/external/tensorflow/tensorflow/compiler/tf2xla/ |
D | xla_context.cc | 87 const string type_string = DataTypeString(type); in GetOrCreateMax() local 88 VLOG(1) << "Building Max() for " << type_string; in GetOrCreateMax() 89 xla::XlaBuilder b("max<" + type_string + ">"); in GetOrCreateMax() 103 const string type_string = DataTypeString(type); in GetOrCreateMin() local 104 VLOG(1) << "Building Min() for " << type_string; in GetOrCreateMin() 105 xla::XlaBuilder b("min<" + type_string + ">"); in GetOrCreateMin() 119 const string type_string = DataTypeString(type); in GetOrCreateAdd() local 120 VLOG(1) << "Building Add() for " << type_string; in GetOrCreateAdd() 121 xla::XlaBuilder b("add<" + type_string + ">"); in GetOrCreateAdd() 135 const string type_string = DataTypeString(type); in GetOrCreateMul() local [all …]
|
D | resource_util.cc | 75 const XlaResourceOpInfo* op_info = GetResourceOpInfoForOp(n.type_string()); in IsStackOrTensorArraySource() 89 n.type_string()); in PropagateFromStackOrTensorArraySourceOp() 104 TF_RET_CHECK(n.type_string() == kArgOp); in PropagateFromArgOp() 116 n.type_string()); in PropagateFromArgOp() 217 fbody->graph, n.type_string(), call_depth + 1, resource_arg_indices, in PropagateThroughCallOp() 231 TF_RET_CHECK(n.IsIdentity() || n.type_string() == kIdentityNOp); in PropagateThroughIdentityOp() 277 if (n->type_string() == kIfOp || n->type_string() == kWhileOp) { in AnalyzeResourceUsage() 307 if (n->IsIdentity() || n->type_string() == kIdentityNOp) { in AnalyzeResourceUsage() 314 it.first->dst()->type_string()); in AnalyzeResourceUsage()
|
D | const_analysis.cc | 212 if (XlaOpRegistry::IsMetadataOp(node->type_string())) { in BackwardsConstAnalysis() 219 if (node->type_string() == "_Arg") { in BackwardsConstAnalysis() 235 pred->src()->type_string() == "IdentityN") { in BackwardsConstAnalysis() 265 edge->src()->type_string() == "IdentityN") { in BackwardsConstAnalysis()
|
/external/mesa3d/src/mapi/glapi/gen/ |
D | glX_proto_recv.py | 200 t = param.type_string() 267 type_string = param.type_string() 272 …rint '%s %s const %s = (%s) (%s(pc + %s));' % (indent, type_string, param.name, type_string, co… 282 print '%s const %s %s = %s;' % (indent, type_string, param.name, location) 287 print '%s %s %s = %s%s;' % (indent, type_string, param.name, cond, location) 289 print '%s %s %s;' % (indent, type_string, param.name) 342 … print ' %s = (%s) (pc + %s); break;' % (param.name, param.type_string(), o) 345 … %s = (%s) %s( (%s *) (pc + %s), %s ); break;' % (param.name, param.type_string(), swap_func, s… 352 …print ' %s = (%s) %s( (%s *) (pc + %s), %s );' % (param.name, param.type_string(), swap_func, s… 359 … print '%s %s = (%s) (pc + %s);' % (indent, param.name, param.type_string(), param.offset) [all …]
|
D | typeexpr.py | 116 def __init__(self, type_string, extra_types = None): argument 119 if not type_string: 122 self.original_string = type_string 129 tokens = type_string.replace("*", " * ").split()
|
/external/tensorflow/tensorflow/core/common_runtime/ |
