/packages/modules/NeuralNetworks/common/operations/ |
D | Reshape.cpp | 34 bool copyData(const void* inputData, const Shape& inputShape, void* outputData, in copyData() argument 38 memcpy(outputData, inputData, count); in copyData() 43 bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, in depthToSpaceGeneric() argument 46 tflite::optimized_ops::DepthToSpace(inputData, convertShapeToDims(inputShape), blockSize, in depthToSpaceGeneric() 50 template bool depthToSpaceGeneric<float>(const float* inputData, const Shape& inputShape, 53 template bool depthToSpaceGeneric<_Float16>(const _Float16* inputData, const Shape& inputShape, 56 template bool depthToSpaceGeneric<uint8_t>(const uint8_t* inputData, const Shape& inputShape, 59 template bool depthToSpaceGeneric<int8_t>(const int8_t* inputData, const Shape& inputShape, 64 bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, in spaceToDepthGeneric() argument 67 tflite::optimized_ops::SpaceToDepth(inputData, convertShapeToDims(inputShape), blockSize, in spaceToDepthGeneric() [all …]
|
D | Activation.cpp | 53 bool reluFloat(const T* inputData, const Shape& inputShape, T* outputData, const Shape& outputShape, in reluFloat() argument 57 for (int i = 0; i < numElements; i++, inputData++, outputData++) { in reluFloat() 59 std::min(std::max(reluMin, static_cast<float>(*inputData)), reluMax)); in reluFloat() 63 template bool reluFloat<float>(const float* inputData, const Shape& inputShape, float* outputData, 65 template bool reluFloat<_Float16>(const _Float16* inputData, const Shape& inputShape, 70 bool relu1Float(const T* inputData, const Shape& inputShape, T* outputData, in relu1Float() argument 72 return reluFloat(inputData, inputShape, outputData, outputShape, -1.f, 1.f); in relu1Float() 74 template bool relu1Float<float>(const float* inputData, const Shape& inputShape, float* outputData, 76 template bool relu1Float<_Float16>(const _Float16* inputData, const Shape& inputShape, 80 bool relu6Float(const T* inputData, const Shape& inputShape, T* outputData, in relu6Float() argument [all …]
|
D | Split.cpp | 29 bool splitGeneric(const Scalar* inputData, const Shape& inputShape, int32_t axis, in splitGeneric() argument 43 const Scalar* inputPtr = inputData; in splitGeneric() 55 bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in splitFloat16() argument 59 return splitGeneric<_Float16>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat16() 62 bool splitFloat32(const float* inputData, const Shape& inputShape, int32_t axis, in splitFloat32() argument 66 return splitGeneric<float>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitFloat32() 69 bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8() argument 73 return splitGeneric<uint8_t>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitQuant8() 76 bool splitQuant8Signed(const int8_t* inputData, const Shape& inputShape, int32_t axis, in splitQuant8Signed() argument 80 return splitGeneric<int8_t>(inputData, inputShape, axis, outputDataPtrs, outputShapes); in splitQuant8Signed() [all …]
|
D | Pooling.cpp | 141 bool averagePoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 146 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData, in averagePoolNhwc() 151 bool averagePoolNhwc(const _Float16* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 157 convertFloat16ToFloat32(inputData, &inputDataFloat32); in averagePoolNhwc() 164 bool averagePoolNhwc(const uint8_t* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 169 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData, in averagePoolNhwc() 174 bool averagePoolNhwc(const int8_t* inputData, const Shape& inputShape, const PoolingParam& param, in averagePoolNhwc() argument 182 inputData, convertShapeToTflshape(outputShape), in averagePoolNhwc() 187 bool l2PoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param, in l2PoolNhwc() argument 192 tflite::optimized_ops::L2Pool(op_params, convertShapeToTflshape(inputShape), inputData, in l2PoolNhwc() [all …]
