• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2018 The Khronos Group Inc.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Copyright (c) 2016 The Android Open Source Project
8  *
9  * Licensed under the Apache License, Version 2.0 (the "License");
10  * you may not use this file except in compliance with the License.
11  * You may obtain a copy of the License at
12  *
13  *      http://www.apache.org/licenses/LICENSE-2.0
14  *
15  * Unless required by applicable law or agreed to in writing, software
16  * distributed under the License is distributed on an "AS IS" BASIS,
17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  * See the License for the specific language governing permissions and
19  * limitations under the License.
20  *
21  *//*!
22  * \file
23  * \brief Precision and range tests for builtins and types.
24  *
25  *//*--------------------------------------------------------------------*/
26 
27 #include "vktShaderBuiltinPrecisionTests.hpp"
28 #include "vktShaderExecutor.hpp"
29 
30 #include "deMath.h"
31 #include "deMemory.h"
32 #include "deFloat16.h"
33 #include "deDefs.hpp"
34 #include "deRandom.hpp"
35 #include "deSTLUtil.hpp"
36 #include "deStringUtil.hpp"
37 #include "deUniquePtr.hpp"
38 #include "deSharedPtr.hpp"
39 #include "deArrayUtil.hpp"
40 
41 #include "tcuCommandLine.hpp"
42 #include "tcuFloatFormat.hpp"
43 #include "tcuInterval.hpp"
44 #include "tcuTestLog.hpp"
45 #include "tcuVector.hpp"
46 #include "tcuMatrix.hpp"
47 #include "tcuResultCollector.hpp"
48 #include "tcuMaybe.hpp"
49 
50 #include "gluContextInfo.hpp"
51 #include "gluVarType.hpp"
52 #include "gluRenderContext.hpp"
53 #include "glwDefs.hpp"
54 
55 #include <cmath>
56 #include <string>
57 #include <sstream>
58 #include <iostream>
59 #include <map>
60 #include <utility>
61 #include <limits>
62 
63 // Uncomment this to get evaluation trace dumps to std::cerr
64 // #define GLS_ENABLE_TRACE
65 
66 // set this to true to dump even passing results
67 #define GLS_LOG_ALL_RESULTS false
68 
69 #define FLOAT16_1_0		0x3C00 //1.0 float16bit
70 #define FLOAT16_180_0	0x59A0 //180.0 float16bit
71 #define FLOAT16_2_0		0x4000 //2.0 float16bit
72 #define FLOAT16_3_0		0x4200 //3.0 float16bit
73 #define FLOAT16_0_5		0x3800 //0.5 float16bit
74 #define FLOAT16_0_0		0x0000 //0.0 float16bit
75 
76 
77 using tcu::Vector;
78 typedef Vector<deFloat16, 1>	Vec1_16Bit;
79 typedef Vector<deFloat16, 2>	Vec2_16Bit;
80 typedef Vector<deFloat16, 3>	Vec3_16Bit;
81 typedef Vector<deFloat16, 4>	Vec4_16Bit;
82 
83 typedef Vector<double, 1>		Vec1_64Bit;
84 typedef Vector<double, 2>		Vec2_64Bit;
85 typedef Vector<double, 3>		Vec3_64Bit;
86 typedef Vector<double, 4>		Vec4_64Bit;
87 
88 enum
89 {
90 	// Computing reference intervals can take a non-trivial amount of time, especially on
91 	// platforms where toggling floating-point rounding mode is slow (emulated arm on x86).
92 	// As a workaround watchdog is kept happy by touching it periodically during reference
93 	// interval computation.
