXL_CHECK(s0.IsValidVRegister());
429   VIXL_CHECK(s0.IsValidFPRegister());
430   VIXL_CHECK(!s0.IsValidRegister());
431 
432   VIXL_CHECK(h0.IsValidVRegister());
433   VIXL_CHECK(h0.IsValidFPRegister());
434   VIXL_CHECK(!h0.IsValidRegister());
435 
436   VIXL_CHECK(b0.IsValidVRegister());
437   VIXL_CHECK(!b0.IsValidFPRegister());
438   VIXL_CHECK(!b0.IsValidRegister());
439 
440   // IsValidFPRegister() is only true for scalar types.
441   VIXL_CHECK(q0.V2D().IsValidVRegister());
442   VIXL_CHECK(!q0.V2D().IsValidFPRegister());
443   VIXL_CHECK(d0.V2S().IsValidVRegister());
444   VIXL_CHECK(!d0.V2S().IsValidFPRegister());
445   VIXL_CHECK(s0.V2H().IsValidVRegister());
446   VIXL_CHECK(!s0.V2H().IsValidFPRegister());
447 }
448 
449 
TEST(isvalid_cpu)450 TEST(isvalid_cpu) {
451   // As 'isvalid', but using CPURegister types where possible. This shouldn't
452   // make any difference.
453   VIXL_CHECK(!static_cast<CPURegister>(NoReg).IsValid());
454   VIXL_CHECK(!static_cast<CPURegister>(NoVReg).IsValid());
455   VIXL_CHECK(!static_cast<CPURegister>(NoCPUReg).IsValid());
456 
457   VIXL_CHECK(static_cast<CPURegister>(x0).IsValid());
458   VIXL_CHECK(static_cast<CPURegister>(w0).IsValid());
459   VIXL_CHECK(static_cast<CPURegister>(x30).IsValid());
460   VIXL_CHECK(static_cast<CPURegister>(w30).IsValid());
461   VIXL_CHECK(static_cast<CPURegister>(xzr).IsValid());
462   VIXL_CHECK(static_cast<CPURegister>(wzr).IsValid());
463 
464   VIXL_CHECK(static_cast<CPURegister>(sp).IsValid());
465   VIXL_CHECK(static_cast<CPURegister>(wsp).IsValid());
466 
467   VIXL_CHECK(static_cast<CPURegister>(d0).IsValid());
468   VIXL_CHECK(static_cast<CPURegister>(s0).IsValid());
469   VIXL_CHECK(static_cast<CPURegister>(d31).IsValid());
470   VIXL_CHECK(static_cast<CPURegister>(s31).IsValid());
471 
472   VIXL_CHECK(static_cast<CPURegister>(x0).IsValidRegister());
473   VIXL_CHECK(static_cast<CPURegister>(w0).IsValidRegister());
474   VIXL_CHECK(static_cast<CPURegister>(xzr).IsValidRegister());
475   VIXL_CHECK(static_cast<CPURegister>(wzr).IsValidRegister());
476   VIXL_CHECK(static_cast<CPURegister>(sp).IsValidRegister());
477   VIXL_CHECK(static_cast<CPURegister>(wsp).IsValidRegister());
478   VIXL_CHECK(!static_cast<CPURegister>(x0).IsValidVRegister());
479   VIXL_CHECK(!static_cast<CPURegister>(w0).IsValidVRegister());
480   VIXL_CHECK(!static_cast<CPURegister>(xzr).IsValidVRegister());
481   VIXL_CHECK(!static_cast<CPURegister>(wzr).IsValidVRegister());
482   VIXL_CHECK(!static_cast<CPURegister>(sp).IsValidVRegister());
483   VIXL_CHECK(!static_cast<CPURegister>(wsp).IsValidVRegister());
484   VIXL_CHECK(!static_cast<CPURegister>(x0).IsValidFPRegister());
485   VIXL_CHECK(!static_cast<CPURegister>(w0).IsValidFPRegister());
486   VIXL_CHECK(!static_cast<CPURegister>(xzr).IsValidFPRegister());
487   VIXL_CHECK(!static_cast<CPURegister>(wzr).IsValidFPRegister());
488   VIXL_CHECK(!static_cast<CPURegister>(sp).IsValidFPRegister());
489   VIXL_CHECK(!static_cast<CPURegister>(wsp).IsValidFPRegister());
490 
491   VIXL_CHECK(static_cast<CPURegister>(q0).IsValidVRegister());
492   VIXL_CHECK(!static_cast<CPURegister>(q0).IsValidFPRegister());
493   VIXL_CHECK(!static_cast<CPURegister>(q0).IsValidRegister());
494 
495   VIXL_CHECK(static_cast<CPURegister>(d0).IsValidVRegister());
496   VIXL_CHECK(static_cast<CPURegister>(d0).IsValidFPRegister());
497   VIXL_CHECK(!static_cast<CPURegister>(d0).IsValidRegister());
498 
499   VIXL_CHECK(static_cast<CPURegister>(s0).IsValidVRegister());
500   VIXL_CHECK(static_cast<CPURegister>(s0).IsValidFPRegister());
501   VIXL_CHECK(!static_cast<CPURegister>(s0).IsValidRegister());
502 
503   VIXL_CHECK(static_cast<CPURegister>(h0).IsValidVRegister());
504   VIXL_CHECK(static_cast<CPURegister>(h0).IsValidFPRegister());
505   VIXL_CHECK(!static_cast<CPURegister>(h0).IsValidRegister());
506 
507   VIXL_CHECK(static_cast<CPURegister>(b0).IsValidVRegister());
508   VIXL_CHECK(!static_cast<CPURegister>(b0).IsValidFPRegister());
509   VIXL_CHECK(!static_cast<CPURegister>(b0).IsValidRegister());
510 }
511 
512 
TEST(areconsecutive)513 TEST(areconsecutive) {
514   VIXL_CHECK(AreConsecutive(b0, NoVReg));
515   VIXL_CHECK(AreConsecutive(b1, b2));
516   VIXL_CHECK(AreConsecutive(b3, b4, b5));
517   VIXL_CHECK(AreConsecutive(b6, b7, b8, b9));
518   VIXL_CHECK(AreConsecutive(h10, NoVReg));
519   VIXL_CHECK(AreConsecutive(h11, h12));
520   VIXL_CHECK(AreConsecutive(h13, h14, h15));
521   VIXL_CHECK(AreConsecutive(h16, h17, h18, h19));
522   VIXL_CHECK(AreConsecutive(s20, NoVReg));
523   VIXL_CHECK(AreConsecutive(s21, s22));
524   VIXL_CHECK(AreConsecutive(s23, s24, s25));
525   VIXL_CHECK(AreConsecutive(s26, s27, s28, s29));
526   VIXL_CHECK(AreConsecutive(d30, NoVReg));
527   VIXL_CHECK(AreConsecutive(d31, d0));
528   VIXL_CHECK(AreConsecutive(d1, d2, d3));
529   VIXL_CHECK(AreConsecutive(d4, d5, d6, d7));
530   VIXL_CHECK(AreConsecutive(q8, NoVReg));
531   VIXL_CHECK(AreConsecutive(q9, q10));
532   VIXL_CHECK(AreConsecutive(q11, q12, q13));
533   VIXL_CHECK(AreConsecutive(q14, q15, q16, q17));
534   VIXL_CHECK(AreConsecutive(v18, NoVReg));
535   VIXL_CHECK(AreConsecutive(v19, v20));
536   VIXL_CHECK(AreConsecutive(v21, v22, v23));
537   VIXL_CHECK(AreConsecutive(v24, v25, v26, v27));
538   VIXL_CHECK(AreConsecutive(b29, h30));
539   VIXL_CHECK(AreConsecutive(s31, d0, q1));
540   VIXL_CHECK(AreConsecutive(v2, b3, h4, s5));
541 
542   VIXL_CHECK(!AreConsecutive(b0, b2));
543   VIXL_CHECK(!AreConsecutive(h1, h0));
544   VIXL_CHECK(!AreConsecutive(s31, s1));
545   VIXL_CHECK(!AreConsecutive(d12, d12));
546   VIXL_CHECK(!AreConsecutive(q31, q1));
547 
548   VIXL_CHECK(!AreConsecutive(b0, b1, b3));
549   VIXL_CHECK(!AreConsecutive(h4, h5, h6, h6));
550   VIXL_CHECK(!AreConsecutive(d11, d13, NoVReg, d14));
551   VIXL_CHECK(!AreConsecutive(d15, d16, d18, NoVReg));
552   VIXL_CHECK(!AreConsecutive(b26, b28, NoVReg, b29));
