/external/tensorflow/tensorflow/python/ops/ |
D | bincount_ops.py | 37 weights=None, argument 137 if weights is not None: 138 weights = ops.convert_to_tensor(weights, name="weights") 139 return gen_math_ops.unsorted_segment_sum(weights, arr, output_size) 140 weights = constant_op.constant([], dtype) 141 return gen_math_ops.bincount(arr, output_size, weights) 145 if weights is not None: 146 if not isinstance(weights, sparse_tensor.SparseTensor): 147 weights = ragged_tensor.convert_to_tensor_or_ragged_tensor( 148 weights, name="weights") [all …]
|
D | metrics_impl.py | 88 def _remove_squeezable_dimensions(predictions, labels, weights): argument 117 if weights is None: 120 weights = ops.convert_to_tensor(weights) 121 weights_shape = weights.get_shape() 124 return predictions, labels, weights 131 weights = array_ops.squeeze(weights, [-1]) 133 weights = array_ops.expand_dims(weights, [-1]) 136 weights_rank_tensor = array_ops.rank(weights) 142 lambda: array_ops.expand_dims(weights, [-1]), lambda: weights) 147 maybe_squeeze_weights = lambda: weights [all …]
|
D | bincount_ops_test.py | 157 weights=None, argument 161 weights=weights, 353 weights=None, argument 356 w_sparse = sparse_ops.from_dense(weights) if weights is not None else None 359 weights=w_sparse, 500 weights=None, argument 503 w = ragged_factory_ops.constant(weights) if weights is not None else None 506 weights=w, 557 np_out = np.bincount(inp_vals, minlength=size, weights=weight_vals) 686 weights = ragged_factory_ops.constant([[], [], [.1, .2, .3], [], [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | weights_broadcast_test.py | 41 def _test_valid(self, weights, values): argument 43 weights=weights, values=values) 47 weights=weights_placeholder, values=values_placeholder) 51 weights_placeholder: weights, 57 self._test_valid(weights=5, values=_test_values((3, 2, 4))) 62 weights=np.asarray((5,)).reshape((1, 1, 1)), 68 weights=np.asarray((5, 7, 11, 3)).reshape((1, 1, 4)), 74 weights=np.asarray((5, 11)).reshape((1, 2, 1)), 80 weights=np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4)), 86 weights=np.asarray((5, 7, 11)).reshape((3, 1, 1)), [all …]
|
D | losses_test.py | 53 self._predictions, self._predictions, weights=None) 66 weights = 2.3 67 loss = losses.absolute_difference(self._labels, self._predictions, weights) 69 self.assertAlmostEqual(5.5 * weights, self.evaluate(loss), 3) 72 weights = 2.3 74 constant_op.constant(weights)) 76 self.assertAlmostEqual(5.5 * weights, self.evaluate(loss), 3) 79 weights = constant_op.constant((1.2, 0.0), shape=(2, 1)) 80 loss = losses.absolute_difference(self._labels, self._predictions, weights) 85 weights = constant_op.constant([1.2, 0.0], shape=[2, 1]) [all …]
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format.py | 89 if len(model.weights) != len(model._undeduplicated_weights): 232 weights, 250 def convert_nested_bidirectional(weights): argument 262 num_weights_per_layer = len(weights) // 2 264 layer.forward_layer, weights[:num_weights_per_layer], 267 layer.backward_layer, weights[num_weights_per_layer:], 271 def convert_nested_time_distributed(weights): argument 284 layer.layer, weights, original_keras_version, original_backend) 286 def convert_nested_model(weights): argument 298 trainable_weights = weights[:len(layer.trainable_weights)] [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/common/task/ |
D | weights_conversion.h | 37 const tflite::gpu::Tensor<OHWI, S>& weights, int out_group_size, in RearrangeWeightsToOHWIOGroupI4O4() argument 39 const int dst_slices = DivideRoundUp(weights.shape.o, 4); in RearrangeWeightsToOHWIOGroupI4O4() 40 const int src_slices = DivideRoundUp(weights.shape.i, 4); in RearrangeWeightsToOHWIOGroupI4O4() 45 for (int y = 0; y < weights.shape.h; ++y) { in RearrangeWeightsToOHWIOGroupI4O4() 46 for (int x = 0; x < weights.shape.w; ++x) { in RearrangeWeightsToOHWIOGroupI4O4() 54 if (s_ch < weights.shape.i && d_ch < weights.shape.o) { in RearrangeWeightsToOHWIOGroupI4O4() 56 weights.shape.LinearIndex({d_ch, y, x, s_ch}); in RearrangeWeightsToOHWIOGroupI4O4() 57 filter[i] = weights.data[f_index]; in RearrangeWeightsToOHWIOGroupI4O4() 73 const tflite::gpu::Tensor<OHWI, S>& weights, int out_group_size, in RearrangeWeightsToOHWIOGroupO4I4() argument 75 const int dst_slices = DivideRoundUp(weights.shape.o, 4); in RearrangeWeightsToOHWIOGroupO4I4() [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/common/tasks/ |