D | mkl_layout_pass.cc | 1081 << n->type_string() << ", reason: " << reason; in CanOpRunOnCPUDevice() 1134 if (m->type_string() == csinfo_.bias_add) { in GetConv2DOrBiasAdd() 1138 CHECK_EQ(m->type_string(), csinfo_.conv2d); in GetConv2DOrBiasAdd() 1143 e->dst()->type_string() == csinfo_.bias_add && in GetConv2DOrBiasAdd() 1180 if (m->type_string() == csinfo_.pad) { in GetPadOrConv2D() 1183 if (!e->IsControlEdge() && e->dst()->type_string() == csinfo_.conv2d) { in GetPadOrConv2D() 1190 DCHECK_EQ(m->type_string(), csinfo_.conv2d); in GetPadOrConv2D() 1194 if (!e->IsControlEdge() && e->src()->type_string() == csinfo_.pad) { in GetPadOrConv2D() 1229 if (m->type_string() == csinfo_.pad) { in GetPadOrFusedConv2D() 1233 e->dst()->type_string() == csinfo_.fused_conv2d) { in GetPadOrFusedConv2D() [all …]
|
D | lower_while_op_test.cc | 135 if (op->type_string() == "LessThanOrEqualToN") { in TEST() 138 if (op->type_string() == "XTimesTwo") { in TEST() 144 ASSERT_NE(op->type_string(), "While"); in TEST() 218 if (consumer->type_string() == "Enter") { in TEST() 229 if (consumer->type_string() == "Merge") { in TEST() 239 if (consumer->type_string() == "NextIteration") { in TEST() 249 if (consumer->type_string() == "Switch") { in TEST() 259 if (consumer->type_string() == "Exit") { in TEST() 339 if (consumer->type_string() == "Enter") { in TEST() 350 if (consumer->type_string() == "Merge") { in TEST() [all …]
|
D | mkl_tfconversion_pass.cc | 202 << src->type_string() << " and " << dst->type_string() in InsertConversionNodeOnEdge() 290 << "conversion node on: " << n->type_string() << " successful."; in InsertInputConversionNode() 326 if (src->type_string().compare("_MklToTf") == 0 || in RunPass() 327 dst->type_string().compare("_MklToTf") == 0) { in RunPass() 332 << src->type_string() << " and " << dst->type_string(); in RunPass() 341 IsMklSupportedOp(src->type_string(), src_datatype)); in RunPass() 344 IsMklSupportedOp(dst->type_string(), dst_datatype)); in RunPass() 384 if (IsMklElementWiseOp(n->type_string(), datatype)) { in RunPass() 390 (input_node->type_string().compare("_MklInputConversion") == 0)) { in RunPass()
|
D | function_body.cc | 34 if (n->type_string() == FunctionLibraryDefinition::kRetOp || in FunctionBody() 35 n->type_string() == FunctionLibraryDefinition::kDeviceRetOp) { in FunctionBody() 37 } else if (n->type_string() == FunctionLibraryDefinition::kArgOp || in FunctionBody() 38 n->type_string() == FunctionLibraryDefinition::kDeviceArgOp) { in FunctionBody()
|
D | eval_const_tensor.cc | 52 if (node->type_string() == "Shape") { in TryToInferTensorOutputFromInputShapes() 82 } else if (node->type_string() == "Rank") { in TryToInferTensorOutputFromInputShapes() 91 } else if (node->type_string() == "Size") { in TryToInferTensorOutputFromInputShapes() 158 if (target_node.type_string() == "PlaceholderWithDefault") { in ExtractConstantSubgraph() 229 if (current_node->type_string() == "PlaceholderWithDefault") { in ExtractConstantSubgraph()
|
D | lower_if_op_test.cc | 116 ASSERT_NE(op->type_string(), "If"); in TEST() 226 ASSERT_NE(op->type_string(), "If"); in TEST() 305 if (op->type_string() == x_times_two.signature().name()) { in TEST() 308 if (op->type_string() == x_times_four.signature().name()) { in TEST() 311 ASSERT_NE(op->type_string(), "If"); in TEST()
|
D | lower_function_call_op.cc | 82 } else if (n->type_string() == FunctionLibraryDefinition::kGradientOp) { in RewriteFunctionCallNode() 86 fdef = flib_def.Find(n->type_string()); in RewriteFunctionCallNode()
|
/external/tensorflow/tensorflow/compiler/jit/ |