553   VIXL_CHECK(!AreConsecutive(s28, s30, NoVReg, NoVReg));
554 
555   VIXL_CHECK(AreConsecutive(q19, NoVReg, NoVReg, q22));
556   VIXL_CHECK(AreConsecutive(v23, NoVReg, v25, NoVReg));
557   VIXL_CHECK(AreConsecutive(b26, b27, NoVReg, NoVReg));
558   VIXL_CHECK(AreConsecutive(h28, NoVReg, NoVReg, NoVReg));
559   VIXL_CHECK(AreConsecutive(s30, s31, NoVReg, s2));
560   VIXL_CHECK(AreConsecutive(d3, NoVReg, d6, d7));
561 }
562 
563 
TEST(sve_p_registers)564 TEST(sve_p_registers) {
565   enum Qualification { kNone, kZeroing, kMerging, kWithLaneSize };
566   class Helper {
567    public:
568     static Qualification GetQualification(PRegister) { return kNone; }
569     static Qualification GetQualification(PRegisterZ) { return kZeroing; }
570     static Qualification GetQualification(PRegisterM) { return kMerging; }
571     static Qualification GetQualification(PRegisterWithLaneSize) {
572       return kWithLaneSize;
573     }
574   };
575 
576   VIXL_CHECK(kNumberOfPRegisters == 16);
577   VIXL_CHECK(p0.GetCode() == 0);
578   VIXL_CHECK(p15.GetCode() == 15);
579   VIXL_CHECK(p14.VnB().GetLaneSizeInBits() == kBRegSize);
580   VIXL_CHECK(p14.VnH().GetLaneSizeInBits() == kHRegSize);
581   VIXL_CHECK(p14.VnS().GetLaneSizeInBits() == kSRegSize);
582   VIXL_CHECK(p14.VnD().GetLaneSizeInBits() == kDRegSize);
583   VIXL_CHECK(p14.VnB().GetLaneSizeInBytes() == kBRegSizeInBytes);
584   VIXL_CHECK(p14.VnH().GetLaneSizeInBytes() == kHRegSizeInBytes);
585   VIXL_CHECK(p14.VnS().GetLaneSizeInBytes() == kSRegSizeInBytes);
586   VIXL_CHECK(p14.VnD().GetLaneSizeInBytes() == kDRegSizeInBytes);
587   VIXL_CHECK(Helper::GetQualification(p1) == kNone);
588   VIXL_CHECK(Helper::GetQualification(p2.Zeroing()) == kZeroing);
589   VIXL_CHECK(Helper::GetQualification(p3.Merging()) == kMerging);
590   VIXL_CHECK(Helper::GetQualification(p4.VnB()) == kWithLaneSize);
591   VIXL_CHECK(Helper::GetQualification(p5.VnH()) == kWithLaneSize);
592   VIXL_CHECK(Helper::GetQualification(p6.VnS()) == kWithLaneSize);
593   VIXL_CHECK(Helper::GetQualification(p7.VnD()) == kWithLaneSize);
594 }
595 
596 
TEST(sve_z_registers)597 TEST(sve_z_registers) {
598   VIXL_CHECK(z0.GetCode() == 0);
599   VIXL_CHECK(z31.GetCode() == 31);
600 
601   VIXL_CHECK(z0.Is(z0));
602   VIXL_CHECK(!z0.Is(z1));
603   VIXL_CHECK(!z0.Is(v0));
604   VIXL_CHECK(!z0.Is(b0));
605   VIXL_CHECK(!z0.Is(q0));
606 
607   VIXL_CHECK(AreAliased(z5, z5));
608   VIXL_CHECK(AreAliased(z5, b5));
609   VIXL_CHECK(AreAliased(b5, z5));
610   VIXL_CHECK(AreAliased(z5, z5.B()));
611   VIXL_CHECK(AreAliased(z5, z5.VnB()));
612 
613   VIXL_CHECK(!AreAliased(z6, z7));
614   VIXL_CHECK(!AreAliased(b6, z7));
615   VIXL_CHECK(!AreAliased(x7, z7));
616 }
617 
618 
TEST(sve_z_registers_vs_neon)619 TEST(sve_z_registers_vs_neon) {
620   // There are three related register variants to consider in VIXL's API:
621   //
622   //    "b0": NEON: The least-significant byte of v0.
623   //    "v0.B": NEON: v0, with an unspecified number of byte-sized lanes.
624   //    "z0.B": SVE: z0, with an unspecified number of byte-sized lanes.
625   //
626   // The first two cases are indistinguishable in VIXL; both are obtained using
627   // something like `v0.B()`. This is fine for NEON because there is no
628   // ambiguity in practice; the "v0.B" form is always used with an index that
629   // makes the meaning clear.
630 
631   VIXL_ASSERT(v6.B().Is(b6));
632   VIXL_ASSERT(v7.H().Is(h7));
633   VIXL_ASSERT(v8.S().Is(s8));
634   VIXL_ASSERT(v9.D().Is(d9));
635 
636   VIXL_ASSERT(z6.B().Is(b6));
637   VIXL_ASSERT(z7.H().Is(h7));
638   VIXL_ASSERT(z8.S().Is(s8));
639   VIXL_ASSERT(z9.D().Is(d9));
640 
641   // We cannot use the same approach for SVE's "z0.B" because, for example,
642   // `Add(VRegister, ...)` and `Add(ZRegister, ...)` generate different
643   // instructions.
644 
645   // Test that the variants can be distinguished with `Is`.
646   VIXL_CHECK(!z6.VnB().Is(b6));
647   VIXL_CHECK(!z7.VnH().Is(h7));
648   VIXL_CHECK(!z8.VnS().Is(s8));
649   VIXL_CHECK(!z9.VnD().Is(d9));
650 
651   VIXL_CHECK(!z6.VnB().Is(v6.B()));
652   VIXL_CHECK(!z7.VnH().Is(v7.H()));
653   VIXL_CHECK(!z8.VnS().Is(v8.S()));
654   VIXL_CHECK(!z9.VnD().Is(v9.D()));
655 
656   VIXL_CHECK(!z6.VnB().Is(z6.B()));
657   VIXL_CHECK(!z7.VnH().Is(z7.H()));
658   VIXL_CHECK(!z8.VnS().Is(z8.S()));
659   VIXL_CHECK(!z9.VnD().Is(z9.D()));
660 
661   // Test that the variants can be distinguished at compile-time using
662   // overloading. VIXL's API relies on this.
663   enum Variant { kNEON, kSVE, kUnknown };
664   class Helper {
665    public:
666     static Variant GetVariant(ZRegister) { return kSVE; }
667     static Variant GetVariant(VRegister) { return kNEON; }
668     static Variant GetVariant(CPURegister) { return kUnknown; }
669   };
670   VIXL_CHECK(Helper::GetVariant(z10.VnB()) == kSVE);
671   VIXL_CHECK(Helper::GetVariant(z11.VnH()) == kSVE);
672   VIXL_CHECK(Helper::GetVariant(z12.VnS()) == kSVE);
673   VIXL_CHECK(Helper::GetVariant(z13.VnD()) == kSVE);
674 
675   VIXL_CHECK(Helper::GetVariant(v10.B()) == kNEON);
676   VIXL_CHECK(Helper::GetVariant(v11.H()) == kNEON);
677   VIXL_CHECK(Helper::GetVariant(v12.S()) == kNEON);
678   VIXL_CHECK(Helper::GetVariant(v13.D()) == kNEON);
679 
680   VIXL_CHECK(Helper::GetVariant(v10.V16B()) == kNEON);
681   VIXL_CHECK(Helper::GetVariant(v11.V8H()) == kNEON);
682   VIXL_CHECK(Helper::GetVariant(v12.V4S()) == kNEON);
683   VIXL_CHECK(Helper::GetVariant(v13.V2D()) == kNEON);
684 
685   VIXL_CHECK(Helper::GetVariant(b10) == kNEON);
686   VIXL_CHECK(Helper::GetVariant(h11) == kNEON);
687   VIXL_CHECK(Helper::GetVariant(s12) == kNEON);
688   VIXL_CHECK(Helper::GetVariant(d13) == kNEON);
689 }
690 
691 
TEST(move_immediate_helpers)692 TEST(move_immediate_helpers) {
693   // Using these helpers to query information (without generating code) should
694   // not crash.
