• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use std::convert::TryFrom;
2 use std::ops::Range;
3 
4 use crate::coord::ranged1d::{
5     AsRangedCoord, DefaultFormatting, DiscreteRanged, KeyPointHint, NoDefaultFormatting, Ranged,
6     ReversibleRanged, ValueFormatter,
7 };
8 
9 macro_rules! impl_discrete_trait {
10     ($name:ident) => {
11         impl DiscreteRanged for $name {
12             fn size(&self) -> usize {
13                 if &self.1 < &self.0 {
14                     return 0;
15                 }
16                 let values = self.1 - self.0;
17                 (values + 1) as usize
18             }
19 
20             fn index_of(&self, value: &Self::ValueType) -> Option<usize> {
21                 if value < &self.0 {
22                     return None;
23                 }
24                 let ret = value - self.0;
25                 Some(ret as usize)
26             }
27 
28             fn from_index(&self, index: usize) -> Option<Self::ValueType> {
29                 if let Ok(index) = Self::ValueType::try_from(index) {
30                     return Some(self.0 + index);
31                 }
32                 None
33             }
34         }
35     };
36 }
37 
38 macro_rules! impl_ranged_type_trait {
39     ($value:ty, $coord:ident) => {
40         impl AsRangedCoord for Range<$value> {
41             type CoordDescType = $coord;
42             type Value = $value;
43         }
44     };
45 }
46 macro_rules! impl_reverse_mapping_trait {
47     ($type:ty, $name: ident) => {
48         impl ReversibleRanged for $name {
49             fn unmap(&self, p: i32, (min, max): (i32, i32)) -> Option<$type> {
50                 if p < min.min(max) || p > max.max(min) || min == max {
51                     return None;
52                 }
53 
54                 let logical_offset = f64::from(p - min) / f64::from(max - min);
55 
56                 return Some(((self.1 - self.0) as f64 * logical_offset + self.0 as f64) as $type);
57             }
58         }
59     };
60 }
61 macro_rules! make_numeric_coord {
62     ($type:ty, $name:ident, $key_points:ident, $doc: expr, $fmt: ident) => {
63         #[doc = $doc]
64         #[derive(Clone)]
65         pub struct $name($type, $type);
66         impl From<Range<$type>> for $name {
67             fn from(range: Range<$type>) -> Self {
68                 return $name(range.start, range.end);
69             }
70         }
71         impl Ranged for $name {
72             type FormatOption = $fmt;
73             type ValueType = $type;
74             #[allow(clippy::float_cmp)]
75             fn map(&self, v: &$type, limit: (i32, i32)) -> i32 {
76                 // Corner case: If we have a range that have only one value,
77                 // then we just assign everything to the only point
78                 if self.1 == self.0 {
79                     return (limit.1 - limit.0) / 2;
80                 }
81 
82                 let logic_length = (*v - self.0) as f64 / (self.1 - self.0) as f64;
83 
84                 let actual_length = limit.1 - limit.0;
85 
86                 if actual_length == 0 {
87                     return limit.1;
88                 }
89 
90                 return limit.0 + (actual_length as f64 * logic_length + 1e-3).floor() as i32;
91             }
92             fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<$type> {
93                 $key_points((self.0, self.1), hint.max_num_points())
94             }
95             fn range(&self) -> Range<$type> {
96                 return self.0..self.1;
97             }
98         }
99     };
100     ($type:ty, $name:ident, $key_points:ident, $doc: expr) => {
101         make_numeric_coord!($type, $name, $key_points, $doc, DefaultFormatting);
102     }
103 }
104 
105 macro_rules! gen_key_points_comp {
106     (float, $name:ident, $type:ty) => {
107         fn $name(range: ($type, $type), max_points: usize) -> Vec<$type> {
108             if max_points == 0 {
109                 return vec![];
110             }
111 
112             let range = (range.0 as f64, range.1 as f64);
113             let mut scale = (10f64).powf((range.1 - range.0).log(10.0).floor());
114             let mut digits = -(range.1 - range.0).log(10.0).floor() as i32 + 1;
115             fn rem_euclid(a: f64, b: f64) -> f64 {
