Searched refs:x_o (Results 1 – 4 of 4) sorted by relevance
/external/libaom/libaom/aom_dsp/ |
D | noise_model.c | 32 int stride, int x_o, int y_o, \ 35 const int max_w = AOMMIN(w - x_o, block_size); \ 39 block_mean += data[(y_o + y) * stride + x_o + x]; \ 49 int stride, int x_o, int y_o, in get_block_mean() argument 52 return get_block_mean_highbd((const uint16_t *)data, w, h, stride, x_o, y_o, in get_block_mean() 54 return get_block_mean_lowbd(data, w, h, stride, x_o, y_o, block_size); in get_block_mean() 62 int h, int x_o, int y_o, int block_size_x, int block_size_y) { \ 64 const int max_w = AOMMIN(w - x_o, block_size_x); \ 69 double noise = (double)data[(y_o + y) * stride + x_o + x] - \ 70 denoised[(y_o + y) * stride + x_o + x]; \ [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | recurrent.py | 2397 x_i, x_f, x_c, x_o = x 2406 x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:])) 2442 x_o = K.dot(inputs_o, k_o) 2449 x_o = K.bias_add(x_o, b_o) 2461 x = (x_i, x_f, x_c, x_o) 2617 x_i, x_f, x_c, x_o = x 2628 x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:]) +
|
D | convolutional_recurrent.py | 637 x_o = self.input_conv(inputs_o, kernel_o, bias_o, padding=self.padding) 646 o = self.recurrent_activation(x_o + h_o)
|
/external/toolchain-utils/android_bench_suite/panorama_input/ |
D | test_008.ppm | 7897 #%33?.;H6ES>LZEP^FZhQ`nVhv^m}gm}gaq[izd{�wz�vpou�tpoXgWapa_n_l{h|�x_o]]mZThW6J8I]L>…
|