/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
D | mobilenet_224_gender_basic_fixed_relaxed.mod.py | 20 i87 = Int32Scalar("b87", 1) 21 i88 = Int32Scalar("b88", 2) 22 i89 = Int32Scalar("b89", 2) 23 i90 = Int32Scalar("b90", 3) 24 i91 = Int32Scalar("b91", 1) 25 i92 = Int32Scalar("b92", 1) 26 i93 = Int32Scalar("b93", 1) 27 i94 = Int32Scalar("b94", 1) 28 i95 = Int32Scalar("b95", 3) 29 i96 = Int32Scalar("b96", 1) [all …]
|
D | l2_pool_float_large_relaxed.mod.py | 19 filter_width = Int32Scalar("filter_width", 2) 20 filter_height = Int32Scalar("filter_height", 2) 21 stride_width = Int32Scalar("stride_width", 1) 22 stride_height = Int32Scalar("stride_height", 1) 23 pad0 = Int32Scalar("pad0", 0) 24 act = Int32Scalar("act", 0)
|
D | depthwise_conv_relaxed.mod.py | 18 i4 = Int32Scalar("b4", 1) 19 i5 = Int32Scalar("b5", 1) 20 i6 = Int32Scalar("b6", 1) 21 i7 = Int32Scalar("b7", 1) 22 i8 = Int32Scalar("b8", 0)
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
D | mobilenet_224_gender_basic_fixed.mod.py | 4 i87 = Int32Scalar("b87", 1) 5 i88 = Int32Scalar("b88", 2) 6 i89 = Int32Scalar("b89", 2) 7 i90 = Int32Scalar("b90", 3) 8 i91 = Int32Scalar("b91", 1) 9 i92 = Int32Scalar("b92", 1) 10 i93 = Int32Scalar("b93", 1) 11 i94 = Int32Scalar("b94", 1) 12 i95 = Int32Scalar("b95", 3) 13 i96 = Int32Scalar("b96", 1) [all …]
|
D | l2_pool_float_large.mod.py | 19 filter_width = Int32Scalar("filter_width", 2) 20 filter_height = Int32Scalar("filter_height", 2) 21 stride_width = Int32Scalar("stride_width", 1) 22 stride_height = Int32Scalar("stride_height", 1) 23 pad0 = Int32Scalar("pad0", 0) 24 act = Int32Scalar("act", 0)
|
D | depthwise_conv.mod.py | 2 i4 = Int32Scalar("b4", 1) 3 i5 = Int32Scalar("b5", 1) 4 i6 = Int32Scalar("b6", 1) 5 i7 = Int32Scalar("b7", 1) 6 i8 = Int32Scalar("b8", 0)
|
D | conv_quant8_2.mod.py | 21 pad_valid = Int32Scalar("pad_valid", 2) 22 act_none = Int32Scalar("act_none", 0) 23 stride1 = Int32Scalar("stride1", 1) 24 stride3 = Int32Scalar("stride3", 3)
|
D | depthwise_conv2d_float_2.mod.py | 21 pad_valid = Int32Scalar("pad_valid", 2) 22 act_none = Int32Scalar("act_none", 0) 23 stride = Int32Scalar("stride", 1) 24 cm = Int32Scalar("channelMultiplier", 2)
|
D | depthwise_conv2d_quant8_2.mod.py | 21 pad_valid = Int32Scalar("pad_valid", 2) 22 act_none = Int32Scalar("act_none", 0) 23 stride = Int32Scalar("stride", 1) 24 cm = Int32Scalar("channelMultiplier", 2)
|
D | depthwise_conv2d_float.mod.py | 21 pad0 = Int32Scalar("pad0", 0) 22 act = Int32Scalar("act", 0) 23 stride = Int32Scalar("stride", 1) 24 cm = Int32Scalar("channelMultiplier", 2)
|
D | depthwise_conv2d_quant8.mod.py | 21 pad0 = Int32Scalar("pad0", 0) 22 act = Int32Scalar("act", 0) 23 stride = Int32Scalar("stride", 1) 24 cm = Int32Scalar("channelMultiplier", 1)
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | strided_slice_quant8_signed.mod.py | 22 beginMask = Int32Scalar("beginMask", 0) 23 endMask = Int32Scalar("endMask", 2) 24 shrinkAxisMask = Int32Scalar("shrinkAxisMask", 0) 47 beginMask = Int32Scalar("beginMask", 0) 48 endMask = Int32Scalar("endMask", 0) 49 shrinkAxisMask = Int32Scalar("shrinkAxisMask", 1) 72 beginMask = Int32Scalar("beginMask", 0) 73 endMask = Int32Scalar("endMask", 0) 74 shrinkAxisMask = Int32Scalar("shrinkAxisMask", 0) 97 beginMask = Int32Scalar("beginMask", 0) [all …]
|
D | resize_nearest_neighbor_v1_3.mod.py | 40 output_width=Int32Scalar("output_width", 2), 41 output_height=Int32Scalar("output_height", 2), 53 output_width=Int32Scalar("output_width", 1), 54 output_height=Int32Scalar("output_height", 1), 66 output_width=Int32Scalar("output_width", 3), 67 output_height=Int32Scalar("output_height", 3), 79 output_width=Int32Scalar("output_width", 5), 80 output_height=Int32Scalar("output_height", 2), 92 output_width=Int32Scalar("output_width", 3), 93 output_height=Int32Scalar("output_height", 3), [all …]
|