94 	TOUCH_WATCHDOG_VALUE_FREQUENCY	= 512
95 };
96 
97 namespace vkt
98 {
99 namespace shaderexecutor
100 {
101 
102 using std::string;
103 using std::map;
104 using std::ostream;
105 using std::ostringstream;
106 using std::pair;
107 using std::vector;
108 using std::set;
109 
110 using de::MovePtr;
111 using de::Random;
112 using de::SharedPtr;
113 using de::UniquePtr;
114 using tcu::Interval;
115 using tcu::FloatFormat;
116 using tcu::MessageBuilder;
117 using tcu::TestLog;
118 using tcu::Vector;
119 using tcu::Matrix;
120 using glu::Precision;
121 using glu::VarType;
122 using glu::DataType;
123 using glu::ShaderType;
124 
125 enum PrecisionTestFeatureBits
126 {
127 	PRECISION_TEST_FEATURES_NONE									= 0u,
128 	PRECISION_TEST_FEATURES_16BIT_BUFFER_ACCESS						= (1u << 1),
129 	PRECISION_TEST_FEATURES_16BIT_UNIFORM_AND_STORAGE_BUFFER_ACCESS	= (1u << 2),
130 	PRECISION_TEST_FEATURES_16BIT_PUSH_CONSTANT						= (1u << 3),
131 	PRECISION_TEST_FEATURES_16BIT_INPUT_OUTPUT						= (1u << 4),
132 	PRECISION_TEST_FEATURES_16BIT_SHADER_FLOAT						= (1u << 5),
133 	PRECISION_TEST_FEATURES_64BIT_SHADER_FLOAT						= (1u << 6),
134 };
135 typedef deUint32 PrecisionTestFeatures;
136 
137 
areFeaturesSupported(const Context & context,deUint32 toCheck)138 void areFeaturesSupported (const Context& context, deUint32 toCheck)
139 {
140 	if (toCheck == PRECISION_TEST_FEATURES_NONE) return;
141 
142 	const vk::VkPhysicalDevice16BitStorageFeatures& extensionFeatures = context.get16BitStorageFeatures();
143 
144 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_BUFFER_ACCESS) != 0 && extensionFeatures.storageBuffer16BitAccess == VK_FALSE)
145 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
146 
147 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_UNIFORM_AND_STORAGE_BUFFER_ACCESS) != 0 && extensionFeatures.uniformAndStorageBuffer16BitAccess == VK_FALSE)
148 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
149 
150 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_PUSH_CONSTANT) != 0 && extensionFeatures.storagePushConstant16 == VK_FALSE)
151 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
152 
153 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_INPUT_OUTPUT) != 0 && extensionFeatures.storageInputOutput16 == VK_FALSE)
154 		TCU_THROW(NotSupportedError, "Requested 16bit storage features not supported");
155 
156 	if ((toCheck & PRECISION_TEST_FEATURES_16BIT_SHADER_FLOAT) != 0 && context.getShaderFloat16Int8Features().shaderFloat16 == VK_FALSE)
157 		TCU_THROW(NotSupportedError, "Requested 16-bit floats (halfs) are not supported in shader code");
158 
159 	if ((toCheck & PRECISION_TEST_FEATURES_64BIT_SHADER_FLOAT) != 0 && context.getDeviceFeatures().shaderFloat64 == VK_FALSE)
160 		TCU_THROW(NotSupportedError, "Requested 64-bit floats are not supported in shader code");
161 }
162 
163 /*--------------------------------------------------------------------*//*!
164  * \brief Generic singleton creator.
165  *
166  * instance<T>() returns a reference to a unique default-constructed instance
167  * of T. This is mainly used for our GLSL function implementations: each
168  * function is implemented by an object, and each of the objects has a
169  * distinct class. It would be extremely toilsome to maintain a separate
170  * context object that contained individual instances of the function classes,
171  * so we have to resort to global singleton instances.
172  *
173  *//*--------------------------------------------------------------------*/
174 template <typename T>
instance(void)175 const T& instance (void)
176 {
177 	static const T s_instance = T();
178 	return s_instance;
179 }
180 
181 /*--------------------------------------------------------------------*//*!
182  * \brief Dummy placeholder type for unused template parameters.
183  *
184  * In the precision tests we are dealing with functions of different arities.
185  * To minimize code duplication, we only define templates with the maximum
186  * number of arguments, currently four. If a function's arity is less than the
187  * maximum, Void us used as the type for unused arguments.
188  *
189  * Although Voids are not used at run-time, they still must be compilable, so
190  * they must support all operations that other types do.