D | compilability_check_util.cc | 74 << node.type_string() << ")" << (reason.empty() ? "" : ": ") in LogNotCompilable() 195 if (node.type_string() == "SymbolicGradient") { in HasXLAKernel() 201 if (node.type_string() == "Const") { in HasXLAKernel() 377 return node.type_string() == "SelfAdjointEigV2" || in OpIsInaccurate() 378 node.type_string() == "Svd"; in OpIsInaccurate() 388 return node.type_string() == "SelfAdjointEigV2" || in OpIsSlow() 389 node.type_string() == "Svd" || node.type_string() == "Qr" || in OpIsSlow() 390 node.type_string() == "MatrixInverse" || in OpIsSlow() 391 node.type_string() == "MatrixSolve" || in OpIsSlow() 392 node.type_string() == "ResizeNearestNeighbor" || in OpIsSlow() [all …]
|
D | xla_cluster_util.cc | 99 << incoming_node->name() << " " << incoming_node->type_string(); in HasForwardedRefInput() 306 if (flib_def->Contains(n.type_string())) { in MayCallFunction() 318 return node.type_string() == "Shape" || node.type_string() == "Rank" || in IsShapeConsumerOp() 319 node.type_string() == "Size"; in IsShapeConsumerOp() 366 info->op_histogram[n->type_string()]++; in GetXlaAutoClusteringSummary() 369 unclustered_op_histogram[n->type_string()]++; in GetXlaAutoClusteringSummary() 397 if (flib_def.Find(n.type_string())) { in GetCallTargetListFromNode() 399 callee.set_name(n.type_string()); in GetCallTargetListFromNode()
|
D | encapsulate_xla_computations_pass.cc | 72 return errors::InvalidArgument("Invalid ", n.type_string(), " number ", in GetIndexAttr() 123 if (n->type_string() == "_Arg") { in RewriteSubgraph() 130 } else if (n->type_string() == "_Retval") { in RewriteSubgraph() 215 e->dst()->type_string() != kXlaClusterOutput) { in Encapsulate() 302 TF_RET_CHECK(output_node->type_string() == kXlaClusterOutput) in BuildXlaLaunchOps() 331 function.set_name(launch->type_string()); in BuildXlaLaunchOps()
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
D | strip_unused_nodes.cc | 42 const string& type_string = context.params.at("type")[0]; in TypeForPlaceholder() local 43 if (!DataTypeFromString(type_string, result)) { in TypeForPlaceholder() 45 type_string, "'"); in TypeForPlaceholder() 63 const string& type_string = context.params.at("type_for_name")[i]; in TypeForPlaceholder() local 64 if (!DataTypeFromString(type_string, result)) { in TypeForPlaceholder() 66 type_string, "'"); in TypeForPlaceholder()
|
/external/tensorflow/tensorflow/core/framework/ |
D | op_def_builder.cc | 128 bool ProcessCompoundType(const StringPiece type_string, AttrValue* allowed) { in ProcessCompoundType() argument 129 if (type_string == "numbertype" || type_string == "numerictype") { in ProcessCompoundType() 133 } else if (type_string == "quantizedtype") { in ProcessCompoundType() 137 } else if (type_string == "realnumbertype" || in ProcessCompoundType() 138 type_string == "realnumerictype") { in ProcessCompoundType() 161 StringPiece type_string; // Used if type == "type" in FinalizeAttr() local 180 } else if (ConsumeCompoundAttrType(&spec, &type_string)) { in FinalizeAttr() 183 VERIFY(ProcessCompoundType(type_string, allowed), in FinalizeAttr() 184 "Expected to see a compound type, saw: ", type_string); in FinalizeAttr() 215 VERIFY(ConsumeAttrType(&spec, &type_string), in FinalizeAttr() [all …]
|
D | dataset.cc | 217 const string& type_string = dataset->type_string(); in AddDataset() local 222 bool has_output_types_attr = HasAttr(type_string, "output_types"); in AddDataset() 223 bool has_output_shapes_attr = HasAttr(type_string, "output_shapes"); in AddDataset() 240 NodeBuilder node_builder(opts->GetNameForOp(type_string), type_string, in AddDataset() 266 return errors::Internal("AddDataset: Failed to build ", type_string, in AddDataset() 445 "Cannot create a split provider for dataset of type ", type_string(), in MakeSplitProvider() 451 "Cannot create a split provider for dataset of type ", type_string(), in MakeSplitProvider() 461 type_string()); in InputDatasets()