695   MacroAssembler::MoveImmediateHelper(NULL, x0, 0x12345678);
696   MacroAssembler::OneInstrMoveImmediateHelper(NULL, x1, 0xabcdef);
697 }
698 
699 
TEST(generic_operand_helpers)700 TEST(generic_operand_helpers) {
701   GenericOperand invalid_1;
702   GenericOperand invalid_2;
703   GenericOperand reg(x3);
704   GenericOperand mem(MemOperand(sp, 8), kXRegSizeInBytes);
705 
706   VIXL_CHECK(!invalid_1.IsValid());
707   VIXL_CHECK(!invalid_2.IsValid());
708 
709   VIXL_CHECK(invalid_1.Equals(invalid_1));
710   VIXL_CHECK(invalid_2.Equals(invalid_2));
711   VIXL_CHECK(reg.Equals(reg));
712   VIXL_CHECK(mem.Equals(mem));
713 
714   VIXL_CHECK(invalid_1.Equals(invalid_2));
715   VIXL_CHECK(invalid_2.Equals(invalid_1));
716 
717   VIXL_CHECK(!invalid_1.Equals(reg));
718   VIXL_CHECK(!invalid_1.Equals(mem));
719   VIXL_CHECK(!reg.Equals(invalid_1));
720   VIXL_CHECK(!reg.Equals(invalid_2));
721   VIXL_CHECK(!reg.Equals(mem));
722   VIXL_CHECK(!mem.Equals(invalid_1));
723   VIXL_CHECK(!mem.Equals(reg));
724 }
725 
726 
TEST(integer_operand_is)727 TEST(integer_operand_is) {
728   VIXL_CHECK(IntegerOperand(0).IsZero());
729   VIXL_CHECK(!IntegerOperand(1).IsZero());
730   VIXL_CHECK(!IntegerOperand(-1).IsZero());
731 
732   VIXL_CHECK(!IntegerOperand(-0x81).IsIntN(8));
733   VIXL_CHECK(IntegerOperand(-0x80).IsIntN(8));
734   VIXL_CHECK(IntegerOperand(-1).IsIntN(8));
735   VIXL_CHECK(IntegerOperand(0).IsIntN(8));
736   VIXL_CHECK(IntegerOperand(1).IsIntN(8));
737   VIXL_CHECK(IntegerOperand(0x7f).IsIntN(8));
738   VIXL_CHECK(!IntegerOperand(0x80).IsIntN(8));
739 
740   VIXL_CHECK(!IntegerOperand(-1).IsUintN(8));
741   VIXL_CHECK(IntegerOperand(0).IsUintN(8));
742   VIXL_CHECK(IntegerOperand(1).IsUintN(8));
743   VIXL_CHECK(IntegerOperand(0xff).IsUintN(8));
744   VIXL_CHECK(!IntegerOperand(0x100).IsUintN(8));
745 
746   VIXL_CHECK(IntegerOperand(INT64_MIN).IsIntN(64));
747   VIXL_CHECK(IntegerOperand(0).IsIntN(64));
748   VIXL_CHECK(IntegerOperand(INT64_MAX).IsIntN(64));
749   VIXL_CHECK(!IntegerOperand(0x8000000000000000).IsIntN(64));
750 
751   VIXL_CHECK(!IntegerOperand(-1).IsUintN(64));
752   VIXL_CHECK(IntegerOperand(0).IsUintN(64));
753   VIXL_CHECK(IntegerOperand(UINT64_MAX).IsUintN(64));
754 
755   VIXL_CHECK(!IntegerOperand(-0x801).FitsInBits(12));
756   VIXL_CHECK(IntegerOperand(-0x800).FitsInBits(12));
757   VIXL_CHECK(IntegerOperand(0).FitsInBits(12));
758   VIXL_CHECK(IntegerOperand(0x7ff).FitsInBits(12));
759   VIXL_CHECK(IntegerOperand(0x800).FitsInBits(12));
760   VIXL_CHECK(IntegerOperand(0xfff).FitsInBits(12));
761   VIXL_CHECK(!IntegerOperand(0x1000).FitsInBits(12));
762 
763   VIXL_CHECK(!IntegerOperand(-0x8001).FitsInLane(z0.VnH()));
764   VIXL_CHECK(IntegerOperand(-0x8000).FitsInLane(z0.VnH()));
765   VIXL_CHECK(IntegerOperand(0).FitsInLane(z0.VnH()));
766   VIXL_CHECK(IntegerOperand(0x7fff).FitsInLane(z0.VnH()));
767   VIXL_CHECK(IntegerOperand(0x8000).FitsInLane(z0.VnH()));
768   VIXL_CHECK(IntegerOperand(0xffff).FitsInLane(z0.VnH()));
769   VIXL_CHECK(!IntegerOperand(0x10000).FitsInLane(z0.VnH()));
770 }
771 
TEST(integer_operand_as_uint)772 TEST(integer_operand_as_uint) {
773   // Simple cases.
774   VIXL_CHECK(IntegerOperand(1).AsUintN(8) == 1);
775   VIXL_CHECK(IntegerOperand(1).AsUintN(16) == 1);
776   VIXL_CHECK(IntegerOperand(1).AsUintN(32) == 1);
777   VIXL_CHECK(IntegerOperand(1).AsUintN(64) == 1);
778   VIXL_CHECK(IntegerOperand(-1).AsUintN(8) == 0xff);
779   VIXL_CHECK(IntegerOperand(-1).AsUintN(16) == 0xffff);
780   VIXL_CHECK(IntegerOperand(-1).AsUintN(32) == 0xffffffff);
781   VIXL_CHECK(IntegerOperand(-1).AsUintN(64) == 0xffffffffffffffff);
782   VIXL_CHECK(IntegerOperand(0xf0).AsUintN(8) == 0xf0);
783   VIXL_CHECK(IntegerOperand(0xf420).AsUintN(16) == 0xf420);
784   VIXL_CHECK(IntegerOperand(0xf4242420).AsUintN(32) == 0xf4242420);
785   VIXL_CHECK(IntegerOperand(0xf424242424242420).AsUintN(64) ==
786              0xf424242424242420);
787 
788   // Boundary conditions for known-size types.
789   VIXL_CHECK(IntegerOperand(INT8_MIN).AsUintN(8) == 0x80);
790   VIXL_CHECK(IntegerOperand(INT8_MAX).AsUintN(8) == 0x7f);
791   VIXL_CHECK(IntegerOperand(UINT8_MAX).AsUintN(8) == 0xff);
792 
793   VIXL_CHECK(IntegerOperand(INT16_MIN).AsUintN(16) == 0x8000);
794   VIXL_CHECK(IntegerOperand(INT16_MAX).AsUintN(16) == 0x7fff);
795   VIXL_CHECK(IntegerOperand(UINT16_MAX).AsUintN(16) == 0xffff);
796 
797   VIXL_CHECK(IntegerOperand(INT32_MIN).AsUintN(32) == 0x80000000);
798   VIXL_CHECK(IntegerOperand(INT32_MAX).AsUintN(32) == 0x7fffffff);
799   VIXL_CHECK(IntegerOperand(UINT32_MAX).AsUintN(32) == 0xffffffff);
800 
801   VIXL_CHECK(IntegerOperand(INT64_MIN).AsUintN(64) == 0x8000000000000000);
802   VIXL_CHECK(IntegerOperand(INT64_MAX).AsUintN(64) == 0x7fffffffffffffff);
803   VIXL_CHECK(IntegerOperand(UINT64_MAX).AsUintN(64) == 0xffffffffffffffff);
804 }
805 
TEST(integer_operand_as_int)806 TEST(integer_operand_as_int) {
807   // Simple cases.
808   VIXL_CHECK(IntegerOperand(1).AsIntN(8) == 1);
809   VIXL_CHECK(IntegerOperand(1).AsIntN(16) == 1);
810   VIXL_CHECK(IntegerOperand(1).AsIntN(32) == 1);
811   VIXL_CHECK(IntegerOperand(1).AsIntN(64) == 1);
812   VIXL_CHECK(IntegerOperand(-1).AsIntN(8) == -1);
813   VIXL_CHECK(IntegerOperand(-1).AsIntN(16) == -1);
814   VIXL_CHECK(IntegerOperand(-1).AsIntN(32) == -1);
815   VIXL_CHECK(IntegerOperand(-1).AsIntN(64) == -1);
816   VIXL_CHECK(IntegerOperand(0x70).AsIntN(8) == 0x70);
817   VIXL_CHECK(IntegerOperand(0x7420).AsIntN(16) == 0x7420);
818   VIXL_CHECK(IntegerOperand(0x74242420).AsIntN(32) == 0x74242420);
819   VIXL_CHECK(IntegerOperand(0x7424242424242420).AsIntN(64) ==
820              0x7424242424242420);
821 
822   // Boundary conditions for known-size types.
823   VIXL_CHECK(IntegerOperand(UINT8_MAX).AsIntN(8) == -1);
824   VIXL_CHECK(IntegerOperand(UINT16_MAX).AsIntN(16) == -1);
825   VIXL_CHECK(IntegerOperand(UINT32_MAX).AsIntN(32) == -1);
826   VIXL_CHECK(IntegerOperand(UINT64_MAX).AsIntN(64) == -1);
827 
828   VIXL_CHECK(IntegerOperand(INT8_MAX).AsIntN(8) == INT8_MAX);
829   VIXL_CHECK(IntegerOperand(INT16_MAX).AsIntN(16) == INT16_MAX);
830   VIXL_CHECK(IntegerOperand(INT32_MAX).AsIntN(32) == INT32_MAX);
831   VIXL_CHECK(IntegerOperand(INT64_MAX).AsIntN(64) == INT64_MAX);
832 
833   VIXL_CHECK(IntegerOperand(0x80).AsIntN(8) == INT8_MIN);
834   VIXL_CHECK(IntegerOperand(0x8000).AsIntN(16) == INT16_MIN);
835   VIXL_CHECK(IntegerOperand(0x80000000).AsIntN(32) == INT32_MIN);
836   VIXL_CHECK(IntegerOperand(0x8000000000000000).AsIntN(64) == INT64_MIN);
837 }
838 
839 template <unsigned N>
840 class IntegerOperandTryEncodeShiftedIntHelper {
841  public:
IntegerOperandTryEncodeShiftedIntHelper()842   IntegerOperandTryEncodeShiftedIntHelper() {}
843 
844   template <unsigned kShift, typename T>
TestEncodable(T value,const ZRegister & zd,int64_t expected_imm)845   void TestEncodable(T value, const ZRegister& zd, int64_t expected_imm) {
846     VIXL_CHECK(TestImpl<kShift>(value, zd, expected_imm));
847   }
848 
849   template <unsigned kShift, typename T>
TestUnencodable(T value,const ZRegister & zd)850   void TestUnencodable(T value, const ZRegister& zd) {
851     // The `expected_imm` value is ignored, so its value is arbitrary.
852     VIXL_CHECK(!TestImpl<kShift>(value, zd, 0));
853   }
854 
855  private:
856   template <unsigned kShift, typename T>
TestImpl(T value,const ZRegister & zd,int64_t expected_imm)857   bool TestImpl(T value, const ZRegister& zd, int64_t expected_imm) {
858     IntegerOperand operand(value);
859     int64_t imm = 0xdeadbeef42;
860     unsigned shift = 0xbeef43;
861     bool success =
862         operand.TryEncodeAsShiftedIntNForLane<N, kShift>(zd, &imm, &shift);
863     if (success) {
864       VIXL_CHECK(imm == expected_imm);
865       VIXL_CHECK(shift == kShift);
866     } else {
867       // Check that the outputs were unmodified.
