/external/skqp/infra/bots/ |
D | infra_tests.py | 28 def python_unit_tests(train): argument 29 if train: 36 def recipe_test(train): argument 39 if train: 46 def gen_tasks_test(train): argument 48 if not train: 64 train = False 66 train = True 75 err = t(train) 87 if train:
|
D | Makefile | 4 train: target 5 python infra_tests.py --train
|
/external/skia/infra/bots/ |
D | infra_tests.py | 29 def python_unit_tests(train): argument 30 if train: 38 def recipe_test(train): argument 41 if train: 48 def gen_tasks_test(train): argument 50 if not train: 61 train = False 63 train = True 72 err = t(train) 84 if train:
|
D | Makefile | 4 train: target 5 python infra_tests.py --train
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
D | train_test.py | 26 from tensorflow.examples.speech_commands import train 121 train.FLAGS = self._getDefaultFlags() 122 train.main('') 125 os.path.join(train.FLAGS.train_dir, 126 train.FLAGS.model_architecture + '.pbtxt'))) 129 os.path.join(train.FLAGS.train_dir, 130 train.FLAGS.model_architecture + '_labels.txt'))) 133 os.path.join(train.FLAGS.train_dir, 134 train.FLAGS.model_architecture + '.ckpt-1.meta')))
|
/external/tensorflow/tensorflow/core/kernels/ |
D | training_ops_test.cc | 110 Graph* train; in BM_SGD() local 111 SGD(params, &init, &train); in BM_SGD() 112 test::Benchmark("cpu", train, GetOptions(), init, nullptr, "", in BM_SGD() 146 Graph* train; in BM_Adagrad() local 147 Adagrad(params, &init, &train); in BM_Adagrad() 148 test::Benchmark("cpu", train, GetOptions(), init, nullptr, "", in BM_Adagrad() 184 Graph* train; in BM_SparseAdagrad() local 185 SparseAdagrad(m, n, &init, &train); in BM_SparseAdagrad() 186 test::Benchmark("cpu", train, GetMultiThreadedOptions(), init, nullptr, "", in BM_SparseAdagrad() 228 Graph* train; in BM_Momentum() local [all …]
|
D | sdca_ops_test.cc | 233 Graph* train = nullptr; in BM_SDCA() local 236 20 /* dense features per group */, &init, &train); in BM_SDCA() 238 test::Benchmark("cpu", train, GetSingleThreadedOptions(), init).Run(iters); in BM_SDCA() 244 Graph* train = nullptr; in BM_SDCA_LARGE_DENSE() local 247 200000 /* dense features per group */, &init, &train); in BM_SDCA_LARGE_DENSE() 249 test::Benchmark("cpu", train, GetSingleThreadedOptions(), init).Run(iters); in BM_SDCA_LARGE_DENSE() 255 Graph* train = nullptr; in BM_SDCA_LARGE_SPARSE() local 258 0 /* dense features per group */, &init, &train); in BM_SDCA_LARGE_SPARSE() 260 test::Benchmark("cpu", train, GetMultiThreadedOptions(), init).Run(iters); in BM_SDCA_LARGE_SPARSE()
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/serialization/ |
D | checkpoint_input_pipeline_hook_test.py | 86 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 88 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 101 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 103 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 114 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 116 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 119 est.train(_input_fn, steps=2) 131 est.train(
|
/external/tensorflow/tensorflow/lite/micro/examples/magic_wand/train/ |
D | train_magic_wand_model.ipynb | 20 …"This notebook demonstrates how to train a 20kb gesture recognition model for [TensorFlow Lite for… 26 …nsorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/magic_wand/train/train_magic_wand_m… 29 …nsorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/magic_wand/train/train_magic_wand_m… 79 "!cp -r tensorflow/tensorflow/lite/micro/examples/magic_wand/train train" 104 "# Download the data we will use to train the model\n", 106 "# Extract the data into the train directory\n", 107 "!tar xvzf data.tar.gz -C train 1\u003e/dev/null" 130 "# The scripts must be run from within the train directory\n", 131 "%cd train\n", 187 "!python train.py --model CNN --person true" [all …]
|
D | train_test.py | 27 from train import build_cnn 28 from train import build_lstm 29 from train import load_data 30 from train import reshape_function
|
D | README.md | 5 The scripts in this directory can be used to train a TensorFlow model that 9 The following document contains instructions on using the scripts to train a 31 notebook demonstrates how to train the model. It's the easiest way to get 36 …nsorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/magic_wand/train/train_magic_wand_m… 39 …nsorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/magic_wand/train/train_magic_wand_m… 53 There are two ways to train the model: 69 $ python train.py --model CNN --person false 82 $ python train.py --model CNN --person true 191 Finally, run the commands described earlier to train a new model.