191  *
192  *//*--------------------------------------------------------------------*/
193 struct Void
194 {
195 	typedef	Void		Element;
196 	enum
197 	{
198 		SIZE = 0,
199 	};
200 
201 	template <typename T>
Voidvkt::shaderexecutor::Void202 	explicit			Void			(const T&)		{}
Voidvkt::shaderexecutor::Void203 						Void			(void)			{}
operator doublevkt::shaderexecutor::Void204 						operator double	(void)	const	{ return TCU_NAN; }
205 
206 	// These are used to make Voids usable as containers in container-generic code.
operator []vkt::shaderexecutor::Void207 	Void&				operator[]		(int)			{ return *this; }
operator []vkt::shaderexecutor::Void208 	const Void&			operator[]		(int)	const	{ return *this; }
209 };
210 
operator <<(ostream & os,Void)211 ostream& operator<< (ostream& os, Void) { return os << "()"; }
212 
213 //! Returns true for all other types except Void
isTypeValid(void)214 template <typename T>	bool isTypeValid		(void)	{ return true;	}
isTypeValid(void)215 template <>				bool isTypeValid<Void>	(void)	{ return false;	}
216 
isInteger(void)217 template <typename T>	bool isInteger				(void)	{ return false;	}
isInteger(void)218 template <>				bool isInteger<int>			(void)	{ return true;	}
isInteger(void)219 template <>				bool isInteger<tcu::IVec2>	(void)	{ return true;	}
isInteger(void)220 template <>				bool isInteger<tcu::IVec3>	(void)	{ return true; }
isInteger(void)221 template <>				bool isInteger<tcu::IVec4>	(void)	{ return true; }
222 
223 //! Utility function for getting the name of a data type.
224 //! This is used in vector and matrix constructors.
225 template <typename T>
dataTypeNameOf(void)226 const char* dataTypeNameOf (void)
227 {
228 	return glu::getDataTypeName(glu::dataTypeOf<T>());
229 }
230 
231 template <>
dataTypeNameOf(void)232 const char* dataTypeNameOf<Void> (void)
233 {
234 	DE_FATAL("Impossible");
235 	return DE_NULL;
236 }
237 
238 template <typename T>
getVarTypeOf(Precision prec=glu::PRECISION_LAST)239 VarType getVarTypeOf (Precision prec = glu::PRECISION_LAST)
240 {
241 	return glu::varTypeOf<T>(prec);
242 }
243 
244 //! A hack to get Void support for VarType.
245 template <>
getVarTypeOf(Precision)246 VarType getVarTypeOf<Void> (Precision)
247 {
248 	DE_FATAL("Impossible");
249 	return VarType();
250 }
251 
252 /*--------------------------------------------------------------------*//*!
253  * \brief Type traits for generalized interval types.
254  *
255  * We are trying to compute sets of acceptable values not only for
256  * float-valued expressions but also for compound values: vectors and
257  * matrices. We approximate a set of vectors as a vector of intervals and
258  * likewise for matrices.
259  *
260  * We now need generalized operations for each type and its interval
261  * approximation. These are given in the type Traits<T>.
262  *
263  * The type Traits<T>::IVal is the approximation of T: it is `Interval` for
264  * scalar types, and a vector or matrix of intervals for container types.
265  *
266  * To allow template inference to take place, there are function wrappers for
267  * the actual operations in Traits<T>. Hence we can just use:
268  *
269  * makeIVal(someFloat)
270  *
271  * instead of:
272  *
273  * Traits<float>::doMakeIVal(value)
274  *
275  *//*--------------------------------------------------------------------*/
276 
277 template <typename T> struct Traits;
278 
279 //! Create container from elementwise singleton values.
280 template <typename T>
makeIVal(const T & value)281 typename Traits<T>::IVal makeIVal (const T& value)
282 {
283 	return Traits<T>::doMakeIVal(value);
284 }
285 
286 //! Elementwise union of intervals.
