/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/ |
D | tpu_extract_head_tail_outside_compilation.mlir | 8 // CHECK: "tf_device.launch" 11 // CHECK-NEXT: tf_device.return 14 // CHECK: "tf_device.cluster" 17 // CHECK-NEXT: tf_device.return 18 "tf_device.cluster"() ( { 22 tf_device.return 29 // CHECK: %[[LAUNCH_OUT:.*]] = "tf_device.launch" 32 // CHECK-NEXT: tf_device.return %[[A_OUT]] 35 // CHECK: "tf_device.cluster" 38 // CHECK-NEXT: tf_device.return [all …]
|
D | tf_device_ops.mlir | 5 "tf_device.launch"() ( { 6 // CHECK: tf_device.return 7 tf_device.return 15 %result = "tf_device.launch"() ( { 16 // CHECK: tf_device.return %[[ARG_0]] : tensor<*xf32> 17 tf_device.return %arg_0 : tensor<*xf32> 25 %result:2 = "tf_device.launch"() ( { 26 // CHECK: tf_device.return %[[ARG_0]], %[[ARG_1]] : tensor<*xf32>, tensor<*xi32> 27 tf_device.return %arg_0, %arg_1 : tensor<*xf32>, tensor<*xi32> 34 tf_device.replicate {n = 2 : i32} { [all …]
|
D | tf_device_ops_invalid.mlir | 5 tf_device.replicate([%arg0] as %input0: tensor<*xf32>) {n = 1 : i32} { 6 // expected-error@-1 {{'tf_device.replicate' expects 'n' to be at least 2, got 1}} 16 tf_device.replicate([%arg0, %arg0, %arg0] as %input0: tensor<*xf32>) {n = 2 : i32} { 17 // expected-error@-1 {{'tf_device.replicate' expects number of operands for replicated input 0 to b… 28 tf_device.replicate([%arg0, %arg0] as %input0: tensor<*xf32>) {n = 2 : i32} { 38 tf_device.replicate() {n = 2 : i32} { 39 // expected-error@-1 {{custom op 'tf_device.replicate' expects a single block region}} 42 tf_device.return 51 tf_device.replicate() {n = 2 : i32} { 52 // expected-error@-1 {{custom op 'tf_device.replicate' expects a tf_device.return terminator}} [all …]
|
D | outside_compiled_to_host_launch.mlir | 7 // CHECK-NOT: "tf_device.launch" 9 %0 = "tf_device.cluster"() ( { 12 tf_device.return %2 : tensor<?xi32> 23 // CHECK: "tf_device.launch" 26 // CHECK-NEXT: tf_device.return 29 "tf_device.cluster"() ( { 33 tf_device.return 43 // CHECK: tf_device.replicate 44 // CHECK-NEXT: "tf_device.cluster" 46 // CHECK-NEXT: "tf_device.launch" [all …]
|
D | replicate_invariant_op_hoisting.mlir | 6 %0:4 = tf_device.replicate([%arg0, %arg1] as %ri: tensor<*xf32>) {n = 2: i32} { 9 tf_device.return %1, %2 : tensor<?xi32>, tensor<*xi32> 15 // CHECK: tf_device.replicate([%[[ARG_0]], %[[ARG_1]]] as %[[RI:[a-z0-9]*]]: tensor<*xf32>) 17 // CHECK: tf_device.return %[[SHAPE]], %[[OP_A]] 23 %0:2 = tf_device.replicate([%arg0, %arg0] as %ri: tensor<*xf32>) {n = 2: i32} { 25 tf_device.return %1 : tensor<?xi32> 31 // CHECK: tf_device.replicate 32 // CHECK: tf_device.return %[[SHAPE]] 38 %0:6 = tf_device.replicate([%arg0, %arg1] as %ri: tensor<*x!tf.resource>) {n = 2: i32} { 42 tf_device.return %1, %2, %3 : tensor<*xf32>, tensor<?xi32>, tensor<*xi32> [all …]
|
D | tpu_extract_outside_compilation.mlir | 10 %0 = "tf_device.cluster"() ( { 13 tf_device.return %2 : tensor<?xi32> 18 // CHECK-NOT: "tf_device.parallel_execute" 24 // CHECK: "tf_device.parallel_execute" 25 // CHECK-NEXT: "tf_device.launch" 28 // CHECK-NEXT: tf_device.return 30 // CHECK: "tf_device.cluster" 33 "tf_device.cluster"() ( { 37 tf_device.return 46 // CHECK: "tf_device.parallel_execute" [all …]
|
