Home
last modified time | relevance | path

Searched refs:z_b (Results 1 – 2 of 2) sorted by relevance

/external/tensorflow/tensorflow/lite/g3doc/performance/
Dquantization_spec.md85 zero-points values are $q_a$, $z_a$ and $q_b$, $z_b$ respectively.
88 \sum_{i=0}^{n} (q_{a}^{(i)} - z_a) (q_{b}^{(i)} - z_b) =
89 \sum_{i=0}^{n} q_{a}^{(i)} q_{b}^{(i)} - \sum_{i=0}^{n} q_{a}^{(i)} z_b -
90 \sum_{i=0}^{n} q_{b}^{(i)} z_a + \sum_{i=0}^{n} z_a z_b$$
97 The $$\sum_{i=0}^{n} q_{b}^{(i)} z_a$$ and $$\sum_{i=0}^{n} z_a z_b$$ terms are
101 The \\(\sum_{i=0}^{n} q_{a}^{(i)} z_b\\) term needs to be computed every inference
/external/tensorflow/tensorflow/lite/kernels/internal/
Dcommon.h582 FixedPoint0 z_b = z_a * sqrt_half; in log_x_for_x_greater_than_or_equal_to_1_impl() local
583 int z_b_headroom = CountLeadingZeros(static_cast<uint32_t>(z_b.raw())) - 1; in log_x_for_x_greater_than_or_equal_to_1_impl()