Searched refs:vad_output (Results 1 – 8 of 8) sorted by relevance
/external/webrtc/modules/audio_processing/test/py_quality_assessment/quality_assessment/ |
D | annotations_unittest.py | 73 vad_output = e.GetVadOutput(self._VAD_TYPE_CLASS.ENERGY_THRESHOLD) 74 self.assertGreater(len(vad_output), 0) 75 self.assertGreaterEqual(float(np.sum(vad_output)) / len(vad_output), 80 vad_output = e.GetVadOutput(self._VAD_TYPE_CLASS.WEBRTC_COMMON_AUDIO) 81 self.assertGreater(len(vad_output), 0) 82 self.assertGreaterEqual(float(np.sum(vad_output)) / len(vad_output), 102 num_frames=len(vad_output), 108 plt.plot(t_vad, vad_output * np.max(level), '.')
|
D | annotations.py | 190 vad_output=self._common_audio_vad,
|
/external/rnnoise/src/ |
D | rnn_data.c | 11027 static const DenseLayer vad_output = { variable 11050 &vad_output
|
D | rnn_reader.c | 70 ALLOC_LAYER(DenseLayer, vad_output); in rnnoise_model_from_file() 135 INPUT_DENSE(vad_output); in rnnoise_model_from_file() 166 FREE_DENSE(vad_output); in rnnoise_model_free()
|
D | rnn_data.h | 23 const DenseLayer *vad_output; member
|
D | rnn.c | 167 compute_dense(rnn->model->vad_output, vad, rnn->vad_gru_state); in compute_rnn()
|
/external/rnnoise/training/ |
D | rnn_train.py | 66 vad_output = Dense(1, activation='sigmoid', name='vad_output', kernel_constraint=constraint, bias_c… variable 75 model = Model(inputs=main_input, outputs=[denoise_output, vad_output])
|
/external/webrtc/modules/audio_processing/agc2/rnn_vad/ |
D | rnn.cc | 420 const auto vad_output = output_layer_.GetOutput(); in ComputeVadProbability() local 421 return vad_output[0]; in ComputeVadProbability()
|