D | tpu-dynamic-layout-pass.mlir | 7 // CHECK: %[[COMPILE:.*]]:2 = "tf_device.launch" 9 %compile:2 = "tf_device.launch"() ( { 15 tf_device.return %1#0, %1#1 : tensor<!tf.string>, tensor<2x!tf.string> 22 // CHECK: "tf_device.launch" 24 "tf_device.launch"() ( { 26 tf_device.return 30 // CHECK: "tf_device.launch" 32 %execute = "tf_device.launch"() ( { 35 tf_device.return %3 : tensor<i32> 47 %compile:2 = "tf_device.launch"() ( { [all …]
|
D | tpu_colocate_composite_resource_ops.mlir | 4 // tf_device.Cluster. 9 // CHECK: tf_device.replicate 11 tf_device.replicate(%arg0 as %arg1: tensor<*x!tf.resource<tensor<4xf32>>>) { 15 // CHECK: %[[RESOURCE_OUT:.*]] = "tf_device.launch"() 17 // CHECK-NEXT: tf_device.return %[[READ_OUT]] 21 "tf_device.launch"() ( { 23 tf_device.return 25 "tf_device.launch"() ( { 28 tf_device.return 30 tf_device.return [all …]
|
D | tpu_parallel_execute_sink_resource_write.mlir | 6 // CHECK: [[PARALLEL_EXECUTE:%.+]]:2 = "tf_device.parallel_execute" 7 %0:2 = "tf_device.parallel_execute"() ( { 8 tf_device.return %arg0 : tensor<i1> 10 tf_device.return %arg0 : tensor<i1> 22 // CHECK: [[PARALLEL_EXECUTE:%.+]]:2 = "tf_device.parallel_execute" 23 %0:2 = "tf_device.parallel_execute"() ( { 24 tf_device.return %arg0 : tensor<i1> 26 tf_device.return %arg0 : tensor<i1> 37 // CHECK: [[PARALLEL_EXECUTE:%.+]]:2 = "tf_device.parallel_execute" 38 %0:2 = "tf_device.parallel_execute"() ( { [all …]
|
D | tpu_host_computation_expansion.mlir | 7 // CHECK: "tf_device.cluster" 10 "tf_device.cluster"() ( { 14 tf_device.return 21 // CHECK: "tf_device.cluster" 24 "tf_device.cluster"() ( { 28 tf_device.return 35 // CHECK: "tf_device.cluster" 41 "tf_device.cluster"() ( { 46 tf_device.return 53 // CHECK: "tf_device.cluster" [all …]
|
D | tpu_dynamic_padding_mapper.mlir | 12 …tf_device.replicate([%arg0, %arg0] as %ri_0: tensor<i1>, [%arg0, %arg0] as %ri_1: tensor<i1>) {_re… 13 …"tf_device.cluster_func"(%ri_0, %ri_1) {func = @func0, padding_map = ["\10\02\18\01"]} : (tensor<i… 14 tf_device.return 39 …tf_device.replicate([%arg0, %arg0] as %ri_0: tensor<i1>, [%arg0, %arg0] as %ri_1: tensor<i1>, [%ar… 40 …"tf_device.cluster_func"(%ri_0, %ri_1, %ri_2) {func = @func1, padding_map = ["\10\02\18\01", "\10\… 41 tf_device.return 71 …tf_device.replicate([%arg0, %arg0] as %ri_0: tensor<i1>, [%arg0, %arg0] as %ri_1: tensor<i1>, [%ar… 72 …"tf_device.cluster_func"(%ri_0, %ri_1, %ri_2, %ri_3, %ri_4) {func = @func2, padding_map = ["\10\02… 73 tf_device.return 92 …tf_device.replicate([%arg0, %arg0] as %ri_0: tensor<i1>, [%arg0, %arg0] as %ri_1: tensor<i1>) {_re… [all …]
|
D | launch_to_device_attribute.mlir | 5 // by parent `tf_device.launch`. 11 %launch:2 = "tf_device.launch"() ( { 13 tf_device.return %b#1, %b#0 : tensor<f32>, tensor<i32> 27 // CHECK-NOT: "tf_device.launch" 32 // assigned by parent `tf_device.launch`. 38 %launch:2 = "tf_device.launch"() ( { 41 tf_device.return %c, %b : tensor<f32>, tensor<i32> 57 // CHECK-NOT: "tf_device.launch" 66 %launch:2 = "tf_device.launch"() ( { 68 tf_device.return %a#1, %a#0 : tensor<f32>, tensor<i32> [all …]
|
D | cluster_outlining.mlir | 3 // Tests simple case of a single `tf_device.cluster`. 13 …// CHECK: %[[CLUSTER_OUTPUT:[0-9]*]] = "tf_device.cluster_func"(%[[A_OUTPUT]]) {func = @[[CLUSTER:… 14 %3 = "tf_device.cluster"() ( { 16 tf_device.return %4 : tensor<?xi32> 34 // Tests that multiple `tf_device.cluster` that depend on each other are 45 …// CHECK: %[[CLUSTER_0_OUTPUT:[0-9]*]] = "tf_device.cluster_func"(%[[A_OUTPUT]]) {func = @[[CLUSTE… 46 %3 = "tf_device.cluster"() ( { 48 tf_device.return %6 : tensor<?xi32> 54 …// CHECK: %[[CLUSTER_1_OUTPUT:[0-9]*]] = "tf_device.cluster_func"(%[[CLUSTER_0_OUTPUT]], %[[D_OUTP… 55 %5 = "tf_device.cluster"() ( { [all …]