287 template <typename T>
unionIVal(const typename Traits<T>::IVal & a,const typename Traits<T>::IVal & b)288 typename Traits<T>::IVal unionIVal (const typename Traits<T>::IVal& a,
289 									const typename Traits<T>::IVal& b)
290 {
291 	return Traits<T>::doUnion(a, b);
292 }
293 
294 //! Returns true iff every element of `ival` contains the corresponding element of `value`.
295 template <typename T, typename U = Void>
contains(const typename Traits<T>::IVal & ival,const T & value,bool is16Bit=false,const tcu::Maybe<U> & modularDivisor=tcu::nothing<U> ())296 bool contains (const typename Traits<T>::IVal& ival, const T& value, bool is16Bit = false, const tcu::Maybe<U>& modularDivisor = tcu::nothing<U>())
297 {
298 	return Traits<T>::doContains(ival, value, is16Bit, modularDivisor);
299 }
300 
301 //! Print out an interval with the precision of `fmt`.
302 template <typename T>
printIVal(const FloatFormat & fmt,const typename Traits<T>::IVal & ival,ostream & os)303 void printIVal (const FloatFormat& fmt, const typename Traits<T>::IVal& ival, ostream& os)
304 {
305 	Traits<T>::doPrintIVal(fmt, ival, os);
306 }
307 
308 template <typename T>
intervalToString(const FloatFormat & fmt,const typename Traits<T>::IVal & ival)309 string intervalToString (const FloatFormat& fmt, const typename Traits<T>::IVal& ival)
310 {
311 	ostringstream oss;
312 	printIVal<T>(fmt, ival, oss);
313 	return oss.str();
314 }
315 
316 //! Print out a value with the precision of `fmt`.
317 template <typename T>
printValue16(const FloatFormat & fmt,const T & value,ostream & os)318 void printValue16 (const FloatFormat& fmt, const T& value, ostream& os)
319 {
320 	Traits<T>::doPrintValue16(fmt, value, os);
321 }
322 
323 template <typename T>
value16ToString(const FloatFormat & fmt,const T & val)324 string value16ToString(const FloatFormat& fmt, const T& val)
325 {
326 	ostringstream oss;
327 	printValue16(fmt, val, oss);
328 	return oss.str();
329 }
330 
getComparisonOperation(const int ndx)331 const std::string getComparisonOperation(const int ndx)
332 {
333 	const int operationCount = 10;
334 	DE_ASSERT(de::inBounds(ndx, 0, operationCount));
335 	const std::string operations[operationCount] =
336 	{
337 		"OpFOrdEqual\t\t\t",
338 		"OpFOrdGreaterThan\t",
339 		"OpFOrdLessThan\t\t",
340 		"OpFOrdGreaterThanEqual",
341 		"OpFOrdLessThanEqual\t",
342 		"OpFUnordEqual\t\t",
343 		"OpFUnordGreaterThan\t",
344 		"OpFUnordLessThan\t",
345 		"OpFUnordGreaterThanEqual",
346 		"OpFUnordLessThanEqual"
347 	};
348 	return operations[ndx];
349 }
350 
351 template <typename T>
comparisonMessage(const T & val)352 string comparisonMessage(const T& val)
353 {
354 	DE_UNREF(val);
355 	return "";
356 }
357 
358 template <>
comparisonMessage(const int & val)359 string comparisonMessage(const int& val)
360 {
361 	ostringstream oss;
362 
363 	int flags = val;
364 	for(int ndx = 0; ndx < 10; ++ndx)
365 	{
366 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags & 1) == 1 ? "TRUE" : "FALSE") << "\n";
367 		flags = flags >> 1;
368 	}
369 	return oss.str();
370 }
371 
372 template <>
comparisonMessage(const tcu::IVec2 & val)373 string comparisonMessage(const tcu::IVec2& val)
374 {
375 	ostringstream oss;
376 	tcu::IVec2 flags = val;
377 	for (int ndx = 0; ndx < 10; ++ndx)
378 	{
379 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags.x() & 1) == 1 ? "TRUE" : "FALSE") << "\t" << ((flags.y() & 1) == 1 ? "TRUE" : "FALSE") << "\n";
380 		flags.x() = flags.x() >> 1;
381 		flags.y() = flags.y() >> 1;
382 	}
383 	return oss.str();
384 }
385 
386 template <>
comparisonMessage(const tcu::IVec3 & val)387 string comparisonMessage(const tcu::IVec3& val)