|
D | L2Normalization.cpp | 48 inline bool l2normFloat32Impl(const float* inputData, const Shape& inputShape, int32_t axis, in l2normFloat32Impl() argument 57 const float* inputBeg = inputData + outer * axisSize * innerSize; in l2normFloat32Impl() 76 inline bool l2normQuant8Impl(const uint8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8Impl() argument 84 const uint8_t* inputBeg = inputData + outer * axisSize * innerSize; in l2normQuant8Impl() 108 inline bool l2normQuant8SignedImpl(const int8_t* inputData, const Shape& inputShape, int32_t axis, in l2normQuant8SignedImpl() argument 116 const int8_t* inputBeg = inputData + outer * axisSize * innerSize; in l2normQuant8SignedImpl() 139 bool l2normFloat32(const float* inputData, const Shape& inputShape, int32_t axis, float* outputData, in l2normFloat32() argument 147 tflite::optimized_ops::L2Normalization(param, convertShapeToTflshape(inputShape), inputData, in l2normFloat32() 151 return l2normFloat32Impl(inputData, inputShape, axis, outputData, outputShape); in l2normFloat32() 155 bool l2normFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis, in l2normFloat16() argument [all …]
|
D | SimpleMath.cpp | 33 bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis, in meanFloat16() argument 38 convertFloat16ToFloat32(inputData, &inputDataFloat32); in meanFloat16() 48 bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape, in meanGeneric() argument 66 inputData, reinterpret_cast<const int*>(inputShape.dimensions.data()), in meanGeneric() 77 template bool meanGeneric<float, float>(float* inputData, const Shape& inputShape, 80 template bool meanGeneric<uint8_t, int32_t>(uint8_t* inputData, const Shape& inputShape, 84 template bool meanGeneric<int8_t, int32_t>(int8_t* inputData, const Shape& inputShape,
|
D | Softmax.cpp | 53 inline bool softmaxSlowFloat32(const float* inputData, const Shape& inputShape, const float beta, in softmaxSlowFloat32() argument 61 const float* inputBeg = inputData + outer * axisSize * innerSize; in softmaxSlowFloat32() 85 bool softmaxFloat32(const float* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxFloat32() argument 93 tflite::optimized_ops::Softmax(param, convertShapeToTflshape(inputShape), inputData, in softmaxFloat32() 97 return softmaxSlowFloat32(inputData, inputShape, beta, axis, outputData, outputShape); in softmaxFloat32() 101 bool softmaxFloat16(const _Float16* inputData, const Shape& inputShape, const float beta, in softmaxFloat16() argument 105 convertFloat16ToFloat32(inputData, &inputData_float32); in softmaxFloat16() 116 bool softmaxQuant8Impl(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8Impl() argument 136 const T* inputBeg = inputData + outer * axisSize * innerSize; in softmaxQuant8Impl() 203 bool softmaxQuant8(const T* inputData, const Shape& inputShape, const float beta, int32_t axis, in softmaxQuant8() argument [all …]
|
D | GroupedConv2D.cpp | 46 bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, in groupedConvFloat32() argument 58 const float* inputBase = inputData; in groupedConvFloat32() 104 bool groupedConvQuant8(const T* inputData, const Shape& inputShape, const T* filterData, in groupedConvQuant8() argument 130 const T* inputBase = inputData; in groupedConvQuant8() 181 template bool groupedConvQuant8<int8_t>(const int8_t* inputData, const Shape& inputShape, 190 template bool groupedConvQuant8<uint8_t>(const uint8_t* inputData, const Shape& inputShape, 200 bool groupedConvQuant8PerChannel(const T* inputData, const Shape& inputShape, in groupedConvQuant8PerChannel() argument 234 const T* inputBase = inputData; in groupedConvQuant8PerChannel() 285 bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape, in groupedConvFloat16() argument 298 convertFloat16ToFloat32(inputData, &inputData_float32); in groupedConvFloat16() [all …]