|
D | tpu-merge-variables-with-execute.mlir | 20 // CHECK: %[[COMPILE:.*]]:2 = "tf_device.launch" 21 %compile:2 = "tf_device.launch"() ( { 30 tf_device.return %0#0, %0#1 : tensor<!tf.string>, tensor<2x!tf.string> 32 // CHECK: %[[EXE:.*]] = "tf_device.launch" 36 %execute:2 = "tf_device.launch"() ( { 41 tf_device.return %0#0, %0#1 : tensor<32xf32>, tensor<16xf32> 43 // CHECK-NEXT: tf_device.return 65 // CHECK: %[[COMPILE:.*]]:2 = "tf_device.launch" 66 %compile:2 = "tf_device.launch"() ( { 74 tf_device.return %0#0, %0#1 : tensor<!tf.string>, tensor<2x!tf.string> [all …]
|
D | replicate_to_island.mlir | 11 tf_device.replicate {n = 2 : i32} { 12 tf_device.return 32 tf_device.replicate {n = 2 : i32} { 33 "tf_device.launch"() ( { 35 tf_device.return 37 tf_device.return 57 tf_device.replicate {n = 2 : i32, devices = {CORE_0 = ["/CPU:0", "/GPU:1"]}} { 58 "tf_device.launch"() ( { 60 tf_device.return 62 tf_device.return [all …]
|
D | tpu_rewrite.mlir | 8 …"tf_device.cluster_func"() {_tpu_replicate = "cluster0", func = @empty_func, num_cores_per_replica… 23 …"tf_device.cluster_func"() {_tpu_replicate = "cluster0", func = @empty_func, num_cores_per_replica… 33 // Tests `tf_device.cluster_func` with missing `num_cores_per_replicas` 39 …"tf_device.cluster_func"() {_tpu_replicate = "cluster0", func = @empty_func, step_marker_location … 49 // Tests `tf_device.cluster_func` with bad `num_cores_per_replicas` attribute. 54 …"tf_device.cluster_func"() {_tpu_replicate = "cluster0", func = @empty_func, num_cores_per_replica… 64 // Tests `tf_device.cluster_func` with missing `step_marker_location` attribute. 69 …"tf_device.cluster_func"() {_tpu_replicate = "cluster0", func = @empty_func, num_cores_per_replica… 79 // Tests `tf_device.cluster_func` with bad `step_marker_location` attribute. 84 …"tf_device.cluster_func"() {_tpu_replicate = "cluster0", func = @empty_func, num_cores_per_replica… [all …]
|
D | tpu-variable-runtime-reformatting.mlir | 39 // CHECK: %[[COMPILE:.*]]:2 = "tf_device.launch" 41 %compile:2 = "tf_device.launch"() ( { 47 tf_device.return %b2#0, %b2#1 : tensor<!tf.string>, tensor<2x!tf.string> 49 "tf_device.launch"() ( { 51 tf_device.return 53 // CHECK: tf_device.replicate 58 … %rep:2 = tf_device.replicate([%arg0, %arg1] as %arg30: tensor<*x!tf.resource<tensor<f32>>>, 63 // CHECK: "tf_device.launch" 65 // CHECK-NEXT: tf_device.return 68 "tf_device.launch"() ( { [all …]
|
D | mark_ops_for_outside_compilation.mlir | 5 %0 = "tf_device.cluster"() ( { 12 tf_device.return %2 : tensor<i32> 19 %0 = "tf_device.cluster"() ( { 26 tf_device.return %2 : tensor<i32> 33 %0 = "tf_device.cluster"() ( { 44 tf_device.return %2 : tensor<i32> 51 %0 = "tf_device.cluster"() ( { 58 tf_device.return %2 : tensor<i32> 65 %0 = "tf_device.cluster"() ( { 76 tf_device.return %4 : tensor<f32> [all …]
|
D | tpu_identity_pruning.mlir | 9 // CHECK: "tf_device.cluster" 10 // CHECK-NEXT: tf_device.return [[ARG0]] 11 %0 = "tf_device.cluster"() ( { 13 tf_device.return %1 : tensor<i32> 24 // CHECK: "tf_device.cluster" 25 // CHECK-NEXT: tf_device.return [[ARG0]], [[ARG1]] 26 %0:2 = "tf_device.cluster"() ( { 28 tf_device.return %1#0, %1#1 : tensor<i32>, tensor<f32> 38 // CHECK: "tf_device.cluster" 41 %0 = "tf_device.cluster"() ( { [all …]
|