388 {
389 	ostringstream oss;
390 	tcu::IVec3 flags = val;
391 	for (int ndx = 0; ndx < 10; ++ndx)
392 	{
393 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags.x() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
394 								<< ((flags.y() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
395 								<< ((flags.z() & 1) == 1 ? "TRUE" : "FALSE") << "\n";
396 		flags.x() = flags.x() >> 1;
397 		flags.y() = flags.y() >> 1;
398 		flags.z() = flags.z() >> 1;
399 	}
400 	return oss.str();
401 }
402 
403 template <>
comparisonMessage(const tcu::IVec4 & val)404 string comparisonMessage(const tcu::IVec4& val)
405 {
406 	ostringstream oss;
407 	tcu::IVec4 flags = val;
408 	for (int ndx = 0; ndx < 10; ++ndx)
409 	{
410 		oss << getComparisonOperation(ndx) << "\t:\t" << ((flags.x() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
411 			<< ((flags.y() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
412 			<< ((flags.z() & 1) == 1 ? "TRUE" : "FALSE") << "\t"
413 			<< ((flags.w() & 1) == 1 ? "TRUE" : "FALSE") << "\n";
414 		flags.x() = flags.x() >> 1;
415 		flags.y() = flags.y() >> 1;
416 		flags.z() = flags.z() >> 1;
417 		flags.w() = flags.z() >> 1;
418 	}
419 	return oss.str();
420 }
421 //! Print out a value with the precision of `fmt`.
422 template <typename T>
printValue32(const FloatFormat & fmt,const T & value,ostream & os)423 void printValue32 (const FloatFormat& fmt, const T& value, ostream& os)
424 {
425 	Traits<T>::doPrintValue32(fmt, value, os);
426 }
427 
428 template <typename T>
value32ToString(const FloatFormat & fmt,const T & val)429 string value32ToString (const FloatFormat& fmt, const T& val)
430 {
431 	ostringstream oss;
432 	printValue32(fmt, val, oss);
433 	return oss.str();
434 }
435 
436 template <typename T>
printValue64(const FloatFormat & fmt,const T & value,ostream & os)437 void printValue64 (const FloatFormat& fmt, const T& value, ostream& os)
438 {
439 	Traits<T>::doPrintValue64(fmt, value, os);
440 }
441 
442 template <typename T>
value64ToString(const FloatFormat & fmt,const T & val)443 string value64ToString (const FloatFormat& fmt, const T& val)
444 {
445 	ostringstream oss;
446 	printValue64(fmt, val, oss);
447 	return oss.str();
448 }
449 
450 //! Approximate `value` elementwise to the float precision defined in `fmt`.
451 //! The resulting interval might not be a singleton if rounding in both
452 //! directions is allowed.
453 template <typename T>
round(const FloatFormat & fmt,const T & value)454 typename Traits<T>::IVal round (const FloatFormat& fmt, const T& value)
455 {
456 	return Traits<T>::doRound(fmt, value);
457 }
458 
459 template <typename T>
convert(const FloatFormat & fmt,const typename Traits<T>::IVal & value)460 typename Traits<T>::IVal convert (const FloatFormat&				fmt,
461 								  const typename Traits<T>::IVal&	value)
462 {
463 	return Traits<T>::doConvert(fmt, value);
464 }
465 
466 // Matching input and output types. We may be in a modulo case and modularDivisor may have an actual value.
467 template <typename T>
intervalContains(const Interval & interval,T value,const tcu::Maybe<T> & modularDivisor)468 bool intervalContains (const Interval& interval, T value, const tcu::Maybe<T>& modularDivisor)
469 {
470 	bool contained = interval.contains(value);
471 
472 	if (!contained && modularDivisor)
473 	{
474 		const T divisor = modularDivisor.get();
475 
476 		// In a modulo operation, if the calculated answer contains the divisor, allow exactly 0.0 as a replacement. Alternatively,
477 		// if the calculated answer contains 0.0, allow exactly the divisor as a replacement.