|
D | LocalResponseNormalization.cpp | 51 inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape, in localResponseNormFloat32Impl() argument 61 const float* inputBase = inputData + outer * axisSize * innerSize; in localResponseNormFloat32Impl() 82 bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha, 86 bool localResponseNorm<float>(const float* inputData, const Shape& inputShape, int32_t radius, in localResponseNorm() argument 98 param, convertShapeToTflshape(inputShape), inputData, in localResponseNorm() 102 return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, in localResponseNorm() 108 bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius, in localResponseNorm() argument 113 convertFloat16ToFloat32(inputData, &inputDataFloat32); in localResponseNorm()
|
D | Cast.cpp | 44 bool copyToTensor(const FromT* inputData, int numElements, uint8_t* outputData, in copyToTensor() argument 49 copyCast(inputData, reinterpret_cast<dataType*>(outputData), numElements); \ in copyToTensor() 72 bool eval(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData, in eval() argument 80 copyToTensor(reinterpret_cast<const dataType*>(inputData), numElements, outputData, \ in eval() 92 return copyData(inputData, inputShape, outputData, outputShape); in eval()
|
D | ArgMinMax.cpp | 29 static void argMinMaxImpl(const In* inputData, const Shape& inputShape, int32_t axis, bool isArgMin, in argMinMaxImpl() argument 37 auto minMaxValue = inputData[outer * axisSize * innerSize + inner]; in argMinMaxImpl() 40 const auto& value = inputData[(outer * axisSize + i) * innerSize + inner]; in argMinMaxImpl() 51 bool argMinMaxGeneric(const uint8_t* inputData, const Shape& inputShape, int32 axis, bool isArgMin, in argMinMaxGeneric() argument 59 argMinMaxImpl(reinterpret_cast<const dataType*>(inputData), inputShape, axis, isArgMin, \ in argMinMaxGeneric()
|
D | RNN.cpp | 116 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData, in RNNStep() argument 124 return RNNStep<T>(inputData, inputShape, /*auxInputData=*/nullptr, /*auxInputShape=*/dummyShape, in RNNStep() 136 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData, in RNNStep() argument 162 const T* input_ptr_batch = inputData + b * input_size; in RNNStep() 223 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, 229 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, 239 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape, 245 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
|
D | FullyConnected.cpp | 56 bool fullyConnectedFloat32(const float* inputData, const Shape& inputShape, in fullyConnectedFloat32() argument 70 tflite::reference_ops::FullyConnected(inputData, convertShapeToDims(inputShape), in fullyConnectedFloat32() 77 tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), in fullyConnectedFloat32() 86 bool fullyConnectedFloat16(const _Float16* inputData, const Shape& inputShape, in fullyConnectedFloat16() argument 92 convertFloat16ToFloat32(inputData, &inputDataFloat32); in fullyConnectedFloat16() 107 bool fullyConnectedQuant8(const uint8_t* inputData, const Shape& inputShape, in fullyConnectedQuant8() argument 138 tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), inputOffset, in fullyConnectedQuant8() 148 bool fullyConnectedQuant8(const int8_t* inputData, const Shape& inputShape, in fullyConnectedQuant8() argument 177 params, convertShapeToTflshape(inputShape), inputData, in fullyConnectedQuant8()
|
D | InstanceNormalization.cpp | 49 inline bool instanceNormNhwc(const T* inputData, const Shape& inputShape, T gamma, T beta, in instanceNormNhwc() argument 64 T val = inputData[indexBase + (h * width + w) * depth]; in instanceNormNhwc() 73 T val = inputData[indexBase + (h * width + w) * depth] - mean; in instanceNormNhwc() 83 outputData[ind] = (inputData[ind] - mean) * gamma / sigma + beta; in instanceNormNhwc() 92 inline bool instanceNorm(const T* inputData, const Shape& inputShape, T gamma, T beta, T epsilon, in instanceNorm() argument 96 NN_RET_CHECK(input.initialize(inputData, inputShape)); in instanceNorm()