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | conv_op_helpers.h | 61 StringPiece type_string, xla::XlaOp conv_input, xla::XlaOp filter, 65 StringPiece type_string, const xla::Shape& input_shape, xla::XlaOp filter, 70 StringPiece type_string, xla::XlaOp activations,
|
D | conv_ops.cc | 56 ctx->op_kernel().type_string(), ctx->Input(0), ctx->Input(1), attrs_); in Compile() 117 ctx->op_kernel().type_string(), input_shape, ctx->Input(1), in Compile() 178 ctx->op_kernel().type_string(), ctx->Input(0), filter_shape, in Compile()
|
/external/tensorflow/tensorflow/core/graph/ |
D | optimizer_cse.cc | 201 hasher.MixString(n->type_string()); in NodeHash() 242 if (a->type_string() != b->type_string()) return false; in Equivalent() 300 if (n->type_string() == "Placeholder" || in Optimize() 301 n->type_string() == "PlaceholderV2" || in Optimize() 302 n->type_string() == "PlaceholderWithDefault") { in Optimize()
|
/external/adhd/cras/src/server/ |
D | cras_dbus_util.c | 9 const char *type_string, void *value) in append_key_value() argument 19 type_string, &variant)) in append_key_value()
|
/external/OpenCL-CTS/test_conformance/api/ |
D | test_kernel_arg_info.cpp | 341 static std::string get_expected_arg_type(const std::string& type_string, in get_expected_arg_type() argument 345 std::istringstream type_stream(type_string); in get_expected_arg_type() 349 if (type_string == "signed" || type_string == "signed*") in get_expected_arg_type() 353 else if (type_string == "unsigned" || type_string == "unsigned*") in get_expected_arg_type() 396 std::string type_string(kernel_argument.arg_type); in create_expected_arg_info() local 398 if ((is_pointer && !isdigit(type_string.back() - 1)) in create_expected_arg_info() 399 || !isdigit(type_string.back())) in create_expected_arg_info() 402 get_expected_arg_type(type_string, is_pointer); in create_expected_arg_info()
|
/external/tensorflow/tensorflow/core/grappler/optimizers/data/vectorization/ |
D | decode_csv_vectorizer.cc | 40 auto node_builder = NodeBuilder(node.type_string(), node.type_string()) in Vectorize()
|
/external/tensorflow/tensorflow/core/kernels/hexagon/ |
D | graph_transferer.cc | 444 } else if (ops_definitions.GetOpIdFor(node.type_string(), {}) != in RegisterNode() 449 return errors::InvalidArgument(node.type_string() + in RegisterNode() 589 const StringPiece op_type(node.type_string()); in NeedsToAddRank() 597 const StringPiece op_type(node.type_string()); in IsPadNode() 607 if (node.type_string() != RESHAPE_NODE_TYPE_STRING) { in IsNodeFlattenReshape() 665 const int op_type_id = ops_definitions.GetOpIdFor(node.type_string(), {}); in RegisterNodeWithPaddingAndStrides() 667 << "Op " << node.type_string() << " not found in map(id = " << op_type_id in RegisterNodeWithPaddingAndStrides() 672 shape_refiner, node, node.name(), id, node.type_string(), op_type_id, in RegisterNodeWithPaddingAndStrides() 694 const int op_type_id = ops_definitions.GetOpIdFor(node.type_string(), {}); in RegisterNodeWithRank() 696 << "Op " << node.type_string() << " not found in map(id = " << op_type_id in RegisterNodeWithRank() [all …]
|