D | conv_weights_converter_test_util.cc | 30 const Tensor<OHWI, DataType::FLOAT32>& weights, in ConvolutionWeightsConverterTest() argument 36 BHWC(weights.shape.o, weights.shape.h, weights.shape.w, weights.shape.i); in ConvolutionWeightsConverterTest() 39 for (int o = 0; o < weights.shape.o; ++o) { in ConvolutionWeightsConverterTest() 40 for (int y = 0; y < weights.shape.h; ++y) { in ConvolutionWeightsConverterTest() 41 for (int x = 0; x < weights.shape.w; ++x) { in ConvolutionWeightsConverterTest() 42 for (int i = 0; i < weights.shape.i; ++i) { in ConvolutionWeightsConverterTest() 43 const int f_index = weights.shape.LinearIndex({o, y, x, i}); in ConvolutionWeightsConverterTest() 45 src_tensor.data[s_index] = weights.data[f_index]; in ConvolutionWeightsConverterTest() 52 GetTotalElementsCountForLayout(weight_desc, weights.shape); in ConvolutionWeightsConverterTest() 56 RearrangeWeights(weights, weight_desc, weights_type, in ConvolutionWeightsConverterTest() [all …]
|
D | conv_constants.h | 35 const tflite::gpu::Tensor<OHWI, S>& weights, absl::Span<T> dst) { in RearrangeWeightsForConvConstants() argument 36 const int dst_depth = DivideRoundUp(weights.shape.o, 4); in RearrangeWeightsForConvConstants() 37 const int src_depth = DivideRoundUp(weights.shape.i, 4); in RearrangeWeightsForConvConstants() 38 const int kernel_x = weights.shape.w; in RearrangeWeightsForConvConstants() 39 const int kernel_y = weights.shape.h; in RearrangeWeightsForConvConstants() 46 const int channels_count = std::min(4, weights.shape.i - s * 4); in RearrangeWeightsForConvConstants() 52 if (s_ch < weights.shape.i && d_ch < weights.shape.o) { in RearrangeWeightsForConvConstants() 54 weights.shape.LinearIndex({d_ch, y, x, s_ch}); in RearrangeWeightsForConvConstants() 55 filters[j][i] = weights.data[f_index]; in RearrangeWeightsForConvConstants() 72 const tflite::gpu::Tensor<OHWI, S>& weights, absl::Span<T> dst) { in RearrangeWeightsForConvConstantsDot() argument [all …]
|
D | depthwise_conv.h | 37 void RearrangeWeightsForDWConv2D(const tflite::gpu::Tensor<OHWI, S>& weights, in RearrangeWeightsForDWConv2D() argument 39 const int dst_channels = weights.shape.i * weights.shape.o; in RearrangeWeightsForDWConv2D() 41 const int kernel_x = weights.shape.w; in RearrangeWeightsForDWConv2D() 42 const int kernel_y = weights.shape.h; in RearrangeWeightsForDWConv2D() 52 const int f_index = weights.shape.LinearIndex( in RearrangeWeightsForDWConv2D() 53 {d_ch % weights.shape.o, y, x, d_ch / weights.shape.o}); in RearrangeWeightsForDWConv2D() 54 filter_val[i] = weights.data[f_index]; in RearrangeWeightsForDWConv2D() 66 void UploadWeightsForDWConv2D(const tflite::gpu::Tensor<OHWI, T>& weights, in UploadWeightsForDWConv2D() argument 70 const int dst_channels = weights.shape.i * weights.shape.o; in UploadWeightsForDWConv2D() 72 const int kernel_x = weights.shape.w; in UploadWeightsForDWConv2D() [all …]
|
D | convolution_transposed_thin.h | 55 void UploadData(const tflite::gpu::Tensor<OHWI, T>& weights, 59 void RearrangeWeightsData(const tflite::gpu::Tensor<OHWI, S>& weights, 68 const tflite::gpu::Tensor<OHWI, T>& weights, in UploadData() argument 70 const int src_depth = DivideRoundUp(weights.shape.i, 4); in UploadData() 72 weights.shape.w * weights.shape.h * src_depth * weights.shape.o; in UploadData() 86 RearrangeWeightsData(weights, absl::MakeSpan(gpu_data, flt4_count)); in UploadData() 88 for (int i = 0; i < weights.shape.o; ++i) { in UploadData() 94 RearrangeWeightsData(weights, absl::MakeSpan(gpu_data, flt4_count)); in UploadData() 96 for (int i = 0; i < weights.shape.o; ++i) { in UploadData() 108 const tflite::gpu::Tensor<OHWI, S>& weights, absl::Span<T> dst) { in RearrangeWeightsData() argument [all …]
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 91 def _num_present(losses, weights, per_batch=False): argument 113 if ((isinstance(weights, float) and weights != 0.0) or 114 (context.executing_eagerly() and weights._rank() == 0 # pylint: disable=protected-access 115 and not math_ops.equal(weights, 0.0))): 117 with ops.name_scope(None, "num_present", (losses, weights)) as scope: 118 weights = math_ops.cast(weights, dtype=dtypes.float32) 120 math_ops.equal(weights, 0.0), 121 array_ops.zeros_like(weights), 122 array_ops.ones_like(weights)) 142 losses, weights=1.0, scope=None, loss_collection=ops.GraphKeys.LOSSES, argument [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/common/transformations/ |
