Home
last modified time | relevance | path

Searched refs:sqrtT (Results 1 – 3 of 3) sorted by relevance

/external/eigen/unsupported/Eigen/src/MatrixFunctions/
DMatrixSquareRoot.h20 …triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT) in matrix_sqrt_quasi_triangular_2x2_diagonal_block() argument
27 sqrtT.template block<2,2>(i,i) in matrix_sqrt_quasi_triangular_2x2_diagonal_block()
35 …const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) in matrix_sqrt_quasi_triangular_1x1_off_diagonal_block() argument
38 Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); in matrix_sqrt_quasi_triangular_1x1_off_diagonal_block()
39 sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); in matrix_sqrt_quasi_triangular_1x1_off_diagonal_block()
44 …const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT) in matrix_sqrt_quasi_triangular_1x2_off_diagonal_block() argument
49 rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); in matrix_sqrt_quasi_triangular_1x2_off_diagonal_block()
50 Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); in matrix_sqrt_quasi_triangular_1x2_off_diagonal_block()
51 A += sqrtT.template block<2,2>(j,j).transpose(); in matrix_sqrt_quasi_triangular_1x2_off_diagonal_block()
52 sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); in matrix_sqrt_quasi_triangular_1x2_off_diagonal_block()
[all …]
DMatrixLogarithm.h233 MatrixType T = A, sqrtT; in matrix_log_compute_big() local
251 matrix_sqrt_triangular(T, sqrtT); in matrix_log_compute_big()
252 T = sqrtT.template triangularView<Upper>(); in matrix_log_compute_big()
DMatrixPower.h204 MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); in computeBig() local
222 matrix_sqrt_triangular(T, sqrtT); in computeBig()
223 T = sqrtT.template triangularView<Upper>(); in computeBig()