/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | adam.py | 134 def _prepare_local(self, var_device, var_dtype, apply_state): argument 135 super(Adam, self)._prepare_local(var_device, var_dtype, apply_state) 137 local_step = math_ops.cast(self.iterations + 1, var_dtype) 138 beta_1_t = array_ops.identity(self._get_hyper('beta_1', var_dtype)) 139 beta_2_t = array_ops.identity(self._get_hyper('beta_2', var_dtype)) 142 lr = (apply_state[(var_device, var_dtype)]['lr_t'] * 144 apply_state[(var_device, var_dtype)].update( 148 self.epsilon, var_dtype), 167 var_device, var_dtype = var.device, var.dtype.base_dtype 168 coefficients = ((apply_state or {}).get((var_device, var_dtype)) [all …]
|
D | nadam.py | 91 var_dtype = var_list[0].dtype.base_dtype 96 dtype=var_dtype, 109 def _prepare_local(self, var_device, var_dtype, apply_state): argument 110 lr_t = array_ops.identity(self._get_hyper('learning_rate', var_dtype)) 111 beta_1_t = array_ops.identity(self._get_hyper('beta_1', var_dtype)) 112 beta_2_t = array_ops.identity(self._get_hyper('beta_2', var_dtype)) 113 local_step = math_ops.cast(self.iterations + 1, var_dtype) 114 next_step = math_ops.cast(self.iterations + 2, var_dtype) 116 decay_base = math_ops.cast(0.96, var_dtype) 123 m_schedule_new = math_ops.cast(self._m_cache_read, var_dtype) * m_t [all …]
|
D | adamax.py | 113 def _prepare_local(self, var_device, var_dtype, apply_state): argument 114 super(Adamax, self)._prepare_local(var_device, var_dtype, apply_state) 116 local_step = math_ops.cast(self.iterations + 1, var_dtype) 117 beta_1_t = array_ops.identity(self._get_hyper('beta_1', var_dtype)) 118 beta_2_t = array_ops.identity(self._get_hyper('beta_2', var_dtype)) 120 lr_t = apply_state[(var_device, var_dtype)]['lr_t'] 122 apply_state[(var_device, var_dtype)].update( 126 self.epsilon, var_dtype), 134 var_device, var_dtype = var.device, var.dtype.base_dtype 135 coefficients = ((apply_state or {}).get((var_device, var_dtype)) [all …]
|
D | gradient_descent.py | 127 def _prepare_local(self, var_device, var_dtype, apply_state): argument 128 super(SGD, self)._prepare_local(var_device, var_dtype, apply_state) 129 apply_state[(var_device, var_dtype)]["momentum"] = array_ops.identity( 130 self._get_hyper("momentum", var_dtype)) 133 var_device, var_dtype = var.device, var.dtype.base_dtype 134 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 135 or self._fallback_apply_state(var_device, var_dtype)) 160 var_device, var_dtype = var.device, var.dtype.base_dtype 161 coefficients = (kwargs.get("apply_state", {}).get((var_device, var_dtype)) 162 or self._fallback_apply_state(var_device, var_dtype)) [all …]
|
D | ftrl.py | 139 def _prepare_local(self, var_device, var_dtype, apply_state): argument 140 super(Ftrl, self)._prepare_local(var_device, var_dtype, apply_state) 141 apply_state[(var_device, var_dtype)].update( 144 self._get_hyper('learning_rate_power', var_dtype)), 146 self._get_hyper('l1_regularization_strength', var_dtype)), 148 self._get_hyper('l2_regularization_strength', var_dtype)), 149 beta=array_ops.identity(self._get_hyper('beta', var_dtype)), 151 self._l2_shrinkage_regularization_strength, var_dtype))) 154 var_device, var_dtype = var.device, var.dtype.base_dtype 155 coefficients = ((apply_state or {}).get((var_device, var_dtype)) [all …]
|
D | adadelta.py | 100 def _prepare_local(self, var_device, var_dtype, apply_state): argument 101 super(Adadelta, self)._prepare_local(var_device, var_dtype, apply_state) 102 apply_state[(var_device, var_dtype)].update( 105 self.epsilon, var_dtype), 106 rho=array_ops.identity(self._get_hyper('rho', var_dtype)))) 118 var_device, var_dtype = var.device, var.dtype.base_dtype 119 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 120 or self._fallback_apply_state(var_device, var_dtype)) 135 var_device, var_dtype = var.device, var.dtype.base_dtype 136 coefficients = ((apply_state or {}).get((var_device, var_dtype)) [all …]
|
D | adagrad.py | 86 def _prepare_local(self, var_device, var_dtype, apply_state): argument 87 super(Adagrad, self)._prepare_local(var_device, var_dtype, apply_state) 88 apply_state[(var_device, var_dtype)].update( 91 self.epsilon, var_dtype), 92 neg_lr_t=-apply_state[(var_device, var_dtype)]['lr_t'], 128 var_device, var_dtype = var.device, var.dtype.base_dtype 129 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 130 or self._fallback_apply_state(var_device, var_dtype)) 142 var_device, var_dtype = var.device, var.dtype.base_dtype 143 coefficients = ((apply_state or {}).get((var_device, var_dtype)) [all …]
|
D | rmsprop.py | 163 def _prepare_local(self, var_device, var_dtype, apply_state): argument 164 super(RMSprop, self)._prepare_local(var_device, var_dtype, apply_state) 166 rho = array_ops.identity(self._get_hyper("rho", var_dtype)) 167 apply_state[(var_device, var_dtype)].update( 169 neg_lr_t=-apply_state[(var_device, var_dtype)]["lr_t"], 171 self.epsilon, var_dtype), 173 momentum=array_ops.identity(self._get_hyper("momentum", var_dtype)), 177 var_device, var_dtype = var.device, var.dtype.base_dtype 178 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 179 or self._fallback_apply_state(var_device, var_dtype)) [all …]
|
D | optimizer_v2.py | 933 var_dtype = var.dtype.base_dtype 935 keys.add((var_device, var_dtype)) 938 for var_device, var_dtype in keys: 939 apply_state[(var_device, var_dtype)] = {} 941 self._prepare_local(var_device, var_dtype, apply_state) 945 def _prepare_local(self, var_device, var_dtype, apply_state): argument 947 lr_t = array_ops.identity(self._decayed_lr(var_dtype)) 948 apply_state[(var_device, var_dtype)]["lr_t"] = lr_t 950 def _fallback_apply_state(self, var_device, var_dtype): argument 952 apply_state = {(var_device, var_dtype): {}} [all …]
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/ |
D | autocast_variable_test.py | 440 var_dtype = None 442 nonlocal var_dtype 443 var_dtype = x._cast_dtype 447 self.assertEqual(var_dtype, dtypes.float32)
|
/external/tensorflow/tensorflow/python/distribute/coordinator/ |
D | cluster_coordinator_test.py | 604 var_dtype = dtypes.float32 609 initial_value=0.0, dtype=var_dtype, name=var_name) 622 var._type_spec = tensor_spec.TensorSpec(var_shape, var_dtype, var_name)
|