D | fuse_mul_to_conv.cc | 180 for (int d = 0; d < attr->weights.shape.o; ++d) { in FuseConvolution2DWithMultiply() 182 for (int s = 0; s < attr->weights.shape.i; ++s) { in FuseConvolution2DWithMultiply() 183 for (int k_y = 0; k_y < attr->weights.shape.h; ++k_y) { in FuseConvolution2DWithMultiply() 184 for (int k_x = 0; k_x < attr->weights.shape.w; ++k_x) { in FuseConvolution2DWithMultiply() 185 const int index = attr->weights.shape.LinearIndex({{d, k_y, k_x, s}}); in FuseConvolution2DWithMultiply() 186 attr->weights.data[index] *= multiplier; in FuseConvolution2DWithMultiply() 201 for (int g = 0; g < attr->weights.shape.o; ++g) { in FuseDepthwiseConvolution2DWithMultiply() 202 for (int s = 0; s < attr->weights.shape.i; ++s) { in FuseDepthwiseConvolution2DWithMultiply() 203 const int d = s * attr->weights.shape.o + g; in FuseDepthwiseConvolution2DWithMultiply() 205 for (int k_y = 0; k_y < attr->weights.shape.h; ++k_y) { in FuseDepthwiseConvolution2DWithMultiply() [all …]
|
/external/libgav1/libgav1/src/dsp/arm/ |
D | distance_weighted_blend_neon.cc | 41 const int16x4_t weights[2]) { in ComputeWeightedAverage8() 43 const int32x4_t wpred0_lo = vmull_s16(weights[0], vget_low_s16(pred0)); in ComputeWeightedAverage8() 44 const int32x4_t wpred0_hi = vmull_s16(weights[0], vget_high_s16(pred0)); in ComputeWeightedAverage8() 46 vmlal_s16(wpred0_lo, weights[1], vget_low_s16(pred1)); in ComputeWeightedAverage8() 48 vmlal_s16(wpred0_hi, weights[1], vget_high_s16(pred1)); in ComputeWeightedAverage8() 57 const int16x4_t weights[2], in DistanceWeightedBlendSmall_NEON() 68 const int16x8_t res0 = ComputeWeightedAverage8(src_00, src_10, weights); in DistanceWeightedBlendSmall_NEON() 74 const int16x8_t res1 = ComputeWeightedAverage8(src_01, src_11, weights); in DistanceWeightedBlendSmall_NEON() 99 const int16x4_t weights[2], in DistanceWeightedBlendLarge_NEON() 112 ComputeWeightedAverage8(src0_lo, src1_lo, weights); in DistanceWeightedBlendLarge_NEON() [all …]
|
/external/tensorflow/tensorflow/lite/delegates/gpu/gl/kernels/ |
D | transpose_conv_test.cc | 46 Tensor<OHWI, DataType::FLOAT32> weights; in TEST() local 47 weights.shape = OHWI(2, 2, 1, 1); in TEST() 48 weights.id = 2; in TEST() 49 weights.data = {1, 2, 3, 4}; in TEST() 50 attr.weights = std::move(weights); in TEST() 85 Tensor<OHWI, DataType::FLOAT32> weights; in TEST() local 86 weights.shape = OHWI(1, 2, 2, 1); in TEST() 87 weights.id = 2; in TEST() 88 weights.data = {1, 2, 3, 4}; in TEST() 89 attr.weights = std::move(weights); in TEST() [all …]
|
D | conv_test.cc | 46 Tensor<OHWI, DataType::FLOAT32> weights; in TEST() local 47 weights.shape = OHWI(2, 2, 1, 1); in TEST() 48 weights.id = 2; in TEST() 49 weights.data = {1, 2, 3, 4}; in TEST() 50 attr.weights = std::move(weights); in TEST() 84 Tensor<OHWI, DataType::FLOAT32> weights; in TEST() local 85 weights.shape = OHWI(1, 2, 2, 1); in TEST() 86 weights.id = 2; in TEST() 87 weights.data = {1, 2, 3, 4}; in TEST() 88 attr.weights = std::move(weights); in TEST() [all …]
|
/external/rnnoise/training/ |
D | dump_rnn.py | 37 weights = layer.get_weights() 39 if len(weights) > 2: 40 ft.write('{} {} '.format(weights[0].shape[0], weights[0].shape[1]/3)) 42 ft.write('{} {} '.format(weights[0].shape[0], weights[0].shape[1])) 49 printVector(f, ft, weights[0], layer.name + '_weights') 50 if len(weights) > 2: 51 printVector(f, ft, weights[1], layer.name + '_recurrent_weights') 52 printVector(f, ft, weights[-1], layer.name + '_bias') 54 if len(weights) > 2: 56 … .format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]/3, activation)) [all …]
|
/external/XNNPACK/src/f32-dwconv2d-chw/gen/ |
D | 5x5s2p2-minmax-scalar-1x1-acc4.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() argument 35 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 36 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 37 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 38 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 39 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 40 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 41 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 42 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() 43 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc4() [all …]
|