116                 if b > 0.0 {
117                     a - (a / b).floor() * b
118                 } else {
119                     a - (a / b).ceil() * b
120                 }
121             }
122 
123             // At this point we need to make sure that the loop invariant:
124             // The scale must yield number of points than requested
125             if 1 + ((range.1 - range.0) / scale).floor() as usize > max_points {
126                 scale *= 10.0;
127             }
128 
129             'outer: loop {
130                 let old_scale = scale;
131                 for nxt in [2.0, 5.0, 10.0].iter() {
132                     let new_left = range.0 + scale / nxt - rem_euclid(range.0, scale / nxt);
133                     let new_right = range.1 - rem_euclid(range.1, scale / nxt);
134 
135                     let npoints = 1 + ((new_right - new_left) / old_scale * nxt) as usize;
136 
137                     if npoints > max_points {
138                         break 'outer;
139                     }
140 
141                     scale = old_scale / nxt;
142                 }
143                 scale = old_scale / 10.0;
144                 if scale < 1.0 {
145                     digits += 1;
146                 }
147             }
148 
149             let mut ret = vec![];
150             let mut left = range.0 + scale - rem_euclid(range.0, scale);
151             let right = range.1 - rem_euclid(range.1, scale);
152             while left <= right {
153                 let size = (10f64).powf(digits as f64 + 1.0);
154                 let new_left = (left * size).abs() + 1e-3;
155                 if left < 0.0 {
156                     left = -new_left.round() / size;
157                 } else {
158                     left = new_left.round() / size;
159                 }
160                 ret.push(left as $type);
161                 left += scale;
162             }
163             return ret;
164         }
165     };
166     (integer, $name:ident, $type:ty) => {
167         fn $name(range: ($type, $type), max_points: usize) -> Vec<$type> {
168             let mut scale: $type = 1;
169             let range = (range.0.min(range.1), range.0.max(range.1));
170             'outer: while (range.1 - range.0 + scale - 1) as usize / (scale as usize) > max_points {
171                 let next_scale = scale * 10;
172                 for new_scale in [scale * 2, scale * 5, scale * 10].iter() {
173                     scale = *new_scale;
174                     if (range.1 - range.0 + *new_scale - 1) as usize / (*new_scale as usize)
175                         < max_points
176                     {
177                         break 'outer;
178                     }
179                 }
180                 scale = next_scale;
181             }
182 
183             let (mut left, right) = (
184                 range.0 + (scale - range.0 % scale) % scale,
185                 range.1 - range.1 % scale,
186             );
187 
188             let mut ret = vec![];
189             while left <= right {
190                 ret.push(left as $type);
191                 left += scale;
192             }
193 
194             return ret;
195         }
196     };
197 }
198 
199 gen_key_points_comp!(float, compute_f32_key_points, f32);
200 gen_key_points_comp!(float, compute_f64_key_points, f64);
201 gen_key_points_comp!(integer, compute_i32_key_points, i32);
202 gen_key_points_comp!(integer, compute_u32_key_points, u32);
203 gen_key_points_comp!(integer, compute_i64_key_points, i64);
204 gen_key_points_comp!(integer, compute_u64_key_points, u64);
205 gen_key_points_comp!(integer, compute_i128_key_points, i128);
206 gen_key_points_comp!(integer, compute_u128_key_points, u128);
207 gen_key_points_comp!(integer, compute_isize_key_points, isize);
208 gen_key_points_comp!(integer, compute_usize_key_points, usize);
209 
210 make_numeric_coord!(
211     f32,
212     RangedCoordf32,
213     compute_f32_key_points,
214     "The ranged coordinate for type f32",
215     NoDefaultFormatting
216 );
217 impl_reverse_mapping_trait!(f32, RangedCoordf32);
218 impl ValueFormatter<f32> for RangedCoordf32 {
format(value: &f32) -> String219     fn format(value: &f32) -> String {
220         crate::data::float::FloatPrettyPrinter {
221             allow_scientific: false,