|
D | ResizeImageOps.cpp | 68 bool resizeNearestNeighbor(const T* inputData, const Shape& inputShape, bool alignCorners, in resizeNearestNeighbor() argument 98 std::copy_n(inputData + b * inHeight * inWidth * channels + in resizeNearestNeighbor() 111 bool resizeImageOpNhwc(OperationType opType, const T* inputData, const Shape& inputShape, in resizeImageOpNhwc() argument 126 convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outDimShape), in resizeImageOpNhwc() 131 resizeNearestNeighbor(inputData, inputShape, alignCorners, halfPixelCenters, outputData, in resizeImageOpNhwc() 138 bool resizeImageOpNhwc<_Float16>(OperationType opType, const _Float16* inputData, in resizeImageOpNhwc() argument 143 convertFloat16ToFloat32(inputData, &inputData_float32); in resizeImageOpNhwc() 152 bool resizeImageOp(OperationType opType, const T* inputData, const Shape& inputShape, bool useNchw, in resizeImageOp() argument 157 NN_RET_CHECK(input.initialize(inputData, inputShape)); in resizeImageOp()
|
D | Conv2D.cpp | 194 bool convNhwc(const float* inputData, const Shape& inputShape, const float* filterData, in convNhwc() argument 215 inputData, convertShapeToDims(inputShape), filterData, convertShapeToDims(filterShape), in convNhwc() 223 bool convNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, in convNhwc() argument 264 tflite::optimized_ops::Conv(inputData, convertShapeToDims(inputShape), inputOffset, filterData, in convNhwc() 277 bool convNhwc(const int8_t* inputData, Shape inputShape, const int8_t* filterData, in convNhwc() argument 286 convertInt8ToUInt8(inputData, &unsignedInput); in convNhwc() 306 bool convNhwc(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, in convNhwc() argument 319 convertFloat16ToFloat32(inputData, &inputData_float32); in convNhwc() 333 bool conv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData, in conv() argument 341 NN_RET_CHECK(input.initialize(inputData, inputShape)); in conv() [all …]
|
D | DepthwiseConv2D.cpp | 133 bool depthwiseConvNhwc(const float* inputData, const Shape& inputShape, const float* filterData, in depthwiseConvNhwc() argument 159 tflite::reference_ops::DepthwiseConv(params, convertShapeToTflshape(inputShape), inputData, in depthwiseConvNhwc() 167 bool depthwiseConvNhwc(const _Float16* inputData, const Shape& inputShape, in depthwiseConvNhwc() argument 176 convertFloat16ToFloat32(inputData, &inputDataFloat32); in depthwiseConvNhwc() 193 bool depthwiseConvNhwc(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, in depthwiseConvNhwc() argument 235 tflite::reference_ops::DepthwiseConv(params, convertShapeToTflshape(inputShape), inputData, in depthwiseConvNhwc() 244 bool depthwiseConvNhwc(const int8_t* inputData, Shape inputShape, const int8_t* filterData, in depthwiseConvNhwc() argument 254 convertInt8ToUInt8(inputData, &unsignedInput); in depthwiseConvNhwc() 277 const T* inputData, const Shape& inputShape, const int8_t* filterData, in depthwiseConvQuant8PerChannelNhwc() argument 323 const T* inputBase = inputData; in depthwiseConvQuant8PerChannelNhwc() [all …]
|
D | RoiPooling.cpp | 55 inline bool roiPoolingNhwc(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData, in roiPoolingNhwc() argument 107 const T_Input* batchBase = inputData + batchId * inHeight * inWidth * inDepth; in roiPoolingNhwc() 144 inline bool roiPooling(const T_Input* inputData, const Shape& inputShape, const T_Roi* roiData, in roiPooling() argument 150 NN_RET_CHECK(input.initialize(inputData, inputShape)); in roiPooling() 160 inline bool roiPooling<uint8_t, uint16_t>(const uint8_t* inputData, const Shape& inputShape, in roiPooling() argument 168 NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData, in roiPooling() 175 inline bool roiPooling<int8_t, uint16_t>(const int8_t* inputData, const Shape& inputShape, in roiPooling() argument 183 NN_RET_CHECK(roiPooling(inputData, inputShape, roi_float32.data(), roiShape, batchSplitData, in roiPooling()