478 		if (interval.contains(static_cast<double>(divisor)))
479 			contained |= (value == 0.0);
480 		if (interval.contains(0.0))
481 			contained |= (value == divisor);
482 	}
483 	return contained;
484 }
485 
486 // When the input and output types do not match, we are not in a real modulo operation. Do not take the divisor into account. This
487 // version is provided for syntactical compatibility only.
488 template <typename T, typename U>
intervalContains(const Interval & interval,T value,const tcu::Maybe<U> & modularDivisor)489 bool intervalContains (const Interval& interval, T value, const tcu::Maybe<U>& modularDivisor)
490 {
491 	DE_UNREF(modularDivisor);		// For release builds.
492 	DE_ASSERT(!modularDivisor);
493 	return interval.contains(value);
494 }
495 
496 //! Common traits for scalar types.
497 template <typename T>
498 struct ScalarTraits
499 {
500 	typedef				Interval		IVal;
501 
doMakeIValvkt::shaderexecutor::ScalarTraits502 	static Interval		doMakeIVal		(const T& value)
503 	{
504 		// Thankfully all scalar types have a well-defined conversion to `double`,
505 		// hence Interval can represent their ranges without problems.
506 		return Interval(double(value));
507 	}
508 
doUnionvkt::shaderexecutor::ScalarTraits509 	static Interval		doUnion			(const Interval& a, const Interval& b)
510 	{
511 		return a | b;
512 	}
513 
doContainsvkt::shaderexecutor::ScalarTraits514 	static bool			doContains		(const Interval& a, T value)
515 	{
516 		return a.contains(double(value));
517 	}
518 
doConvertvkt::shaderexecutor::ScalarTraits519 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival)
520 	{
521 		return fmt.convert(ival);
522 	}
523 
doConvertvkt::shaderexecutor::ScalarTraits524 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival, bool is16Bit)
525 	{
526 		DE_UNREF(is16Bit);
527 		return fmt.convert(ival);
528 	}
529 
doRoundvkt::shaderexecutor::ScalarTraits530 	static Interval		doRound			(const FloatFormat& fmt, T value)
531 	{
532 		return fmt.roundOut(double(value), false);
533 	}
534 };
535 
536 template <>
537 struct ScalarTraits<deUint16>
538 {
539 	typedef				Interval		IVal;
540 
doMakeIValvkt::shaderexecutor::ScalarTraits541 	static Interval		doMakeIVal		(const deUint16& value)
542 	{
543 		// Thankfully all scalar types have a well-defined conversion to `double`,
544 		// hence Interval can represent their ranges without problems.
545 		return Interval(double(deFloat16To32(value)));
546 	}
547 
doUnionvkt::shaderexecutor::ScalarTraits548 	static Interval		doUnion			(const Interval& a, const Interval& b)
549 	{
550 		return a | b;
551 	}
552 
doConvertvkt::shaderexecutor::ScalarTraits553 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival)
554 	{
555 		return fmt.convert(ival);
556 	}
557 
doRoundvkt::shaderexecutor::ScalarTraits558 	static Interval		doRound			(const FloatFormat& fmt, deUint16 value)
559 	{
560 		return fmt.roundOut(double(deFloat16To32(value)), false);
561 	}
562 };
563 
564 template<>
565 struct Traits<float> : ScalarTraits<float>
566 {
doPrintIValvkt::shaderexecutor::Traits567 	static void			doPrintIVal		(const FloatFormat&	fmt,
568 										 const Interval&	ival,
569 										 ostream&			os)
570 	{
571 		os << fmt.intervalToHex(ival);
572 	}
573 
doPrintValue16vkt::shaderexecutor::Traits574 	static void			doPrintValue16	(const FloatFormat&	fmt,
575 										 const float&		value,
576 										 ostream&			os)
577 	{
578 		const deUint32 iRep = reinterpret_cast<const deUint32 & >(value);
579 		float res0 = deFloat16To32((deFloat16)(iRep & 0xFFFF));
580 		float res1 = deFloat16To32((deFloat16)(iRep >> 16));
581 		os << fmt.floatToHex(res0) << " " << fmt.floatToHex(res1);
582 	}
583 
doPrintValue32vkt::shaderexecutor::Traits584 	static void			doPrintValue32	(const FloatFormat&	fmt,
585 										 const float&		value,
586 										 ostream&			os)
587 	{
588 		os << fmt.floatToHex(value);
589 	}
590 
doPrintValue64vkt::shaderexecutor::Traits591 	static void			doPrintValue64	(const FloatFormat&	fmt,
592 										 const float&		value,
593 										 ostream&			os)
594 	{
595 		os << fmt.floatToHex(value);
596 	}
597 
598 	template <typename U>
doContainsvkt::shaderexecutor::Traits599 	static bool			doContains		(const Interval& a, const float& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
600 	{
601 		if(is16Bit)
602 		{
603 			// Note: for deFloat16s packed in 32 bits, the original divisor is provided as a float to the shader in the input
604 			// buffer, so U is also float here and we call the right interlvalContains() version.
