Home
last modified time | relevance | path

Searched refs:batches (Results 1 – 25 of 30) sorted by relevance

12

/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dsvdf_float16.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf_bias_present_float16.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Drnn_float16.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
184 input_sequence_size = int(len(test_inputs) / input_size / batches)
193 input0[hidden_state_in] = [0 for x in range(batches * units)]
195 hidden_state_out: [0 for x in range(batches * units)],
Dsvdf_state_float16.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/
Dsvdf_bias_present.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf2.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
75 state_in: [0 for _ in range(batches * memory_size * features)],
142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
147 batch_start = i * input_size * batches
148 batch_end = batch_start + input_size * batches
150 golden_start = i * units * batches
[all …]
Dsvdf.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Drnn.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
184 input_sequence_size = int(len(test_inputs) / input_size / batches)
193 input0[hidden_state_in] = [0 for x in range(batches * units)]
195 hidden_state_out: [0 for x in range(batches * units)],
Drnn_state.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
Dsvdf_state.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/
Dsvdf2_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
76 state_in: [0 for _ in range(batches * memory_size * features)],
143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
148 batch_start = i * input_size * batches
149 batch_end = batch_start + input_size * batches
151 golden_start = i * units * batches
[all …]
Dsvdf_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
61 state_in: [0 for _ in range(batches * memory_size * features)],
128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
133 batch_start = i * input_size * batches
134 batch_end = batch_start + input_size * batches
136 golden_start = i * units * batches
[all …]
Dsvdf_bias_present_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
61 state_in: [0 for _ in range(batches * memory_size * features)],
128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
133 batch_start = i * input_size * batches
134 batch_end = batch_start + input_size * batches
136 golden_start = i * units * batches
[all …]
Drnn_relaxed.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
185 input_sequence_size = int(len(test_inputs) / input_size / batches)
194 input0[hidden_state_in] = [0 for x in range(batches * units)]
196 hidden_state_out: [0 for x in range(batches * units)],
Drnn_state_relaxed.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
Dsvdf_state_relaxed.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
/packages/modules/NeuralNetworks/common/
DOperationsUtils.cpp424 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare() local
431 output->dimensions = {batches, height * blockSize, width * blockSize, in depthToSpacePrepare()
443 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare() local
452 output->dimensions = {batches, height / blockSize, width / blockSize, in spaceToDepthPrepare()
538 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare() local
543 NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0); in batchToSpacePrepare()
545 output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]), in batchToSpacePrepare()
571 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare() local
583 output->dimensions = {batches * (blockSizeData[0] * blockSizeData[1]), in spaceToBatchPrepare()
737 uint32_t batches = getSizeOfDimension(input, 0); in groupedConvPrepare() local
[all …]
/packages/apps/Dialer/java/com/android/dialer/calllog/database/
DMutationApplier.java104 Iterable<List<Long>> batches = Iterables.partition(mutations.getDeletes(), 999); in applyToDatabaseInternal() local
105 for (List<Long> idsInBatch : batches) { in applyToDatabaseInternal()
/packages/modules/NeuralNetworks/common/operations/
DResizeImageOps.cpp241 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
274 output.dimensions = {batches, channels, (uint32_t)height, (uint32_t)width}; in prepare()
276 output.dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; in prepare()
DRNNTest.cpp134 BasicRNNOpModel(uint32_t batches, uint32_t units, uint32_t size) in BasicRNNOpModel() argument
135 : batches_(batches), units_(units), input_size_(size), activation_(kActivationRelu) { in BasicRNNOpModel()
DSVDFTest.cpp168 SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, uint32_t memory_size, in SVDFOpModel() argument
170 : batches_(batches), in SVDFOpModel()
DPooling.cpp369 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
384 output.dimensions = {batches, channels, outHeight, outWidth}; in prepare()
386 output.dimensions = {batches, outHeight, outWidth, channels}; in prepare()
DTransposeConv2D.cpp512 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
539 output.dimensions = {batches, channels_out, outHeight, outWidth}; in prepare()
541 output.dimensions = {batches, outHeight, outWidth, channels_out}; in prepare()
/packages/modules/NeuralNetworks/tools/api/
Dtypes.spec181 * Since %{NNAPILevel3}, zero batches is supported for this tensor.
425 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
454 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
479 * [batches, out_height, out_width, depth].
1291 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1320 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1345 * [batches, out_height, out_width, depth].
1383 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1785 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1814 * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
[all …]
/packages/apps/Dialer/java/com/android/dialer/calllog/datasources/systemcalllog/
DSystemCallLogDataSource.java486 Iterable<List<Long>> batches = Iterables.partition(matchingIds, 999); in getIdsFromSystemCallLogThatMatch() local
487 for (List<Long> idsInBatch : batches) { in getIdsFromSystemCallLogThatMatch()

12