/packages/modules/NeuralNetworks/common/operations/ |
D | QuantizedLSTMTest.cpp | 62 const uint32_t outputSize = in QuantizedLSTMOpModel() local 64 outputSize_ = outputSize; in QuantizedLSTMOpModel() 67 OperandType cellStateOutOperandType(Type::TENSOR_QUANT16_SYMM, {numBatches, outputSize}, in QuantizedLSTMOpModel() 70 OperandType outputOperandType(Type::TENSOR_QUANT8_ASYMM, {numBatches, outputSize}, in QuantizedLSTMOpModel() 83 cellStateOut_.resize(numBatches * outputSize, 0); in QuantizedLSTMOpModel() 84 output_.resize(numBatches * outputSize, 0); in QuantizedLSTMOpModel() 155 int outputSize() { return outputSize_; } in outputSize() function in android::nn::wrapper::QuantizedLSTMOpModel 256 const int outputSize = lstm->outputSize(); in VerifyGoldens() local 259 const uint8_t* goldenBatchStart = output[b].data() + i * outputSize; in VerifyGoldens() 260 const uint8_t* goldenBatchEnd = goldenBatchStart + outputSize; in VerifyGoldens() [all …]
|
D | QuantizedLSTM.cpp | 259 const uint32_t outputSize = SizeOfDimension(prevOutput, 1); in prepare() local 268 NN_RET_CHECK_EQ(SizeOfDimension(weights, 0), outputSize); in prepare() 287 NN_RET_CHECK(checkWeightsShape(recurrentToInputWeights, outputSize)); in prepare() 288 NN_RET_CHECK(checkWeightsShape(recurrentToForgetWeights, outputSize)); in prepare() 289 NN_RET_CHECK(checkWeightsShape(recurrentToCellWeights, outputSize)); in prepare() 290 NN_RET_CHECK(checkWeightsShape(recurrentToOutputWeights, outputSize)); in prepare() 300 NN_RET_CHECK_EQ(SizeOfDimension(bias, 0), outputSize); in prepare() 317 NN_CHECK_EQ(SizeOfDimension(prevCellState, 1), outputSize); in prepare() 351 const int outputSize = SizeOfDimension(inputToInputWeights_, 0); in concatenateWeights() local 353 assignWeightsSubmatrix(inputToInputWeights_, 0 * outputSize, outputSize, weightsDims, weights); in concatenateWeights() [all …]
|
D | QLSTM.cpp | 194 const uint32_t outputSize = getSizeOfDimension(recurrentToOutputShape, 1); in prepare() local 216 NN_RET_CHECK_EQ(getSizeOfDimension(recurrentToInputShape, 1), outputSize); in prepare() 222 NN_RET_CHECK_EQ(getSizeOfDimension(recurrentToForgetShape, 1), outputSize); in prepare() 226 NN_RET_CHECK_EQ(getSizeOfDimension(recurrentToCellShape, 1), outputSize); in prepare() 288 NN_RET_CHECK_EQ(getSizeOfDimension(projectionShape, 0), outputSize); in prepare() 295 NN_RET_CHECK_EQ(getSizeOfDimension(projectionBiasShape, 0), outputSize); in prepare() 301 NN_RET_CHECK_EQ(getSizeOfDimension(outputStateShape, 1), outputSize); in prepare() 395 const uint32_t outputSize = recurrentToOutputWeightsShape.dimensions[1]; in execute() local 682 outputSize, numUnits, in execute() 686 cellToForgetBuffer, outputSize, cellStateBuffer, batchSize, in execute() [all …]
|
D | UnidirectionalSequenceLSTM.cpp | 216 const uint32_t outputSize = getSizeOfDimension(recurrentToOutputShape, 1); in prepare() local 238 NN_RET_CHECK_EQ(getSizeOfDimension(recurrentToInputShape, 1), outputSize); in prepare() 244 NN_RET_CHECK_EQ(getSizeOfDimension(recurrentToForgetShape, 1), outputSize); in prepare() 248 NN_RET_CHECK_EQ(getSizeOfDimension(recurrentToCellShape, 1), outputSize); in prepare() 310 NN_RET_CHECK_EQ(getSizeOfDimension(projectionShape, 0), outputSize); in prepare() 317 NN_RET_CHECK_EQ(getSizeOfDimension(projectionBiasShape, 0), outputSize); in prepare() 323 NN_RET_CHECK_EQ(getSizeOfDimension(outputStateShape, 1), outputSize); in prepare() 378 outputShape.dimensions[2] = outputSize; in prepare() 387 outputStateOutTensor.dimensions[1] = outputSize; in prepare()
|
D | LSTM.cpp | 438 const uint32_t outputSize = getSizeOfDimension(recurrent_to_output_weights_shape, 1); in LSTMEvalFloat32() local 443 const uint32_t batchOutputSize = batchSize * outputSize; in LSTMEvalFloat32() 462 transposedOutputShape.dimensions[2] = outputSize; in LSTMEvalFloat32() 470 output_state_in_buffer, output_state_in_buffer + batchSize * outputSize); in LSTMEvalFloat32() 507 output_state_out_buffer + batchSize * outputSize); in LSTMEvalFloat32() 558 const uint32_t outputSize = getSizeOfDimension(recurrent_to_output_weights_shape, 1); in LSTMEvalFloat16() local 563 const uint32_t batchOutputSize = batchSize * outputSize; in LSTMEvalFloat16() 578 std::vector<float> recurrent_to_input_weights_float32(numCells * outputSize); in LSTMEvalFloat16() 583 std::vector<float> recurrent_to_forget_weights_float32(numCells * outputSize); in LSTMEvalFloat16() 586 std::vector<float> recurrent_to_cell_weights_float32(numCells * outputSize); in LSTMEvalFloat16() [all …]
|
D | QuantizedLSTM.h | 89 void concatenateBiases(uint32_t outputSize, int32_t* bias);