868       VIXL_CHECK(imm == 0xdeadbeef42);
869       VIXL_CHECK(shift == 0xbeef43);
870     }
871 
872     // If kShift is 0, also check TryEncodeAsIntNForLane.
873     if (kShift == 0) {
874       int64_t unshifted_imm = 0xdeadbeef99;
875       bool unshifted_success =
876           operand.TryEncodeAsIntNForLane<N>(zd, &unshifted_imm);
877 
878       VIXL_CHECK(unshifted_success == success);
879       if (unshifted_success) {
880         VIXL_CHECK(unshifted_imm == expected_imm);
881       } else {
882         VIXL_CHECK(unshifted_imm == 0xdeadbeef99);
883       }
884     }
885 
886     return success;
887   }
888 };
889 
TEST(integer_operand_encode_as_intn)890 TEST(integer_operand_encode_as_intn) {
891   IntegerOperandTryEncodeShiftedIntHelper<4> int4_helper;
892   IntegerOperandTryEncodeShiftedIntHelper<8> int8_helper;
893   IntegerOperandTryEncodeShiftedIntHelper<12> int12_helper;
894 
895   // Simple cases, where the value is directly encodable.
896   int4_helper.TestEncodable<0>(-8, z0.VnH(), -8);
897   int4_helper.TestEncodable<0>(-7, z0.VnH(), -7);
898   int4_helper.TestEncodable<0>(-1, z0.VnS(), -1);
899   int4_helper.TestEncodable<0>(0, z0.VnD(), 0);
900   int4_helper.TestEncodable<0>(1, z0.VnB(), 1);
901   int4_helper.TestEncodable<0>(7, z0.VnH(), 7);
902 
903   int8_helper.TestEncodable<0>(0x7f, z0.VnB(), 0x7f);
904   int8_helper.TestEncodable<0>(0x7f, z0.VnH(), 0x7f);
905   int12_helper.TestEncodable<0>(0x7ff, z0.VnH(), 0x7ff);
906 
907   int8_helper.TestEncodable<0>(-0x80, z0.VnB(), -0x80);
908   int8_helper.TestEncodable<0>(-0x80, z0.VnH(), -0x80);
909   int12_helper.TestEncodable<0>(-0x800, z0.VnH(), -0x800);
910 
911   // Cases that are directly encodable with a shift.
912   int8_helper.TestEncodable<4>(-0x800, z0.VnH(), -0x80);
913   int8_helper.TestEncodable<4>(-0x7f0, z0.VnH(), -0x7f);
914   int8_helper.TestEncodable<4>(-0x010, z0.VnH(), -1);
915   int8_helper.TestEncodable<4>(0x000, z0.VnH(), 0);
916   int8_helper.TestEncodable<4>(0x010, z0.VnH(), 1);
917   int8_helper.TestEncodable<4>(0x7f0, z0.VnH(), 0x7f);
918 
919   // Ensure that (positive) bit representations of negative values are treated
920   // as negative values, even though their arithmetic values are unencodable.
921   int12_helper.TestEncodable<0>(0xffd6, z0.VnH(), -42);
922   int12_helper.TestEncodable<0>(0xffffffd6, z0.VnS(), -42);
923   int12_helper.TestEncodable<4>(0xfd60, z0.VnH(), -42);
924   int12_helper.TestEncodable<8>(0xffffd600, z0.VnS(), -42);
925 
926   int8_helper.TestEncodable<0>(UINT8_MAX, z0.VnB(), -1);
927   int8_helper.TestEncodable<0>(UINT16_MAX, z0.VnH(), -1);
928   int8_helper.TestEncodable<0>(UINT32_MAX, z0.VnS(), -1);
929   int8_helper.TestEncodable<0>(UINT64_MAX, z0.VnD(), -1);
930 
931   int4_helper.TestEncodable<1>(UINT8_MAX ^ 0x1, z0.VnB(), -1);
932   int4_helper.TestEncodable<2>(UINT16_MAX ^ 0x3, z0.VnH(), -1);
933   int4_helper.TestEncodable<3>(UINT32_MAX ^ 0x7, z0.VnS(), -1);
934   int4_helper.TestEncodable<4>(UINT64_MAX ^ 0xf, z0.VnD(), -1);
935 
936   // Unencodable cases.
937   int8_helper.TestUnencodable<0>(INT16_MAX, z0.VnH());
938   int8_helper.TestUnencodable<0>(INT32_MAX, z0.VnS());
939   int8_helper.TestUnencodable<0>(INT64_MAX, z0.VnD());
940 
941   int4_helper.TestUnencodable<0>(0x10, z0.VnB());
942   int4_helper.TestUnencodable<1>(0x20, z0.VnB());
943 
944   int12_helper.TestUnencodable<1>(1, z0.VnD());
945   int12_helper.TestUnencodable<12>(1, z0.VnD());
946   int12_helper.TestUnencodable<12>(0x800, z0.VnD());
947 }
948 
TEST(static_register_types)949 TEST(static_register_types) {
950   // [WX]Register implicitly casts to Register.
951   XRegister x_x0(0);
952   WRegister w_w0(0);
953   Register r_x0 = x_x0;
954   Register r_w0 = w_w0;
955   VIXL_CHECK(r_x0.Is(x_x0));
956   VIXL_CHECK(x_x0.Is(r_x0));
957   VIXL_CHECK(r_w0.Is(w_w0));
958   VIXL_CHECK(w_w0.Is(r_w0));
959 
960   // Register explicitly casts to [WX]Register.
961   Register r_x1(1, kXRegSize);
962   Register r_w1(1, kWRegSize);
963   XRegister x_x1(r_x1);
964   WRegister w_w1(r_w1);
965   VIXL_CHECK(r_x1.Is(x_x1));
966   VIXL_CHECK(x_x1.Is(r_x1));
967   VIXL_CHECK(r_w1.Is(w_w1));
968   VIXL_CHECK(w_w1.Is(r_w1));
969 
970   // [WX]Register implicitly casts to CPURegister.
971   XRegister x_x2(2);
972   WRegister w_w2(2);
973   CPURegister cpu_x2 = x_x2;
974   CPURegister cpu_w2 = w_w2;
975   VIXL_CHECK(cpu_x2.Is(x_x2));
976   VIXL_CHECK(x_x2.Is(cpu_x2));
977   VIXL_CHECK(cpu_w2.Is(w_w2));
978   VIXL_CHECK(w_w2.Is(cpu_w2));
979 }
980 
981 
TEST(operand_is_plain_register)982 TEST(operand_is_plain_register) {
983   VIXL_CHECK(Operand(x0).IsPlainRegister());
984   VIXL_CHECK(Operand(x1, LSL, 0).IsPlainRegister());
985   VIXL_CHECK(Operand(x2, LSR, 0).IsPlainRegister());
986   VIXL_CHECK(Operand(x3, ASR, 0).IsPlainRegister());
987   VIXL_CHECK(Operand(x4, ROR, 0).IsPlainRegister());
988   VIXL_CHECK(Operand(x5, UXTX).IsPlainRegister());
989   VIXL_CHECK(Operand(x6, SXTX).IsPlainRegister());
990   VIXL_CHECK(Operand(w7).IsPlainRegister());
991   VIXL_CHECK(Operand(w8, LSL, 0).IsPlainRegister());
992   VIXL_CHECK(Operand(w9, LSR, 0).IsPlainRegister());
993   VIXL_CHECK(Operand(w10, ASR, 0).IsPlainRegister());
994   VIXL_CHECK(Operand(w11, ROR, 0).IsPlainRegister());
995 
996   VIXL_CHECK(!Operand(x0, LSL, 1).IsPlainRegister());
997   VIXL_CHECK(!Operand(x1, LSR, 2).IsPlainRegister());
998   VIXL_CHECK(!Operand(x2, ASR, 3).IsPlainRegister());
999   VIXL_CHECK(!Operand(x3, ROR, 4).IsPlainRegister());
1000   VIXL_CHECK(!Operand(x5, UXTX, 1).IsPlainRegister());
1001   VIXL_CHECK(!Operand(x6, SXTX, 2).IsPlainRegister());
1002   VIXL_CHECK(!Operand(w7, LSL, 1).IsPlainRegister());
1003   VIXL_CHECK(!Operand(w8, LSR, 2).IsPlainRegister());
1004   VIXL_CHECK(!Operand(w9, ASR, 3).IsPlainRegister());
1005   VIXL_CHECK(!Operand(w10, ROR, 4).IsPlainRegister());
1006   VIXL_CHECK(!Operand(w11, UXTB).IsPlainRegister());
1007   VIXL_CHECK(!Operand(w12, SXTB).IsPlainRegister());
1008   VIXL_CHECK(!Operand(w13, UXTH).IsPlainRegister());
1009   VIXL_CHECK(!Operand(w14, SXTH).IsPlainRegister());
1010   // UXTW and SXTW could be treated as plain registers in 32-bit contexts, but
1011   // the Operand class doesn't know the context so it has to return false.