D | resize_bilinear_v1_3.mod.py | 53 output_width=Int32Scalar("output_width", 3), 54 output_height=Int32Scalar("output_height", 3), 68 output_width=Int32Scalar("output_width", 7), 69 output_height=Int32Scalar("output_height", 6), 277 output_width=Int32Scalar("output_width", 13), 278 output_height=Int32Scalar("output_height", 14), 485 output_width=Int32Scalar("output_width", 1), 486 output_height=Int32Scalar("output_height", 1), 498 output_width=Int32Scalar("output_width", 3), 499 output_height=Int32Scalar("output_height", 3), [all …]
|
D | depthwise_conv2d_quant8_signed.mod.py | 222 pad_valid = Int32Scalar("pad_valid", 2) 223 act_none = Int32Scalar("act_none", 0) 224 stride = Int32Scalar("stride", 1) 225 cm = Int32Scalar("channelMultiplier", 2) 254 pad0 = Int32Scalar("pad0", 0) 255 act = Int32Scalar("act", 0) 256 stride = Int32Scalar("stride", 1) 257 cm = Int32Scalar("channelMultiplier", 1) 282 pad0 = Int32Scalar("pad0", 0) 283 act = Int32Scalar("act", 0) [all …]
|
D | conv2d_quant8_signed.mod.py | 440 pad_valid = Int32Scalar("pad_valid", 2) 441 act_none = Int32Scalar("act_none", 0) 442 stride1 = Int32Scalar("stride1", 1) 443 stride3 = Int32Scalar("stride3", 3) 470 pad0 = Int32Scalar("pad0", 0) 471 act = Int32Scalar("act", 0) 472 stride = Int32Scalar("stride", 1) 491 pad0 = Int32Scalar("pad0", 0) 492 act = Int32Scalar("act", 0) 493 stride = Int32Scalar("stride", 1) [all …]
|
D | avg_pool_quant8_signed.mod.py | 19 cons1 = Int32Scalar("cons1", 1) 20 pad0 = Int32Scalar("pad0", 0) 21 act = Int32Scalar("act", 0) 50 stride = Int32Scalar("stride", std) 51 filt = Int32Scalar("filter", flt) 52 padding = Int32Scalar("padding", pad) 53 act0 = Int32Scalar("activation", 0) 87 stride = Int32Scalar("stride", std) 88 filt = Int32Scalar("filter", flt) 89 padding = Int32Scalar("padding", pad) [all …]
|
D | max_pool_quant8_signed.mod.py | 19 cons1 = Int32Scalar("cons1", 1) 20 pad0 = Int32Scalar("pad0", 0) 21 act = Int32Scalar("act", 0) 47 stride = Int32Scalar("stride", std) 48 filt = Int32Scalar("filter", flt) 49 padding = Int32Scalar("padding", pad) 50 act0 = Int32Scalar("activation", 0) 86 stride = Int32Scalar("stride", std) 87 filt = Int32Scalar("filter", flt) 88 padding = Int32Scalar("padding", pad) [all …]
|
D | split_quant8_signed.mod.py | 18 axis = Int32Scalar("axis", 0) 19 num_splits = Int32Scalar("num_splits", 3) 41 axis = Int32Scalar("axis", 0) 42 num_splits = Int32Scalar("num_splits", 2) 62 axis = Int32Scalar("axis", 1) 63 num_splits = Int32Scalar("num_splits", 3) 85 axis = Int32Scalar("axis", 1) 86 num_splits = Int32Scalar("num_splits", 2)
|
D | fully_connected_quant8_signed.mod.py | 25 act_relu = Int32Scalar("act_relu", 1) 45 act = Int32Scalar("act", 0) 64 act = Int32Scalar("act", 0) 87 act = Int32Scalar("act", 0) 106 act = Int32Scalar("act", 0) 127 act = Int32Scalar("act", 0)
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | topk_v2.mod.py | 27 k=Int32Scalar("k", 2), 35 k=Int32Scalar("k", 2), 43 k=Int32Scalar("k", 2), 51 k=Int32Scalar("k", 2), 59 k=Int32Scalar("k", 2), 67 k=Int32Scalar("k", 2),
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_variation/ |
D | conv_float.mod.py | 20 act = Int32Scalar("act", 0) # None activation 21 layout = Int32Scalar("layout", 0) # NHWC 22 pad = Int32Scalar("param", 1) 23 stride0 = Int32Scalar("param1", 1) 24 stride1 = Int32Scalar("param2", 1)
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_vts_variation/ |
D | conv_float.mod.py | 20 act = Int32Scalar("act", 0) # None activation 21 layout = Int32Scalar("layout", 0) # NHWC 22 pad = Int32Scalar("param", 1) 23 stride0 = Int32Scalar("param1", 1) 24 stride1 = Int32Scalar("param2", 1)
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_naming/ |
D | conv_float.mod.py | 20 act = Int32Scalar("act", 0) # None activation 21 layout = Int32Scalar("layout", 0) # NHWC 22 pad = Int32Scalar("param", 1) 23 stride0 = Int32Scalar("param1", 1) 24 stride1 = Int32Scalar("param2", 1)
|
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_vts_naming/ |
D | conv_float.mod.py | 20 act = Int32Scalar("act", 0) # None activation 21 layout = Int32Scalar("layout", 0) # NHWC 22 pad = Int32Scalar("param", 1) 23 stride0 = Int32Scalar("param1", 1) 24 stride1 = Int32Scalar("param2", 1)
|