/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | resize_nearest_neighbor_v1_3.mod.py | 17 half_pixel_centers, output0, input0_data, output_data): argument 31 output0: output_data, 47 output_data=[2, 4, 2, 4], 60 output_data=[4], 73 output_data=[1, 2, 2, 3, 4, 4, 3, 4, 4], 86 output_data=[1, 1, 2, 2, 2, 3, 3, 4, 4, 4], 99 output_data=[1, 3, 4, 9, 11, 12, 13, 15, 16], 112 output_data=[1, 2, 1, 2, 3, 4, 3, 4, 3, 4], 125 output_data=[1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4], 138 output_data=[ [all …]
|
D | gather_quant8_signed.mod.py | 46 def test(input0, axis, indices, output0, input_data, output_data): argument 56 output0: output_data, 66 output_data=[0.7, 0.8, 77 output_data=[0.7, 0.8], 86 output_data=[2], 95 output_data=[2, 1], 105 output_data=[-2.0, 0.2, 117 output_data=[0.2, 0.8], 127 output_data=[4, 5, 6, 138 output_data=[3, 1,
|
D | resize_bilinear_v1_3.mod.py | 25 output_data, argument 44 output0: output_data, 60 output_data=[ 233 output_data=[ 321 output_data=[ 492 output_data=[1], 505 output_data=[1, 1.5, 2, 2, 2.5, 3, 3, 3.5, 4], 518 output_data=[1, 3, 7, 9], 531 output_data=[1, 2.5, 4, 7, 8.5, 10, 13, 14.5, 16],
|
D | reduce_min_quant8_signed.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 25 output0: output_data, 36 output_data=[-2, 3, -6], 47 output_data=[9.527], 58 output_data=[0.1, 0.2], 69 output_data=[0.1, 0.3, 0.5],
|
D | reduce_max_quant8_signed.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 25 output0: output_data, 36 output_data=[-1, 4, 5], 47 output_data=[9.527], 58 output_data=[2.3, 2.4], 69 output_data=[2.0, 2.2, 2.4],
|
D | equal_quant8_signed.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 21 output0: output_data, 31 output_data=[False, True, False], 41 output_data=[False, True, False], 51 output_data=[False], 61 output_data=[False],
|
D | greater_equal_quant8_signed.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 21 output0: output_data, 31 output_data=[False, True, True], 41 output_data=[False, True, True], 51 output_data=[True], 61 output_data=[False],
|
D | greater_quant8_signed.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 21 output0: output_data, 31 output_data=[False, False, True], 41 output_data=[False, False, True], 51 output_data=[True], 61 output_data=[False],
|
D | less_quant8_signed.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 21 output0: output_data, 31 output_data=[True, False, False], 41 output_data=[True, False, False], 51 output_data=[False], 61 output_data=[True],
|
D | less_equal_quant8_signed.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 21 output0: output_data, 31 output_data=[True, True, False], 41 output_data=[True, True, False], 51 output_data=[False], 61 output_data=[True],
|
D | not_equal_quant8_signed.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument 21 output0: output_data, 31 output_data=[True, False, True], 41 output_data=[True, False, True], 51 output_data=[True], 61 output_data=[True],
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | gather.mod.py | 17 def test(input0, axis, indices, output0, input_data, output_data): argument 37 output0: output_data, 47 output_data=[0.7, 0.8, 58 output_data=[0.7, 0.8], 67 output_data=[2], 76 output_data=[2, 1], 86 output_data=[-2.0, 0.2, 98 output_data=[0.2, 0.8], 108 output_data=[4, 5, 6, 119 output_data=[3, 1,
|
D | not_equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 21 output0: output_data, 33 output_data=[True, False, True], 43 output_data=[True, False, False, True], 53 output_data=[True, False, True], 64 output_data=[True, False, True], 75 output_data=[True], 86 output_data=[True], 97 output_data=[False, True, True, False],
|
D | greater_equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 21 output0: output_data, 33 output_data=[False, True, True], 43 output_data=[False, True, True, True], 53 output_data=[False, True, True], 64 output_data=[False, True, True], 75 output_data=[True], 86 output_data=[False], 97 output_data=[True, True, False, True],
|
D | equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 21 output0: output_data, 33 output_data=[False, True, False], 43 output_data=[False, True, True, False], 53 output_data=[False, True, False], 64 output_data=[False, True, False], 75 output_data=[False], 86 output_data=[False], 97 output_data=[True, False, False, True],
|
D | greater.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 21 output0: output_data, 33 output_data=[False, False, True], 43 output_data=[False, False, False, True], 53 output_data=[False, False, True], 64 output_data=[False, False, True], 75 output_data=[True], 86 output_data=[False], 97 output_data=[False, True, False, False],
|
D | less.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 21 output0: output_data, 33 output_data=[True, False, False], 43 output_data=[True, False, False, False], 53 output_data=[True, False, False], 64 output_data=[True, False, False], 75 output_data=[False], 86 output_data=[True], 97 output_data=[False, False, True, False],
|
D | less_equal.mod.py | 16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument 21 output0: output_data, 33 output_data=[True, True, False], 43 output_data=[True, True, True, False], 53 output_data=[True, True, False], 64 output_data=[True, True, False], 75 output_data=[False], 86 output_data=[True], 97 output_data=[True, False, True, True],
|
D | slice.mod.py | 32 output_data=[2, 3]), 41 output_data=[4, 5]), 50 output_data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), 59 output_data=[2, 3, 4]), 68 output_data=[3, 3, 3]), 77 output_data=[3, 3, 3, 5, 5, 5]), 86 output_data=[3, 3, 3, 5, 5, 5]), 95 output_data=[3, 3, 3, 5, 5, 5]), 105 test_case.output: test_case.output_data,
|
D | log_softmax.mod.py | 19 def test(input0, output0, input_data, beta, axis, output_data): argument 23 output0: output_data, 33 output_data=[-4.14297, -10.14297, -2.14297, -.142971, 46 output_data=[-.00247565, -6.00247, 59 output_data=[-.00247565, -2.12692, -.00671534, -.000123374, 70 output_data=[-4.14297, -10.14297, -2.14297, -.142971,
|
D | reduce_sum.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 21 output0: output_data, 32 output_data=[-1 - 2, 3 + 4, 5 - 6], 43 output_data=[9.527], 54 output_data=[14.4, 15.6], 65 output_data=[8.4, 10.0, 11.6],
|
D | reduce_prod.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 21 output0: output_data, 32 output_data=[-1 * -2, 3 * 4, 5 * -6], 43 output_data=[9.527], 54 output_data=[3.16234143225e+4, 1.9619905536e+4], 65 output_data=[7.74592e+2, 1.197504e+3, 6.6889152e+2],
|
D | unidirectional_sequence_rnn.mod.py | 21 recurrent_weights_data, bias_data, hidden_state_data, output_data): argument 33 output: output_data 113 output_data = [ variable 159 output_data=output_data) 182 output_data=convert_to_time_major(output_data, num_batches, max_time,
|
D | reduce_max.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 25 output0: output_data, 36 output_data=[-1, 4, 5], 47 output_data=[9.527], 58 output_data=[2.3, 2.4], 69 output_data=[2.0, 2.2, 2.4],
|
D | reduce_min.mod.py | 17 def test(input0, output0, axes, keep_dims, input_data, output_data): argument 25 output0: output_data, 36 output_data=[-2, 3, -6], 47 output_data=[9.527], 58 output_data=[0.1, 0.2], 69 output_data=[0.1, 0.3, 0.5],
|