1012   VIXL_CHECK(!Operand(w15, UXTW).IsPlainRegister());
1013   VIXL_CHECK(!Operand(w16, SXTW).IsPlainRegister());
1014 }
1015 
1016 
TEST(memoperand_is_plain_register)1017 TEST(memoperand_is_plain_register) {
1018   VIXL_CHECK(MemOperand(x0).IsPlainRegister());
1019   VIXL_CHECK(MemOperand(sp).IsPlainRegister());
1020   VIXL_CHECK(MemOperand(x1, 0).IsPlainRegister());
1021 
1022   VIXL_CHECK(!MemOperand(x2, xzr).IsPlainRegister());
1023   VIXL_CHECK(!MemOperand(x3, xzr, SXTX).IsPlainRegister());
1024   VIXL_CHECK(!MemOperand(x4, xzr, SXTX, 2).IsPlainRegister());
1025   VIXL_CHECK(!MemOperand(x5, wzr, UXTW).IsPlainRegister());
1026   VIXL_CHECK(!MemOperand(x6, wzr, UXTW, 3).IsPlainRegister());
1027 
1028   VIXL_CHECK(!MemOperand(x7, 0, PostIndex).IsPlainRegister());
1029   VIXL_CHECK(!MemOperand(x8, 0, PreIndex).IsPlainRegister());
1030   VIXL_CHECK(!MemOperand(x9, xzr, PostIndex).IsPlainRegister());
1031 
1032   VIXL_CHECK(!MemOperand(x20, 1).IsPlainRegister());
1033   VIXL_CHECK(!MemOperand(x21, x30).IsPlainRegister());
1034 }
1035 
TEST(memoperand_is_plain_register_or_equivalent)1036 TEST(memoperand_is_plain_register_or_equivalent) {
1037   VIXL_CHECK(MemOperand(x0).IsEquivalentToPlainRegister());
1038   VIXL_CHECK(MemOperand(sp).IsEquivalentToPlainRegister());
1039   VIXL_CHECK(MemOperand(x1, 0).IsEquivalentToPlainRegister());
1040 
1041   VIXL_CHECK(MemOperand(x2, xzr).IsEquivalentToPlainRegister());
1042   VIXL_CHECK(MemOperand(x3, xzr, SXTX).IsEquivalentToPlainRegister());
1043   VIXL_CHECK(MemOperand(x4, xzr, SXTX, 2).IsEquivalentToPlainRegister());
1044   VIXL_CHECK(MemOperand(x5, wzr, UXTW).IsEquivalentToPlainRegister());
1045   VIXL_CHECK(MemOperand(x6, wzr, UXTW, 3).IsEquivalentToPlainRegister());
1046 
1047   VIXL_CHECK(MemOperand(x7, 0, PostIndex).IsEquivalentToPlainRegister());
1048   VIXL_CHECK(MemOperand(x8, 0, PreIndex).IsEquivalentToPlainRegister());
1049   VIXL_CHECK(MemOperand(x9, xzr, PostIndex).IsEquivalentToPlainRegister());
1050 
1051   VIXL_CHECK(!MemOperand(x20, 1).IsEquivalentToPlainRegister());
1052   VIXL_CHECK(!MemOperand(x21, x30).IsEquivalentToPlainRegister());
1053 }
1054 
TEST(sve_memoperand_is_plain_scalar)1055 TEST(sve_memoperand_is_plain_scalar) {
1056   VIXL_CHECK(SVEMemOperand(x0).IsPlainScalar());
1057   VIXL_CHECK(SVEMemOperand(sp).IsPlainScalar());
1058   VIXL_CHECK(SVEMemOperand(x1, 0).IsPlainScalar());
1059 
1060   VIXL_CHECK(!SVEMemOperand(x2, xzr).IsPlainScalar());
1061   VIXL_CHECK(!SVEMemOperand(x4, xzr, LSL, 2).IsPlainScalar());
1062 
1063   VIXL_CHECK(!SVEMemOperand(x20, 1).IsPlainScalar());
1064   VIXL_CHECK(!SVEMemOperand(x21, x30).IsPlainScalar());
1065 
1066   VIXL_CHECK(!SVEMemOperand(x0, z1.VnD()).IsPlainScalar());
1067   VIXL_CHECK(!SVEMemOperand(x2, z3.VnS(), UXTW).IsPlainScalar());
1068   VIXL_CHECK(!SVEMemOperand(z4.VnD(), 0).IsPlainScalar());
1069 }
1070 
TEST(sve_memoperand_is_scalar_or_equivalent)1071 TEST(sve_memoperand_is_scalar_or_equivalent) {
1072   VIXL_CHECK(SVEMemOperand(x0).IsEquivalentToScalar());
1073   VIXL_CHECK(SVEMemOperand(sp).IsEquivalentToScalar());
1074   VIXL_CHECK(SVEMemOperand(x1, 0).IsEquivalentToScalar());
1075 
1076   VIXL_CHECK(SVEMemOperand(x2, xzr).IsEquivalentToScalar());
1077   VIXL_CHECK(SVEMemOperand(x4, xzr, LSL, 2).IsEquivalentToScalar());
1078 
1079   VIXL_CHECK(!SVEMemOperand(x20, 1).IsEquivalentToScalar());
1080   VIXL_CHECK(!SVEMemOperand(x21, x30).IsEquivalentToScalar());
1081 
1082   VIXL_CHECK(!SVEMemOperand(x0, z1.VnD()).IsEquivalentToScalar());
1083   VIXL_CHECK(!SVEMemOperand(x2, z3.VnD(), SXTW).IsEquivalentToScalar());
1084   VIXL_CHECK(!SVEMemOperand(z4.VnD(), 0).IsEquivalentToScalar());
1085 }
1086 
TEST(sve_memoperand_types)1087 TEST(sve_memoperand_types) {
1088   VIXL_CHECK(SVEMemOperand(x0, 42).IsScalarPlusImmediate());
1089   VIXL_CHECK(SVEMemOperand(x1, 42, SVE_MUL_VL).IsScalarPlusImmediate());
1090   VIXL_CHECK(SVEMemOperand(x2, -42, SVE_MUL_VL).IsScalarPlusImmediate());
1091 
1092   VIXL_CHECK(SVEMemOperand(sp, x3).IsScalarPlusScalar());
1093   VIXL_CHECK(SVEMemOperand(x4, xzr).IsScalarPlusScalar());
1094   VIXL_CHECK(SVEMemOperand(x5, x6, LSL, 1).IsScalarPlusScalar());
1095 
1096   VIXL_CHECK(SVEMemOperand(x7, z0.VnD()).IsScalarPlusVector());
1097   VIXL_CHECK(SVEMemOperand(x8, z1.VnS(), SXTW).IsScalarPlusVector());
1098   VIXL_CHECK(SVEMemOperand(x9, z2.VnD(), UXTW).IsScalarPlusVector());
1099   VIXL_CHECK(SVEMemOperand(x10, z3.VnD(), LSL, 2).IsScalarPlusVector());
1100 
1101   VIXL_CHECK(SVEMemOperand(z4.VnD(), 42).IsVectorPlusImmediate());
1102   VIXL_CHECK(SVEMemOperand(z5.VnS(), -42).IsVectorPlusImmediate());
1103 }
1104 
TEST(sve_memoperand_scatter_gather)1105 TEST(sve_memoperand_scatter_gather) {
1106   // Single-address accesses.
1107   VIXL_CHECK(!SVEMemOperand(x0, 42).IsScatterGather());
1108   VIXL_CHECK(!SVEMemOperand(x1, 42, SVE_MUL_VL).IsScatterGather());
1109   VIXL_CHECK(!SVEMemOperand(x2, -42, SVE_MUL_VL).IsScatterGather());
1110 
1111   VIXL_CHECK(!SVEMemOperand(sp, x3).IsScatterGather());
1112   VIXL_CHECK(!SVEMemOperand(x4, xzr).IsScatterGather());
1113   VIXL_CHECK(!SVEMemOperand(x5, x6, LSL, 1).IsScatterGather());
1114 
1115   // Scatter-gather accesses.
1116   VIXL_CHECK(SVEMemOperand(x7, z0.VnD()).IsScatterGather());
1117   VIXL_CHECK(SVEMemOperand(x8, z1.VnS(), SXTW).IsScatterGather());
1118   VIXL_CHECK(SVEMemOperand(x9, z2.VnD(), UXTW).IsScatterGather());
1119   VIXL_CHECK(SVEMemOperand(x10, z3.VnD(), LSL, 2).IsScatterGather());
1120 
1121   VIXL_CHECK(SVEMemOperand(z4.VnD(), 42).IsScatterGather());
1122   VIXL_CHECK(SVEMemOperand(z5.VnS(), -42).IsScatterGather());
1123 }
1124 
TEST(scratch_scope_basic)1125 TEST(scratch_scope_basic) {
1126   MacroAssembler masm;
1127   // x16 and x17 are available as scratch registers by default.
1128   {
1129     UseScratchRegisterScope temps(&masm);
1130     Register temp1 = temps.AcquireW();
1131     Register temp2 = temps.AcquireX();
1132     VIXL_CHECK(temp1.Is(w16));
1133     VIXL_CHECK(temp2.Is(x17));
1134   }
1135   {
1136     UseScratchRegisterScope temps(&masm);
1137     Register temp1 = temps.AcquireRegisterOfSize(kXRegSize);
1138     Register temp2 = temps.AcquireRegisterOfSize(kWRegSize);
1139     VIXL_CHECK(temp1.Is(x16));
1140     VIXL_CHECK(temp2.Is(w17));
1141   }
1142 }
1143 
TEST(scratch_scope_basic_v)1144 TEST(scratch_scope_basic_v) {
1145   MacroAssembler masm;
1146   // v31 is the only V scratch register available by default.
