/packages/modules/NeuralNetworks/common/operations/ |
D | GroupedConv2D.cpp | 39 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 72 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvFloat32() 80 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvFloat32() 91 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvFloat32() 144 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvQuant8() 152 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvQuant8() 169 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvQuant8() 248 for (uint32_t j = 0; j < filterWidth; j++) { in groupedConvQuant8PerChannel() 256 i * filterWidth * filterDepth + j * filterDepth + k; in groupedConvQuant8PerChannel() 273 filterBase += filterHeight * filterWidth * filterDepth; in groupedConvQuant8PerChannel()
|
D | TransposeConv2D.cpp | 76 int32_t filterWidth = getSizeOfDimension(filterShape, 2); in initialize() local 83 calculateExplicitPaddingTransposeConv(outputWidth, strideWidth, filterWidth, in initialize() 117 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 149 for (uint32_t j = 0; j < filterWidth; j++, filterBase += inputDepth) { in transposeConvNhwc() 234 for (uint32_t j = 0; j < filterWidth; j++) { in transposeConvNhwc() 241 k * filterHeight * filterWidth * inputDepth + in transposeConvNhwc() 242 i * filterWidth * inputDepth + j * inputDepth + d; in transposeConvNhwc() 376 for (uint32_t j = 0; j < filterWidth; j++) { in transposeConvQuant8PerChannelNhwc() 383 k * filterHeight * filterWidth * inputDepth + in transposeConvQuant8PerChannelNhwc() 384 i * filterWidth * inputDepth + j * inputDepth + d; in transposeConvQuant8PerChannelNhwc() [all …]
|
D | Conv2D.cpp | 137 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 149 im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \ 367 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in convQuant8PerChannelNhwc() local 408 for (uint32_t j = 0; j < filterWidth; j++) { in convQuant8PerChannelNhwc() 418 i * filterWidth * filterDepth + j * filterDepth + k; in convQuant8PerChannelNhwc() 434 filterBase += filterHeight * filterWidth * filterDepth; in convQuant8PerChannelNhwc() 460 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in convQuant8PerChannelNhwc() local 666 uint32_t filterWidth = getSizeOfDimension(filter, 2); in prepare() local 675 int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; in prepare() 683 computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, in prepare()
|
D | DepthwiseConv2D.cpp | 126 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 294 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); in depthwiseConvQuant8PerChannelNhwc() local 336 for (uint32_t j = 0; j < filterWidth; j++) { in depthwiseConvQuant8PerChannelNhwc() 345 i * filterWidth * filterDepth + j * filterDepth + oc; in depthwiseConvQuant8PerChannelNhwc() 551 uint32_t filterWidth = getSizeOfDimension(filter, 2); in prepare() local 554 int32_t effectiveFilterWidth = (filterWidth - 1) * param.dilation_width_factor + 1; in prepare() 565 computeOutSize(width, filterWidth, param.stride_width, param.dilation_width_factor, in prepare()
|
/packages/modules/NeuralNetworks/runtime/test/fuzzing/operation_signatures/ |
D | Poolings.cpp | 34 auto filterWidth = op->inputs[7]->value<RandomVariable>(); in poolingExplicitOpConstructor() local 59 explicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, /*dilation=*/1, in poolingExplicitOpConstructor() 73 auto filterWidth = op->inputs[4]->value<RandomVariable>(); in poolingImplicitOpConstructor() local 95 implicitPadding(op->inputs[0]->dimensions[widthIndex], filterWidth, strideWidth, in poolingImplicitOpConstructor()
|
/packages/modules/NeuralNetworks/common/ |
D | OperationsUtils.cpp | 735 uint32_t filterWidth = getSizeOfDimension(filter, 2); in groupedConvPrepare() local 739 NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_left); in groupedConvPrepare() 740 NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_right); in groupedConvPrepare() 745 computeOutSize(width, filterWidth, stride_width, padding_left, padding_right); in groupedConvPrepare()
|
/packages/modules/NeuralNetworks/common/include/ |
D | OperationsUtils.h | 222 int32_t strideHeight, int32_t filterWidth, in getPaddingScheme() argument 233 calculateExplicitPadding(inWidth, strideWidth, filterWidth, kPaddingSame, &expectedPaddingLeft, in getPaddingScheme()
|
/packages/modules/NeuralNetworks/runtime/test/ |
D | TestValidateOperations.cpp | 1844 ANeuralNetworksOperandType filterWidth = scalar; in poolingOpTest() local 1850 strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest() 1857 {input, padImplicit, strideWidth, strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest() 1869 {input, padLeft, padRight, padTop, padBottom, strideWidth, strideHeight, filterWidth, in poolingOpTest() 1876 filterWidth, filterHeight, activation, layout}, in poolingOpTest()
|