|
D | TransposeConv2D.cpp | 126 bool transposeConvNhwc(const float* inputData, const Shape& inputShape, const float* filterData, in transposeConvNhwc() argument 138 const float* inputBase = inputData; in transposeConvNhwc() 183 bool transposeConvNhwc(const T* inputData, const Shape& inputShape, const T* filterData, in transposeConvNhwc() argument 224 const T* inputPtr = inputData; in transposeConvNhwc() 277 bool transposeConvNhwc(const _Float16* inputData, const Shape& inputShape, in transposeConvNhwc() argument 288 convertFloat16ToFloat32(inputData, &inputData_float32); in transposeConvNhwc() 301 bool transposeConv(const T_Input* inputData, const Shape& inputShape, const T_Filter* filterData, in transposeConv() argument 307 NN_RET_CHECK(input.initialize(inputData, inputShape)); in transposeConv() 317 bool transposeConvQuant8PerChannelNhwc(const T* inputData, const Shape& inputShape, in transposeConvQuant8PerChannelNhwc() argument 366 const T* inputPtr = inputData; in transposeConvQuant8PerChannelNhwc() [all …]
|
D | Tile.cpp | 69 void tileImpl(const T* inputData, const Shape& inputShape, const int32_t* multiples, T* outputData, in tileImpl() argument 71 TileOneDimension(inputShape, inputData, multiples, outputData, 0); in tileImpl() 90 bool eval(const uint8_t* inputData, const Shape& inputShape, const int32_t* multiples, in eval() argument 96 tileImpl(reinterpret_cast<const dataType*>(inputData), inputShape, multiples, \ in eval()
|
D | Quantize.cpp | 40 bool quantizeToQuant8(const T* inputData, uint8_t* outputData, const Shape& outputShape) { in quantizeToQuant8() argument 45 0.0f, std::min<float>(255.0f, outputShape.offset + std::round(inputData[i] / in quantizeToQuant8() 52 bool quantizeToQuant8Signed(const T* inputData, int8_t* outputData, const Shape& outputShape) { in quantizeToQuant8Signed() argument 59 std::round(inputData[i] / outputShape.scale)))); in quantizeToQuant8Signed()
|
D | Dequantize.cpp | 36 bool compute(const InputType* inputData, const Shape& inputShape, OutputType* outputData) { in compute() argument 41 const int32_t value = inputData[i]; in compute() 48 bool computePerChannel(const int8_t* inputData, const Shape& inputShape, OutputType* outputData) { in computePerChannel() argument 70 const int32_t value = inputData[i]; in computePerChannel()
|
D | ExpandDims.cpp | 40 bool eval(const uint8_t* inputData, const Shape& inputShape, int32_t axis, uint8_t* outputData, in eval() argument 42 memcpy(outputData, inputData, in eval()
|
/packages/modules/NeuralNetworks/common/include/ |
D | Operations.h | 49 bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape); 50 bool floorFloat32(const float* inputData, float* outputData, const Shape& shape); 52 bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape, 59 bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, 66 bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape, 73 bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, 83 bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius, 86 bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius, 90 bool copyData(const void* inputData, const Shape& inputShape, void* outputData, 94 bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize, [all …]
|
/packages/modules/NeuralNetworks/runtime/test/ |
D | TestMemoryInternal.cpp | 141 uint8_t* inputData = in TEST_F() local 143 ASSERT_NE(inputData, nullptr); in TEST_F() 144 memcpy(inputData + offsetForMatrix1, matrix1, sizeof(Matrix3x4)); in TEST_F() 173 munmap(inputData, inputSize); in TEST_F()
|