1147   {
1148     UseScratchRegisterScope temps(&masm);
1149     VRegister temp = temps.AcquireH();
1150     VIXL_CHECK(temp.Is(h31));
1151   }
1152   {
1153     UseScratchRegisterScope temps(&masm);
1154     VRegister temp = temps.AcquireS();
1155     VIXL_CHECK(temp.Is(s31));
1156   }
1157   {
1158     UseScratchRegisterScope temps(&masm);
1159     VRegister temp = temps.AcquireD();
1160     VIXL_CHECK(temp.Is(d31));
1161   }
1162   {
1163     UseScratchRegisterScope temps(&masm);
1164     VRegister temp = temps.AcquireVRegisterOfSize(kQRegSize);
1165     VIXL_CHECK(temp.Is(q31));
1166   }
1167   {
1168     UseScratchRegisterScope temps(&masm);
1169     VRegister temp = temps.AcquireVRegisterOfSize(kDRegSize);
1170     VIXL_CHECK(temp.Is(d31));
1171   }
1172   {
1173     UseScratchRegisterScope temps(&masm);
1174     VRegister temp = temps.AcquireVRegisterOfSize(kSRegSize);
1175     VIXL_CHECK(temp.Is(s31));
1176   }
1177 }
1178 
TEST(scratch_scope_basic_z)1179 TEST(scratch_scope_basic_z) {
1180   MacroAssembler masm;
1181   // z31 is the only Z scratch register available by default.
1182   {
1183     UseScratchRegisterScope temps(&masm);
1184     VIXL_CHECK(temps.IsAvailable(v31));
1185     VIXL_CHECK(temps.IsAvailable(z31));
1186     ZRegister temp = temps.AcquireZ();
1187     VIXL_CHECK(temp.Is(z31));
1188     // Check that allocating a Z register properly reserves the corresponding V
1189     // register.
1190     VIXL_CHECK(!temps.IsAvailable(v31));
1191     VIXL_CHECK(!temps.IsAvailable(z31));
1192   }
1193   // Check that the destructor restored the acquired register.
1194   UseScratchRegisterScope temps(&masm);
1195   VIXL_CHECK(temps.IsAvailable(v31));
1196   VIXL_CHECK(temps.IsAvailable(z31));
1197 }
1198 
TEST(scratch_scope_basic_p)1199 TEST(scratch_scope_basic_p) {
1200   MacroAssembler masm;
1201   {
1202     UseScratchRegisterScope temps(&masm);
1203     // There are no P scratch registers available by default.
1204     VIXL_CHECK(masm.GetScratchPRegisterList()->IsEmpty());
1205     temps.Include(p0, p1);
1206     VIXL_CHECK(temps.IsAvailable(p0));
1207     VIXL_CHECK(temps.IsAvailable(p1));
1208     temps.Include(p7, p8, p15);
1209     VIXL_CHECK(temps.IsAvailable(p7));
1210     VIXL_CHECK(temps.IsAvailable(p8));
1211     VIXL_CHECK(temps.IsAvailable(p15));
1212 
1213     // AcquireGoverningP() can only return p0-p7.
1214     VIXL_CHECK(temps.AcquireGoverningP().GetCode() <
1215                kNumberOfGoverningPRegisters);
1216     VIXL_CHECK(temps.AcquireGoverningP().GetCode() <
1217                kNumberOfGoverningPRegisters);
1218     VIXL_CHECK(temps.IsAvailable(p8));
1219     VIXL_CHECK(temps.IsAvailable(p15));
1220 
1221     // AcquireP() prefers p8-p15, ...
1222     VIXL_CHECK(temps.AcquireP().GetCode() >= kNumberOfGoverningPRegisters);
1223     VIXL_CHECK(temps.AcquireP().GetCode() >= kNumberOfGoverningPRegisters);
1224     // ... but will return p0-p7 if none of p8-p15 are available.
1225     VIXL_CHECK(temps.AcquireP().GetCode() < kNumberOfGoverningPRegisters);
1226 
1227     VIXL_CHECK(masm.GetScratchPRegisterList()->IsEmpty());
1228 
1229     // Leave some registers available so we can test the destructor.
1230     temps.Include(p3, p6, p9, p12);
1231     VIXL_CHECK(!masm.GetScratchPRegisterList()->IsEmpty());
1232   }
1233   // Check that the destructor correctly cleared the list.
1234   VIXL_CHECK(masm.GetScratchPRegisterList()->IsEmpty());
1235 }
1236 
TEST(scratch_scope_include_ignored)1237 TEST(scratch_scope_include_ignored) {
1238   MacroAssembler masm;
1239   {
1240     UseScratchRegisterScope temps(&masm);
1241     // Start with an empty set of scratch registers.
1242     temps.ExcludeAll();
1243 
1244     // Including NoReg has no effect.
1245     temps.Include(NoReg);
1246     temps.Include(NoCPUReg);
1247     temps.Include(CPURegList(CPURegister::kNoRegister, 0, 0));
1248 
1249     // Including sp or zr has no effect, since they are never appropriate
1250     // scratch registers.
1251     temps.Include(sp);
1252     temps.Include(xzr, wsp);
1253     temps.Include(wzr);
1254     temps.Include(CPURegList(xzr, sp));
1255 
1256     VIXL_CHECK(masm.GetScratchRegisterList()->IsEmpty());
1257     VIXL_CHECK(masm.GetScratchVRegisterList()->IsEmpty());
1258   }
1259 }
1260 
1261 class ScratchScopeHelper {
1262  public:
1263   enum Action { kRelease, kInclude, kExclude };
1264 
ScratchScopeHelper(MacroAssembler * masm,Action action,CPURegister::RegisterType type)1265   ScratchScopeHelper(MacroAssembler* masm,
1266                      Action action,
1267                      CPURegister::RegisterType type)
1268       : masm_(masm),
1269         action_(action),
1270         type_(type),
1271         expected_(GetGuardListFor(CPURegister::kRegister)),
1272         expected_v_(GetGuardListFor(CPURegister::kVRegister)),
1273         expected_p_(GetGuardListFor(CPURegister::kPRegister)) {
1274     *GetExpectedFor(type) = GetInitialList();
1275     masm->GetScratchRegisterList()->SetList(expected_);
1276     masm->GetScratchVRegisterList()->SetList(expected_v_);
1277     masm->GetScratchPRegisterList()->SetList(expected_p_);
1278   }
1279 
1280   // Notify the helper that the registers in `update` have been passed into
1281   // DoAction(), and assert that the MacroAssembler's scratch lists are as
1282   // expected.
RecordActionsAndCheck(RegList update)1283   void RecordActionsAndCheck(RegList update) {
1284     RegList* expected = GetExpectedFor(type_);
1285     switch (action_) {
1286       case kRelease:
1287         // It isn't valid to release a register that is already available.
1288         VIXL_CHECK((*expected & update) == 0);
1289         VIXL_FALLTHROUGH();
1290       case kInclude:
1291         *expected |= update;
1292         break;
1293       case kExclude:
1294         *expected &= ~update;
1295         break;
1296     }
1297     VIXL_CHECK(masm_->GetScratchRegisterList()->GetList() == expected_);
1298     VIXL_CHECK(masm_->GetScratchVRegisterList()->GetList() == expected_v_);
1299     VIXL_CHECK(masm_->GetScratchPRegisterList()->GetList() == expected_p_);
1300   }
1301 
1302  private:
GetInitialList()1303   RegList GetInitialList() {
1304     switch (action_) {
1305       case kRelease:
1306       case kInclude:
1307         return 0;
1308       case kExclude:
1309         return GetPotentialListFor(type_);
1310     }
1311     VIXL_UNREACHABLE();
1312     return 0;
1313   }
1314 
1315   // Return some valid, non-zero RegList suitable for use as a guard value.
GetGuardListFor(CPURegister::RegisterType type)1316   static RegList GetGuardListFor(CPURegister::RegisterType type) {
1317     return (0x1111111111111111 * (type + 1)) & GetPotentialListFor(type);
1318   }
1319 
GetPotentialListFor(CPURegister::RegisterType type)1320   static RegList GetPotentialListFor(CPURegister::RegisterType type) {
1321     RegList list = CPURegList::All(type).GetList();
1322     // The zr and sp registers cannot be scratch registers.
1323     if (type == CPURegister::kRegister) list &= ~(xzr.GetBit() | sp.GetBit());
1324     return list;
1325   }
1326 
GetExpectedFor(CPURegister::RegisterType type)1327   RegList* GetExpectedFor(CPURegister::RegisterType type) {
1328     switch (type) {
1329       case CPURegister::kNoRegister:
1330         VIXL_UNREACHABLE();
1331         return NULL;
1332       case CPURegister::kRegister:
1333         return &expected_;
1334       case CPURegister::kVRegister:
1335       case CPURegister::kZRegister:
1336         return &expected_v_;
1337       case CPURegister::kPRegister:
1338         return &expected_p_;
1339     }
1340     VIXL_UNREACHABLE();
1341     return NULL;
1342   }
1343 
1344   MacroAssembler* masm_;
1345   Action action_;
1346   CPURegister::RegisterType type_;
1347 
1348   RegList expected_;
1349   RegList expected_v_;
1350   RegList expected_p_;
1351 };
1352 
TEST(scratch_scope_include)1353 TEST(scratch_scope_include) {
1354   MacroAssembler masm;
1355   {
1356     UseScratchRegisterScope temps(&masm);
1357     ScratchScopeHelper helper(&masm,
1358                               ScratchScopeHelper::kInclude,
1359                               CPURegister::kRegister);
1360 
1361     // Any suitable register type deriving from CPURegister can be included.
1362     temps.Include(w0);
1363     temps.Include(x1);
1364     temps.Include(WRegister(2));
1365     temps.Include(XRegister(3));
1366     temps.Include(Register(w4));
1367     temps.Include(Register(x5));
1368     temps.Include(CPURegister(w6));
1369     temps.Include(CPURegister(x7));
1370     helper.RecordActionsAndCheck(0xff);
1371     // Multiple registers can be included at once.