D | 5x5s2p2-minmax-scalar-1x1.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() argument 35 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 36 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 37 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 38 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 39 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 40 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 41 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 42 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() 43 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1() [all …]
|
D | 5x5p2-minmax-scalar-1x1-acc4.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() argument 34 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 35 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 36 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 37 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 38 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 39 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 40 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 41 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() 42 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc4() [all …]
|
D | 5x5s2p2-minmax-scalar-1x1-acc2.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() argument 35 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 36 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 37 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 38 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 39 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 40 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 41 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 42 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() 43 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc2() [all …]
|
D | 5x5p2-minmax-scalar-1x1-acc3.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() argument 34 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 35 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 36 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 37 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 38 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 39 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 40 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 41 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() 42 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc3() [all …]
|
D | 5x5p2-minmax-scalar-1x1.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() argument 34 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 35 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 36 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 37 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 38 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 39 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 40 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 41 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() 42 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1() [all …]
|
D | 5x5s2p2-minmax-scalar-1x1-acc3.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() argument 35 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 36 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 37 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 38 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 39 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 40 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 41 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 42 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() 43 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_1x1_acc3() [all …]
|
D | 5x5p2-minmax-scalar-1x1-acc2.c | 20 const float* weights, in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() argument 34 const float vbias = weights[0]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 35 const float vk00 = weights[1]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 36 const float vk01 = weights[2]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 37 const float vk02 = weights[3]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 38 const float vk03 = weights[4]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 39 const float vk04 = weights[5]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 40 const float vk10 = weights[6]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 41 const float vk11 = weights[7]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() 42 const float vk12 = weights[8]; in xnn_f32_dwconv2d_chw_ukernel_5x5p2__scalar_1x1_acc2() [all …]
|