D | parallel_execute_to_islands.mlir | 7 "tf_device.parallel_execute"() ({ 8 tf_device.return 10 tf_device.return 35 %4:2 = "tf_device.parallel_execute"() ({ 37 tf_device.return %5 : tensor<i1> 40 tf_device.return %5 : tensor<i32> 68 %3:2 = "tf_device.parallel_execute"() ({ 70 tf_device.return %4 : tensor<i1> 73 tf_device.return %4 : tensor<i32> 96 %1:2 = "tf_device.parallel_execute"() ({ [all …]
|
D | merge_control_flow.mlir | 7 // CHECK: tf_device.cluster 10 "tf_device.cluster"() ( { 25 tf_device.return 34 // CHECK: tf_device.cluster 37 "tf_device.cluster"() ( { 61 tf_device.return 70 // CHECK: tf_device.cluster 76 "tf_device.cluster"() ( { 90 tf_device.return 99 // CHECK: tf_device.cluster [all …]
|
D | cluster_formation.mlir | 12 // CHECK: %[[TPU0_OUTPUT:[0-9]*]] = "tf_device.launch" 19 // CHECK: tf_device.return %[[C_OUTPUT]] 42 // CHECK: %[[TPU0_OUTPUT:[0-9]*]] = "tf_device.launch" 49 // CHECK: tf_device.return %[[C_OUTPUT]] 73 // CHECK: %[[TPU0_OUTPUT:[0-9]*]] = "tf_device.launch" 80 // CHECK: tf_device.return %[[B_OUTPUT]] 106 // CHECK: %[[TPU0_OUTPUT:[0-9]*]] = "tf_device.launch" 113 // CHECK: tf_device.return %[[B_OUTPUT]] 137 // CHECK: %[[TPU0_OUTPUT:[0-9]*]] = "tf_device.launch" 141 // CHECK: tf_device.return %[[A_OUTPUT]] [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
D | tf_passes.td | 148 `tf_device.cluster`, and copies over attributes from the associated 149 `tf.TPUReplicateMetadata` op to the newly created `tf_device.cluster`. If the 151 not copied over but instead the `tf_device.cluster` is further wrapped with a 152 `tf_device.replicate`, and associated `tf.TPUReplicatedInput` and 153 `tf.TPUReplicatedOutput` ops are replaced as the `tf_device.replicate` operands 156 the `tf_device.cluster`. 176 %cluster = "tf_device.cluster"() ( { 178 tf_device.return %identity : tensor<i32> 200 %replicate:2 = tf_device.replicate([%arg0, %arg1] as %replicated_input) {n = 2 : i32} { 201 %cluster = "tf_device.cluster"() ( { [all …]
|
D | tpu_extract_head_tail_outside_compilation.cc | 86 tf_device::LaunchOp CreateLaunchForBlock(OpBuilder* builder, Operation* op, in CreateLaunchForBlock() 108 auto launch = builder->create<tf_device::LaunchOp>( in CreateLaunchForBlock() 113 builder->create<tf_device::ReturnOp>(op->getLoc(), launch_results); in CreateLaunchForBlock() 132 tf_device::ClusterOp cluster) { in FindOutsideCompiledOpsAtHead() 181 void CreateHeadComputation(OpBuilder* builder, tf_device::ClusterOp cluster, in CreateHeadComputation() 190 tf_device::LaunchOp launch = CreateLaunchForBlock( in CreateHeadComputation() 203 const mlir::TF::RuntimeDevices& devices, tf_device::ClusterOp cluster, in LiftHeadOutsideCompiledOps() 226 tf_device::ClusterOp cluster, in FindOutsideCompiledOpsAtTailAndClusterResults() 289 void CreateTailComputation(OpBuilder* builder, tf_device::ClusterOp cluster, in CreateTailComputation() 298 tf_device::LaunchOp launch = CreateLaunchForBlock( in CreateTailComputation() [all …]
|
/external/tensorflow/tensorflow/python/distribute/ |
D | device_util.py | 23 from tensorflow.python.framework import device as tf_device unknown 49 d = tf_device.DeviceSpec.from_string(d.name) 51 d = tf_device.DeviceSpec.from_string(d) 56 result = tf_device.DeviceSpec( 62 host_cpu = tf_device.DeviceSpec.from_string( 72 tf_device.DeviceSpec.from_string(default)) 124 spec = tf_device.DeviceSpec.from_string(device) 125 return tf_device.DeviceSpec(
|