|
/external/zstd/tests/ |
D | playTests.sh | 793 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict 811 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c "$PRGDIR"/*.h -o tmpDictC 814 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c --dictID=1 -o tmpDict1 817 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c --dictID -o 1 tmpDict1 && die "wrong order : --dictID mus… 819 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict2 --maxdict=4K -v 821 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict3 --maxdict=1K -v 823 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict3 --maxdict -v 4K && die "wrong order : --maxdi… 844 zstd --train-legacy -q tmp && die "Dictionary training should fail : not enough input source" 846 zstd --train-legacy -q tmp && die "Dictionary training should fail : source is pure noise" 849 zstd -o tmpDict --train "$TESTDIR"/*.c "$PRGDIR"/*.c [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | batch_norm_benchmark.py | 68 def build_graph(device, input_shape, axes, num_layers, mode, scale, train): argument 98 if train: 111 if train: 127 train, num_iters): argument 146 train) 155 (device, len(input_shape), len(axes), num_layers, mode, scale, train, 169 train=train,
|
/external/skia/infra/bots/recipes/ |
D | README.md | 14 When you change a recipe, you generally need to re-train the simulation test: 16 $ python infra/bots/recipes.py test train 20 $ cd infra/bots; make train
|
/external/skqp/infra/bots/recipes/ |
D | README.md | 14 When you change a recipe, you generally need to re-train the simulation test: 16 $ python infra/bots/recipes.py test train 20 $ cd infra/bots; make train
|
/external/tensorflow/tensorflow/lite/experimental/examples/lstm/ |
D | bidirectional_sequence_rnn_test.py | 162 opt = tf.train.AdamOptimizer( 169 batch_x, batch_y = self.mnist.train.next_batch( 216 saver = tf.train.Saver() 235 b1, _ = self.mnist.train.next_batch(batch_size=1, fake_data=True) 289 saver = tf.compat.v1.train.Saver() 308 saver = tf.compat.v1.train.Saver()
|
D | unidirectional_sequence_lstm_test.py | 131 opt = tf.compat.v1.train.AdamOptimizer( 138 batch_x, batch_y = self.mnist.train.next_batch( 173 saver = tf.compat.v1.train.Saver() 192 b1, _ = self.mnist.train.next_batch(batch_size=1, fake_data=True) 249 saver = tf.compat.v1.train.Saver() 272 saver = tf.compat.v1.train.Saver()
|
D | unidirectional_sequence_rnn_test.py | 127 opt = tf.compat.v1.train.AdamOptimizer( 133 batch_x, batch_y = self.mnist.train.next_batch( 168 saver = tf.compat.v1.train.Saver() 187 b1, _ = self.mnist.train.next_batch(batch_size=1, fake_data=True) 240 saver = tf.train.Saver() 263 saver = tf.compat.v1.train.Saver()
|
D | input_data.py | 284 train = fake() 287 return _Datasets(train=train, validation=validation, test=test) 329 train = _DataSet(train_images, train_labels, **options) 333 return _Datasets(train=train, validation=validation, test=test)
|
D | bidirectional_sequence_lstm_test.py | 141 opt = tf.compat.v1.train.AdamOptimizer( 148 batch_x, batch_y = self.mnist.train.next_batch( 188 saver = tf.compat.v1.train.Saver() 207 b1, _ = self.mnist.train.next_batch(batch_size=1, fake_data=True) 264 saver = tf.compat.v1.train.Saver() 283 saver = tf.compat.v1.train.Saver()
|
/external/tensorflow/tensorflow/python/keras/integration_test/ |
D | saved_model_test.py | 44 class _ModelWithOptimizer(tf.train.Checkpoint): 88 root = tf.train.Checkpoint( 137 def train(self, x, y): member in LoadTest.test_optimizer._HasOptimizer 148 root.train(**train_input) 154 root.train(**train_input) 155 imported.train(**train_input) 160 root = tf.train.Checkpoint(
|
/external/tensorflow/tensorflow/core/platform/ |
D | ram_file_system_test.py | 126 estimator.train(input_fn=input_fn, steps=10) 127 estimator.train(input_fn=input_fn, steps=10) 128 estimator.train(input_fn=input_fn, steps=10) 129 estimator.train(input_fn=input_fn, steps=10)
|
/external/toolchain-utils/bestflags/examples/omnetpp/ |
D | test_omnetpp | 6 (time ./omnetpp$1 ../../data/train/input/omnetpp.ini) 1>log-file 2>time.txt 11 diff ../../data/train/output/omnetpp.sca.result omnetpp.sca
|
/external/skia/infra/bots/recipe_modules/ |
D | README.md | 19 When you change a recipe module, you generally need to re-train the simulation 22 $ python infra/bots/infra_tests.py --train 26 $ cd infra/bots; make train
|
/external/skqp/infra/bots/recipe_modules/ |
D | README.md | 19 When you change a recipe module, you generally need to re-train the simulation 22 $ python infra/bots/recipes.py test run --train 26 $ cd infra/bots; make train
|