1372     temps.Include(x8, w9, x10);
1373     temps.Include(Register(w12), Register(x13), Register(w14));
1374     temps.Include(XRegister(16), XRegister(17), XRegister(18));
1375     temps.Include(WRegister(20), WRegister(21), WRegister(22));
1376     temps.Include(CPURegList(w24, w25, w26));
1377     helper.RecordActionsAndCheck(0x7777700);
1378     // Including a register again has no effect.
1379     temps.Include(Register(w26));
1380     temps.Include(Register(x25));
1381     temps.Include(CPURegister(x24));
1382     temps.Include(CPURegister(x22));
1383     temps.Include(x21, x20, w18, x17);
1384     temps.Include(CPURegList(x16, x14, x13, x12));
1385     helper.RecordActionsAndCheck(0x7777700);
1386   }
1387 }
1388 
TEST(scratch_scope_exclude)1389 TEST(scratch_scope_exclude) {
1390   MacroAssembler masm;
1391   {
1392     UseScratchRegisterScope temps(&masm);
1393     ScratchScopeHelper helper(&masm,
1394                               ScratchScopeHelper::kExclude,
1395                               CPURegister::kRegister);
1396 
1397     // Any suitable register type deriving from CPURegister can be excluded.
1398     temps.Exclude(w0);
1399     temps.Exclude(x1);
1400     temps.Exclude(WRegister(2));
1401     temps.Exclude(XRegister(3));
1402     temps.Exclude(Register(w4));
1403     temps.Exclude(Register(x5));
1404     temps.Exclude(CPURegister(w6));
1405     temps.Exclude(CPURegister(x7));
1406     helper.RecordActionsAndCheck(0xff);
1407     // Multiple registers can be excluded at once.
1408     temps.Exclude(x8, w9, x10);
1409     temps.Exclude(Register(w12), Register(x13), Register(w14));
1410     temps.Exclude(XRegister(16), XRegister(17), XRegister(18));
1411     temps.Exclude(WRegister(20), WRegister(21), WRegister(22));
1412     temps.Exclude(CPURegList(w24, w25, w26));
1413     helper.RecordActionsAndCheck(0x7777700);
1414     // Excluding a register again has no effect.
1415     temps.Exclude(Register(w26));
1416     temps.Exclude(Register(x25));
1417     temps.Exclude(CPURegister(x24));
1418     temps.Exclude(CPURegister(x22));
1419     temps.Exclude(x21, x20, w18, x17);
1420     temps.Exclude(CPURegList(x16, x14, x13, x12));
1421     helper.RecordActionsAndCheck(0x7777700);
1422   }
1423 }
1424 
TEST(scratch_scope_release)1425 TEST(scratch_scope_release) {
1426   MacroAssembler masm;
1427   {
1428     UseScratchRegisterScope temps(&masm);
1429     ScratchScopeHelper helper(&masm,
1430                               ScratchScopeHelper::kRelease,
1431                               CPURegister::kRegister);
1432 
1433     // Any suitable register type deriving from CPURegister can be released.
1434     temps.Release(w0);
1435     temps.Release(x1);
1436     temps.Release(WRegister(2));
1437     temps.Release(XRegister(3));
1438     temps.Release(Register(w4));
1439     temps.Release(Register(x5));
1440     temps.Release(CPURegister(w6));
1441     temps.Release(CPURegister(x7));
1442     helper.RecordActionsAndCheck(0xff);
1443     // It is not possible to release more than one register at a time, and it is
1444     // invalid to release a register that is already available.
1445   }
1446 }
1447 
TEST(scratch_scope_include_v)1448 TEST(scratch_scope_include_v) {
1449   MacroAssembler masm;
1450   {
1451     UseScratchRegisterScope temps(&masm);
1452     ScratchScopeHelper helper(&masm,
1453                               ScratchScopeHelper::kInclude,
1454                               CPURegister::kVRegister);
1455 
1456     // Any suitable register type deriving from CPURegister can be included.
1457     temps.Include(b0);
1458     temps.Include(h1);
1459     temps.Include(SRegister(2));
1460     temps.Include(DRegister(3));
1461     temps.Include(VRegister(q4));
1462     temps.Include(VRegister(v5.V8B()));
1463     temps.Include(CPURegister(d6));
1464     temps.Include(CPURegister(v7.S4B()));
1465     helper.RecordActionsAndCheck(0xff);
1466     // Multiple registers can be included at once.
1467     temps.Include(b8, h9, s10);
1468     temps.Include(VRegister(d12), VRegister(d13), VRegister(d14));
1469     temps.Include(QRegister(16), QRegister(17), QRegister(18));
1470     temps.Include(BRegister(20), BRegister(21), BRegister(22));
1471     temps.Include(CPURegList(s24, s25, s26));
1472     helper.RecordActionsAndCheck(0x7777700);
1473     // Including a register again has no effect.
1474     temps.Include(VRegister(b26));
1475     temps.Include(VRegister(h25));
1476     temps.Include(CPURegister(s24));
1477     temps.Include(CPURegister(v22.V4H()));
1478     temps.Include(q21, d20, s18, h17);
1479     temps.Include(CPURegList(h16, h14, h13, h12));
1480     helper.RecordActionsAndCheck(0x7777700);
1481   }
1482 }
1483 
TEST(scratch_scope_exclude_v)1484 TEST(scratch_scope_exclude_v) {
1485   MacroAssembler masm;
1486   {
1487     UseScratchRegisterScope temps(&masm);
1488     ScratchScopeHelper helper(&masm,
1489                               ScratchScopeHelper::kExclude,
1490                               CPURegister::kVRegister);
1491 
1492     // Any suitable register type deriving from CPURegister can be excluded.
1493     temps.Exclude(b0);
1494     temps.Exclude(h1);
1495     temps.Exclude(SRegister(2));
1496     temps.Exclude(DRegister(3));
1497     temps.Exclude(VRegister(q4));
1498     temps.Exclude(VRegister(v5.V8B()));
1499     temps.Exclude(CPURegister(d6));
1500     temps.Exclude(CPURegister(v7.S4B()));
1501     helper.RecordActionsAndCheck(0xff);
1502     // Multiple registers can be excluded at once.
1503     temps.Exclude(b8, h9, s10);
1504     temps.Exclude(VRegister(d12), VRegister(d13), VRegister(d14));
1505     temps.Exclude(QRegister(16), QRegister(17), QRegister(18));
1506     temps.Exclude(BRegister(20), BRegister(21), BRegister(22));
1507     temps.Exclude(CPURegList(s24, s25, s26));
1508     helper.RecordActionsAndCheck(0x7777700);
1509     // Excluding a register again has no effect.
1510     temps.Exclude(VRegister(b26));
1511     temps.Exclude(VRegister(h25));
1512     temps.Exclude(CPURegister(s24));
1513     temps.Exclude(CPURegister(v22.V4H()));
1514     temps.Exclude(q21, d20, s18, h17);
1515     temps.Exclude(CPURegList(h16, h14, h13, h12));
1516     helper.RecordActionsAndCheck(0x7777700);
1517   }
1518 }
1519 
TEST(scratch_scope_release_v)1520 TEST(scratch_scope_release_v) {
1521   MacroAssembler masm;
1522   {
1523     UseScratchRegisterScope temps(&masm);
1524     ScratchScopeHelper helper(&masm,
1525                               ScratchScopeHelper::kRelease,
1526                               CPURegister::kVRegister);
1527 
1528     // Any suitable register type deriving from CPURegister can be released.
1529     temps.Release(b0);
1530     temps.Release(h1);
1531     temps.Release(SRegister(2));
1532     temps.Release(DRegister(3));
1533     temps.Release(VRegister(q4));
1534     temps.Release(VRegister(v5.V8B()));
1535     temps.Release(CPURegister(d6));
1536     temps.Release(CPURegister(v7.S4B()));
1537     helper.RecordActionsAndCheck(0xff);
1538     // It is not possible to release more than one register at a time, and it is
1539     // invalid to release a register that is already available.
1540   }
1541 }
1542 
TEST(scratch_scope_include_z)1543 TEST(scratch_scope_include_z) {
1544   MacroAssembler masm;
1545   {
1546     UseScratchRegisterScope temps(&masm);
1547     ScratchScopeHelper helper(&masm,
1548                               ScratchScopeHelper::kInclude,
1549                               CPURegister::kZRegister);
1550 
1551     // Any suitable register type deriving from CPURegister can be included.
1552     temps.Include(z0);
1553     temps.Include(z1.VnB());
1554     temps.Include(ZRegister(2));
1555     temps.Include(ZRegister(3, kFormatVnD));
1556     temps.Include(CPURegister(z4));
1557     temps.Include(CPURegister(z5.VnH()));
1558     helper.RecordActionsAndCheck(0x3f);
1559     // Multiple registers can be included at once.
1560     temps.Include(z8, z9, z10.VnS());
1561     temps.Include(ZRegister(12), ZRegister(13, kHRegSize), z14);
1562     temps.Include(CPURegList(z16, z17, z18));
1563     helper.RecordActionsAndCheck(0x77700);
1564     // Including a register again has no effect.