|
D | Slice.cpp | 56 const int outputSize = getNumberOfElements(outputShape); in evalGeneric() local
|
/packages/apps/Gallery2/src/com/android/gallery3d/filtershow/filters/ |
D | ImageFilterTinyPlanet.java | 79 int outputSize = (int) (w / 2f); in apply() local 90 if (outputSize != mBitmapOut.getHeight()) { in apply() 96 mBitmapOut = getEnvironment().getBitmap(outputSize, in apply() 97 outputSize, BitmapCache.TINY_PLANET); in apply() 100 outputSize /= 2; in apply() 105 outputSize, mParameters.getZoom() / 100f, mParameters.getAngle()); in apply()
|
/packages/modules/NeuralNetworks/runtime/test/ |
D | TestMemoryInternal.cpp | 149 constexpr size_t outputSize = offsetForActual + sizeof(Matrix3x4); in TEST_F() local 150 int outputFd = ASharedMemory_create("output", outputSize); in TEST_F() 153 (uint8_t*)mmap(nullptr, outputSize, PROT_READ | PROT_WRITE, MAP_SHARED, outputFd, 0); in TEST_F() 155 memset(outputData, 0, outputSize); in TEST_F() 156 WrapperMemory actual(outputSize, PROT_READ | PROT_WRITE, outputFd, 0); in TEST_F() 174 munmap(outputData, outputSize); in TEST_F()
|
D | TestValidateOperations.cpp | 4070 const uint32_t outputSize = 6; in unidirectionalSequenceLSTMTest() local 4074 uint32_t recurrentWeightsDims[2] = {numUnits, outputSize}; in unidirectionalSequenceLSTMTest() 4076 uint32_t projectionDims[2] = {outputSize, numUnits}; in unidirectionalSequenceLSTMTest() 4077 uint32_t projectionBiasDims[1] = {outputSize}; in unidirectionalSequenceLSTMTest() 4078 uint32_t outputStateDims[2] = {batchSize, outputSize}; in unidirectionalSequenceLSTMTest() 4081 uint32_t outputDims[3] = {maxTime, batchSize, outputSize}; in unidirectionalSequenceLSTMTest()
|
/packages/modules/NeuralNetworks/runtime/test/android_fuzzing/ |
D | DriverFuzzTest.cpp | 201 size_t outputSize = 0; in createRequest() local 214 .offset = static_cast<uint32_t>(outputSize), in createRequest() 216 outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize(); in createRequest() 224 outputSize = std::max<size_t>(outputSize, 1); in createRequest() 225 auto outputMemory = nn::allocateSharedMemory(outputSize); in createRequest()
|
/packages/apps/Messaging/src/com/android/messaging/util/ |
D | GifTranscoder.java | 52 final long outputSize = new File(outFilePath).length(); in transcode() local 53 final float compression = (inputSize > 0) ? ((float) outputSize / inputSize) : 0; in transcode() 60 Formatter.formatShortFileSize(context, outputSize), in transcode()
|
/packages/modules/NeuralNetworks/runtime/test/fuzzing/operation_signatures/ |
D | Selection.cpp | 252 int32_t outputSize = op->outputs[0]->dimensions[i].getValue(); in sliceFinalizer() local 254 begin[i] = getUniform<int32_t>(0, inputSize - outputSize); in sliceFinalizer() 255 size[i] = outputSize; in sliceFinalizer() 325 int32_t outputSize = op->outputs[0]->dimensions[o++].getValue(); in stridedSliceFinalizer() local 326 int32_t maxStart = inputSize - (outputSize - 1) * stride - 1; in stridedSliceFinalizer() 329 int32_t minEnd = begin[i] + (outputSize - 1) * stride + 1; in stridedSliceFinalizer() 330 int32_t maxEnd = std::min(begin[i] + outputSize * stride, inputSize); in stridedSliceFinalizer()
|
/packages/apps/Camera2/src/com/android/camera/tinyplanet/ |
D | TinyPlanetFragment.java | 349 int outputSize = width / 2; in createFinalTinyPlanet() local 350 Bitmap resultBitmap = Bitmap.createBitmap(outputSize, outputSize, in createFinalTinyPlanet() 354 outputSize, mCurrentZoom, mCurrentAngle); in createFinalTinyPlanet() 363 return new TinyPlanetImage(addExif(jpeg.toByteArray()), outputSize); in createFinalTinyPlanet()
|
D | TinyPlanetNative.java | 40 public static native void process(Bitmap in, int width, int height, Bitmap out, int outputSize, in process() argument
|
/packages/modules/NeuralNetworks/tools/api/ |
D | types.spec | 4983 * and shape [outputSize, inputSize] specifying input-to-input part of 4989 * and shape [outputSize, inputSize] specifying input-to-forget part of 4995 * and shape [outputSize, inputSize] specifying input-to-cell part of 5001 * and shape [outputSize, inputSize] specifying input-to-output part of 5007 * and shape [outputSize, outputSize] specifying recurrent-to-input part 5013 * and shape [outputSize, outputSize] specifying recurrent-to-forget 5019 * and shape [outputSize, outputSize] specifying recurrent-to-cell part 5025 * and shape [outputSize, outputSize] specifying recurrent-to-output 5031 * [outputSize] specifying the bias for the fully-connected layer 5036 * [outputSize] specifying the bias for the fully-connected layer [all …]
|