/external/tensorflow/tensorflow/core/kernels/ |
D | batch_norm_op.cc | 36 float variance_epsilon; in BatchNormOp() local 38 context->GetAttr("variance_epsilon", &variance_epsilon)); in BatchNormOp() 39 variance_epsilon_ = T(variance_epsilon); in BatchNormOp() 86 float variance_epsilon; in BatchNormGradOp() local 88 context->GetAttr("variance_epsilon", &variance_epsilon)); in BatchNormGradOp() 89 variance_epsilon_ = T(variance_epsilon); in BatchNormGradOp() 184 T variance_epsilon, bool scale_after_normalization, \ 229 typename TTypes<T, 4>::ConstTensor out_backprop, T variance_epsilon, \
|
D | batch_norm_op.h | 32 typename TTypes<T>::ConstVec gamma, T variance_epsilon, in operator() 55 ((var + var.constant(variance_epsilon)).rsqrt() * gamma) in operator() 64 ((var + var.constant(variance_epsilon)).rsqrt()) in operator() 80 T variance_epsilon, bool scale_after_normalization, in operator() 117 scratch1.device(d) = (var + var.constant(variance_epsilon)).rsqrt(); in operator() 143 (var + var.constant(variance_epsilon)); in operator()
|
D | quantized_batch_norm_op.cc | 37 float variance_epsilon, bool scale_after_normalization, in ReferenceBatchNorm() argument 69 sqrtf(var_value + variance_epsilon)) * in ReferenceBatchNorm() 74 sqrtf(var_value + variance_epsilon)) + in ReferenceBatchNorm() 100 float variance_epsilon, bool scale_after_normalization, in FixedPointBatchNorm() argument 133 scale_value = (1.0f / sqrtf(var_value + variance_epsilon)) * gamma_value; in FixedPointBatchNorm() 135 scale_value = (1.0f / sqrtf(var_value + variance_epsilon)); in FixedPointBatchNorm()
|
D | quantized_instance_norm.cc | 140 float variance_epsilon, float* minimum, float* maximum) { in MinAndMax() argument 143 const float32x4_t eps = vdupq_n_f32(variance_epsilon); in MinAndMax() 196 const float* variance_ptr, float variance_epsilon, in InstanceNorm() argument 198 const float32x4_t eps = vdupq_n_f32(variance_epsilon); in InstanceNorm()
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | BatchNormWithGlobalNormalization.pbtxt | 50 name: "variance_epsilon" 112 name: "variance_epsilon" 175 name: "variance_epsilon" 238 name: "variance_epsilon"
|
D | BatchNormWithGlobalNormalizationGrad.pbtxt | 66 name: "variance_epsilon" 144 name: "variance_epsilon" 223 name: "variance_epsilon" 302 name: "variance_epsilon"
|
D | QuantizedInstanceNorm.pbtxt | 62 name: "variance_epsilon" 137 name: "variance_epsilon"
|
D | QuantizedBatchNormWithGlobalNormalization.pbtxt | 102 name: "variance_epsilon" 211 name: "variance_epsilon"
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
D | BatchNormWithGlobalNormalization.pbtxt | 50 name: "variance_epsilon" 112 name: "variance_epsilon" 175 name: "variance_epsilon" 238 name: "variance_epsilon"
|
D | BatchNormWithGlobalNormalizationGrad.pbtxt | 66 name: "variance_epsilon" 144 name: "variance_epsilon" 223 name: "variance_epsilon" 302 name: "variance_epsilon"
|
D | QuantizedInstanceNorm.pbtxt | 62 name: "variance_epsilon" 137 name: "variance_epsilon"
|
D | QuantizedBatchNormWithGlobalNormalization.pbtxt | 102 name: "variance_epsilon" 211 name: "variance_epsilon"
|
/external/tensorflow/tensorflow/compiler/mlir/lite/transforms/ |
D | prepare_patterns.td | 32 …$t, $m, $v, $beta, $gamma, F32Attr:$variance_epsilon, ConstBoolAttrFalse:$scale_after_normalizatio… 34 (TF_MulOp $t, (TF_RsqrtOp:$rsqrt (TF_AddOp $v, (TF_ConstOp $variance_epsilon)))), 38 …$t, $m, $v, $beta, $gamma, F32Attr:$variance_epsilon, ConstBoolAttrTrue:$scale_after_normalization… 40 … (TF_MulOp $t, (TF_MulOp:$mul (TF_RsqrtOp (TF_AddOp $v, (TF_ConstOp $variance_epsilon))), $gamma)),
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
D | fold_old_batch_norms.cc | 74 const float variance_epsilon = batch_norm_node.attr().at(epsilon_attr).f(); in GetScaleAndOffsetValues() local 89 (1.0f / sqrtf(variance.flat<float>()(i) + variance_epsilon)) * in GetScaleAndOffsetValues() 95 (1.0f / sqrtf(variance.flat<float>()(i) + variance_epsilon)); in GetScaleAndOffsetValues()
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_impl.py | 1518 variance_epsilon, argument 1573 inv = math_ops.rsqrt(variance + variance_epsilon) 1696 variance_epsilon=None, argument 1740 else None, variance_epsilon, name) 1751 variance_epsilon, argument 1789 variance_epsilon=variance_epsilon,
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_QuantizedInstanceNorm.pbtxt | 60 name: "variance_epsilon"
|
D | api_def_BatchNormWithGlobalNormalization.pbtxt | 41 name: "variance_epsilon"
|
D | api_def_BatchNormWithGlobalNormalizationGrad.pbtxt | 70 name: "variance_epsilon"
|
D | api_def_QuantizedBatchNormWithGlobalNormalization.pbtxt | 101 name: "variance_epsilon"
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/tests/graphdef2mlir/ |
D | graph-version-info.pbtxt | 159 key: "variance_epsilon"
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.nn.pbtxt | 45 …argspec: "args=[\'input\', \'mean\', \'variance\', \'beta\', \'gamma\', \'variance_epsilon\', \'sc… 49 …argspec: "args=[\'x\', \'mean\', \'variance\', \'offset\', \'scale\', \'variance_epsilon\', \'name…
|
/external/tensorflow/tensorflow/core/grappler/optimizers/ |
D | remapper.cc | 1551 NodeDef variance_epsilon; in IsCpuCompatibleDataType() local 1555 variance_epsilon_name, TensorValue(&value), &variance_epsilon)); in IsCpuCompatibleDataType() 1556 variance_epsilon.set_device(fused_node.device()); in IsCpuCompatibleDataType() 1557 mutation->AddNode(std::move(variance_epsilon), &status); in IsCpuCompatibleDataType()
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.nn.pbtxt | 41 …argspec: "args=[\'t\', \'m\', \'v\', \'beta\', \'gamma\', \'variance_epsilon\', \'scale_after_norm… 45 …argspec: "args=[\'x\', \'mean\', \'variance\', \'offset\', \'scale\', \'variance_epsilon\', \'name…
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 1241 variance_epsilon=self.epsilon)
|
/external/tensorflow/tensorflow/compiler/mlir/lite/tests/ |
D | prepare-tf.mlir | 105 …lNormalization"(%t, %m, %v, %beta, %gamma) {T = "tfdtype$DT_FLOAT", variance_epsilon = 0.001 : f32… 120 …lNormalization"(%t, %m, %v, %beta, %gamma) {T = "tfdtype$DT_FLOAT", variance_epsilon = 0.001 : f32…
|