1565     temps.Include(ZRegister(18));
1566     temps.Include(ZRegister(17, kFormatVnB));
1567     temps.Include(CPURegister(z16));
1568     temps.Include(CPURegister(z13.VnD()));
1569     temps.Include(z12, z10, z9.VnB(), z8);
1570     temps.Include(CPURegList(z5, z4, z3, z2));
1571     helper.RecordActionsAndCheck(0x77700);
1572   }
1573 }
1574 
TEST(scratch_scope_exclude_z)1575 TEST(scratch_scope_exclude_z) {
1576   MacroAssembler masm;
1577   {
1578     UseScratchRegisterScope temps(&masm);
1579     ScratchScopeHelper helper(&masm,
1580                               ScratchScopeHelper::kExclude,
1581                               CPURegister::kZRegister);
1582 
1583     // Any suitable register type deriving from CPURegister can be excluded.
1584     temps.Exclude(z0);
1585     temps.Exclude(z1.VnB());
1586     temps.Exclude(ZRegister(2));
1587     temps.Exclude(ZRegister(3, kFormatVnD));
1588     temps.Exclude(CPURegister(z4));
1589     temps.Exclude(CPURegister(z5.VnH()));
1590     helper.RecordActionsAndCheck(0x3f);
1591     // Multiple registers can be excluded at once.
1592     temps.Exclude(z8, z9, z10.VnS());
1593     temps.Exclude(ZRegister(12), ZRegister(13, kHRegSize), z14);
1594     temps.Exclude(CPURegList(z16, z17, z18));
1595     helper.RecordActionsAndCheck(0x77700);
1596     // Exluding a register again has no effect.
1597     temps.Exclude(ZRegister(18));
1598     temps.Exclude(ZRegister(17, kFormatVnB));
1599     temps.Exclude(CPURegister(z16));
1600     temps.Exclude(CPURegister(z13.VnD()));
1601     temps.Exclude(z12, z10, z9.VnB(), z8);
1602     temps.Exclude(CPURegList(z5, z4, z3, z2));
1603     helper.RecordActionsAndCheck(0x77700);
1604   }
1605 }
1606 
TEST(scratch_scope_release_z)1607 TEST(scratch_scope_release_z) {
1608   MacroAssembler masm;
1609   {
1610     UseScratchRegisterScope temps(&masm);
1611     ScratchScopeHelper helper(&masm,
1612                               ScratchScopeHelper::kRelease,
1613                               CPURegister::kZRegister);
1614 
1615     // Any suitable register type deriving from CPURegister can be released.
1616     temps.Release(z0);
1617     temps.Release(z1.VnB());
1618     temps.Release(ZRegister(2));
1619     temps.Release(ZRegister(3, kFormatVnD));
1620     temps.Release(CPURegister(z4));
1621     temps.Release(CPURegister(z5.VnH()));
1622     helper.RecordActionsAndCheck(0x3f);
1623     // It is not possible to release more than one register at a time, and it is
1624     // invalid to release a register that is already available.
1625   }
1626 }
1627 
TEST(scratch_scope_include_p)1628 TEST(scratch_scope_include_p) {
1629   MacroAssembler masm;
1630   {
1631     UseScratchRegisterScope temps(&masm);
1632     ScratchScopeHelper helper(&masm,
1633                               ScratchScopeHelper::kInclude,
1634                               CPURegister::kPRegister);
1635 
1636     // Any suitable register type deriving from CPURegister can be included.
1637     temps.Include(p0);
1638     temps.Include(PRegister(1));
1639     temps.Include(PRegisterWithLaneSize(2, kFormatVnD));
1640     temps.Include(PRegisterM(3));
1641     temps.Include(CPURegister(PRegister(4)));
1642     temps.Include(CPURegister(PRegisterZ(5)));
1643     helper.RecordActionsAndCheck(0x3f);
1644     // Multiple registers can be included at once.
1645     temps.Include(p7, p8.Merging(), p9.VnS());
1646     temps.Include(PRegister(11), PRegisterWithLaneSize(12, kHRegSize));
1647     temps.Include(CPURegList(p15));
1648     helper.RecordActionsAndCheck(0x9b80);
1649     // Including a register again has no effect.
1650     temps.Include(PRegister(15));
1651     temps.Include(PRegisterWithLaneSize(12, kFormatVnB));
1652     temps.Include(CPURegister(p11));
1653     temps.Include(CPURegister(p9.VnD()));
1654     temps.Include(p8.Merging(), p7.Zeroing(), p5.VnB(), p4);
1655     temps.Include(CPURegList(p3, p2, p1, p0));
1656     helper.RecordActionsAndCheck(0x9b80);
1657   }
1658 }
1659 
TEST(scratch_scope_exclude_p)1660 TEST(scratch_scope_exclude_p) {
1661   MacroAssembler masm;
1662   {
1663     UseScratchRegisterScope temps(&masm);
1664     ScratchScopeHelper helper(&masm,
1665                               ScratchScopeHelper::kExclude,
1666                               CPURegister::kPRegister);
1667 
1668     // Any suitable register type deriving from CPURegister can be excluded.
1669     temps.Exclude(p0);
1670     temps.Exclude(PRegister(1));
1671     temps.Exclude(PRegisterWithLaneSize(2, kFormatVnD));
1672     temps.Exclude(PRegisterM(3));
1673     temps.Exclude(CPURegister(PRegister(4)));
1674     temps.Exclude(CPURegister(PRegisterZ(5)));
1675     helper.RecordActionsAndCheck(0x3f);
1676     // Multiple registers can be excluded at once.
1677     temps.Exclude(p7, p8.Merging(), p9.VnS());
1678     temps.Exclude(PRegister(11), PRegisterWithLaneSize(12, kHRegSize));
1679     temps.Exclude(CPURegList(p15));
1680     helper.RecordActionsAndCheck(0x9b80);
1681     // Excluding a register again has no effect.
1682     temps.Exclude(PRegister(15));
1683     temps.Exclude(PRegisterWithLaneSize(12, kFormatVnB));
1684     temps.Exclude(CPURegister(p11));
1685     temps.Exclude(CPURegister(p9.VnD()));
1686     temps.Exclude(p8.Merging(), p7.Zeroing(), p5.VnB(), p4);
1687     temps.Exclude(CPURegList(p3, p2, p1, p0));
1688     helper.RecordActionsAndCheck(0x9b80);
1689   }
1690 }
1691 
TEST(scratch_scope_release_p)1692 TEST(scratch_scope_release_p) {
1693   MacroAssembler masm;
1694   {
1695     UseScratchRegisterScope temps(&masm);
1696     ScratchScopeHelper helper(&masm,
1697                               ScratchScopeHelper::kRelease,
1698                               CPURegister::kPRegister);
1699 
1700     // Any suitable register type deriving from CPURegister can be excluded.
1701     temps.Release(p0);
1702     temps.Release(PRegister(1));
1703     temps.Release(PRegisterWithLaneSize(2, kFormatVnD));
1704     temps.Release(PRegisterM(3));
1705     temps.Release(CPURegister(PRegister(4)));
1706     temps.Release(CPURegister(PRegisterZ(5)));
1707     helper.RecordActionsAndCheck(0x3f);
1708     // It is not possible to release more than one register at a time, and it is
1709     // invalid to release a register that is already available.
1710   }
1711 }
1712 
1713 #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
TEST(sim_stack_default)1714 TEST(sim_stack_default) {
1715   SimStack::Allocated s = SimStack().Allocate();
1716 
1717   // The default stack is at least 16-byte aligned.
1718   VIXL_CHECK(IsAligned<16>(s.GetBase()));
1719   VIXL_CHECK(IsAligned<16>(s.GetLimit() + 1));
1720 
1721   VIXL_CHECK(s.GetBase() > s.GetLimit());
1722 
1723   // The default guard regions are sufficient to detect at least off-by-one
1724   // errors.
1725   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetBase(), 1));
1726   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetBase() - 1, 1));
1727   // The limit is one below the lowest address on the stack.
1728   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetLimit(), 1));
1729   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetLimit() + 1, 1));
1730 
1731   // We need to be able to access 16-byte granules at both extremes.
1732   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetBase() - 16, 16));
1733   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetLimit() + 1, 16));
1734 }
1735 
TEST(sim_stack)1736 TEST(sim_stack) {
1737   SimStack builder;
1738   builder.AlignToBytesLog2(WhichPowerOf2(1024));
1739   builder.SetBaseGuardSize(42);
1740   builder.SetLimitGuardSize(2049);
1741   builder.SetUsableSize(2048);
1742   SimStack::Allocated s = builder.Allocate();
1743 
1744   VIXL_CHECK(IsAligned<1024>(s.GetBase()));
1745   VIXL_CHECK(IsAligned<1024>(s.GetLimit() + 1));
1746 
1747   // The stack is accessible for (limit, base), both exclusive.
1748   // This is checked precisely, using the base and limit modified to respect
1749   // alignment, so we can test the exact boundary condition.
1750   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetBase(), 1));
1751   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetBase() - 1, 1));
1752   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetLimit(), 1));
1753   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetLimit() + 1, 1));
1754   VIXL_CHECK((s.GetBase() - s.GetLimit() - 1) == 2048);
1755 
1756   // We can access the whole range (limit, base), both exclusive.
1757   VIXL_CHECK(!s.IsAccessInGuardRegion(s.GetLimit() + 1, 2048));
1758   // Off-by-one.
1759   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetLimit(), 2048));
1760   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetLimit() + 1, 2049));
1761   // Accesses spanning whole guard regions.
1762   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetBase() - 42, 4096));
1763   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetLimit() - 1280, 2048));
1764   VIXL_CHECK(s.IsAccessInGuardRegion(s.GetLimit() - 1280, 10000));
1765 }
1766 #endif
1767 
1768 }  // namespace aarch64
1769 }  // namespace vixl
1770