222             min_decimal: 1,
223             max_decimal: 5,
224         }
225         .print(*value as f64)
226     }
227 }
228 make_numeric_coord!(
229     f64,
230     RangedCoordf64,
231     compute_f64_key_points,
232     "The ranged coordinate for type f64",
233     NoDefaultFormatting
234 );
235 impl_reverse_mapping_trait!(f64, RangedCoordf64);
236 impl ValueFormatter<f64> for RangedCoordf64 {
format(value: &f64) -> String237     fn format(value: &f64) -> String {
238         crate::data::float::FloatPrettyPrinter {
239             allow_scientific: false,
240             min_decimal: 1,
241             max_decimal: 5,
242         }
243         .print(*value)
244     }
245 }
246 make_numeric_coord!(
247     u32,
248     RangedCoordu32,
249     compute_u32_key_points,
250     "The ranged coordinate for type u32"
251 );
252 make_numeric_coord!(
253     i32,
254     RangedCoordi32,
255     compute_i32_key_points,
256     "The ranged coordinate for type i32"
257 );
258 make_numeric_coord!(
259     u64,
260     RangedCoordu64,
261     compute_u64_key_points,
262     "The ranged coordinate for type u64"
263 );
264 make_numeric_coord!(
265     i64,
266     RangedCoordi64,
267     compute_i64_key_points,
268     "The ranged coordinate for type i64"
269 );
270 make_numeric_coord!(
271     u128,
272     RangedCoordu128,
273     compute_u128_key_points,
274     "The ranged coordinate for type u128"
275 );
276 make_numeric_coord!(
277     i128,
278     RangedCoordi128,
279     compute_i128_key_points,
280     "The ranged coordinate for type i128"
281 );
282 make_numeric_coord!(
283     usize,
284     RangedCoordusize,
285     compute_usize_key_points,
286     "The ranged coordinate for type usize"
287 );
288 make_numeric_coord!(
289     isize,
290     RangedCoordisize,
291     compute_isize_key_points,
292     "The ranged coordinate for type isize"
293 );
294 
295 impl_discrete_trait!(RangedCoordu32);
296 impl_discrete_trait!(RangedCoordi32);
297 impl_discrete_trait!(RangedCoordu64);
298 impl_discrete_trait!(RangedCoordi64);
299 impl_discrete_trait!(RangedCoordu128);
300 impl_discrete_trait!(RangedCoordi128);
301 impl_discrete_trait!(RangedCoordusize);
302 impl_discrete_trait!(RangedCoordisize);
303 
304 impl_ranged_type_trait!(f32, RangedCoordf32);
305 impl_ranged_type_trait!(f64, RangedCoordf64);
306 impl_ranged_type_trait!(i32, RangedCoordi32);
307 impl_ranged_type_trait!(u32, RangedCoordu32);
308 impl_ranged_type_trait!(i64, RangedCoordi64);
309 impl_ranged_type_trait!(u64, RangedCoordu64);
310 impl_ranged_type_trait!(i128, RangedCoordi128);
311 impl_ranged_type_trait!(u128, RangedCoordu128);
312 impl_ranged_type_trait!(isize, RangedCoordisize);
313 impl_ranged_type_trait!(usize, RangedCoordusize);
314 
315 #[cfg(test)]
316 mod test {
317     use super::*;
318     #[test]
test_key_points()319     fn test_key_points() {
320         let kp = compute_i32_key_points((0, 999), 28);
321 
322         assert!(kp.len() > 0);
323         assert!(kp.len() <= 28);
324 
325         let kp = compute_f64_key_points((-1.2, 1.2), 1);
326         assert!(kp.len() == 1);
327 
328         let kp = compute_f64_key_points((-1.2, 1.2), 0);
329         assert!(kp.len() == 0);
330     }
331 
332     #[test]
test_linear_coord_map()333     fn test_linear_coord_map() {
334         let coord: RangedCoordu32 = (0..20).into();
335         assert_eq!(coord.key_points(11).len(), 11);
336         assert_eq!(coord.key_points(11)[0], 0);
337         assert_eq!(coord.key_points(11)[10], 20);
338         assert_eq!(coord.map(&5, (0, 100)), 25);
339 
340         let coord: RangedCoordf32 = (0f32..20f32).into();
341         assert_eq!(coord.map(&5.0, (0, 100)), 25);
342     }
343 
344     #[test]
test_linear_coord_system()345     fn test_linear_coord_system() {
346         let _coord =
347             crate::coord::ranged2d::cartesian::Cartesian2d::<RangedCoordu32, RangedCoordu32>::new(
348                 0..10,
349                 0..10,
350                 (0..1024, 0..768),
351             );
352     }
353 
354     #[test]
test_coord_unmap()355     fn test_coord_unmap() {
356         let coord: RangedCoordu32 = (0..20).into();
357         let pos = coord.map(&5, (1000, 2000));
358         let value = coord.unmap(pos, (1000, 2000));
359         assert_eq!(value, Some(5));
360     }
361 }
362