605 			const deUint32 iRep = reinterpret_cast<const deUint32&>(value);
606 			float res0 = deFloat16To32((deFloat16)(iRep & 0xFFFF));
607 			float res1 = deFloat16To32((deFloat16)(iRep >> 16));
608 			return intervalContains(a, res0, modularDivisor) && (res1 == -1.0);
609 		}
610 		return intervalContains(a, value, modularDivisor);
611 	}
612 };
613 
614 template<>
615 struct Traits<double> : ScalarTraits<double>
616 {
doPrintIValvkt::shaderexecutor::Traits617 	static void			doPrintIVal		(const FloatFormat&	fmt,
618 										 const Interval&	ival,
619 										 ostream&			os)
620 	{
621 		os << fmt.intervalToHex(ival);
622 	}
623 
doPrintValue16vkt::shaderexecutor::Traits624 	static void			doPrintValue16	(const FloatFormat&	fmt,
625 										 const double&		value,
626 										 ostream&			os)
627 	{
628 		const deUint64 iRep = reinterpret_cast<const deUint64&>(value);
629 		double byte0 = deFloat16To64((deFloat16)((iRep      ) & 0xffff));
630 		double byte1 = deFloat16To64((deFloat16)((iRep >> 16) & 0xffff));
631 		double byte2 = deFloat16To64((deFloat16)((iRep >> 32) & 0xffff));
632 		double byte3 = deFloat16To64((deFloat16)((iRep >> 48) & 0xffff));
633 		os << fmt.floatToHex(byte0) << " " << fmt.floatToHex(byte1) << " " << fmt.floatToHex(byte2) << " " << fmt.floatToHex(byte3);
634 	}
635 
doPrintValue32vkt::shaderexecutor::Traits636 	static void			doPrintValue32	(const FloatFormat&	fmt,
637 										 const double&		value,
638 										 ostream&			os)
639 	{
640 		const deUint64 iRep = reinterpret_cast<const deUint64&>(value);
641 		double res0 = static_cast<double>((float)((iRep      ) & 0xffffffff));
642 		double res1 = static_cast<double>((float)((iRep >> 32) & 0xffffffff));
643 		os << fmt.floatToHex(res0) << " " << fmt.floatToHex(res1);
644 	}
645 
doPrintValue64vkt::shaderexecutor::Traits646 	static void			doPrintValue64	(const FloatFormat&	fmt,
647 										 const double&		value,
648 										 ostream&			os)
649 	{
650 		os << fmt.floatToHex(value);
651 	}
652 
653 	template <class U>
doContainsvkt::shaderexecutor::Traits654 	static bool			doContains		(const Interval& a, const double& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
655 	{
656 		DE_UNREF(is16Bit);
657 		DE_ASSERT(!is16Bit);
658 		return intervalContains(a, value, modularDivisor);
659 	}
660 };
661 
662 template<>
663 struct Traits<deFloat16> : ScalarTraits<deFloat16>
664 {
doPrintIValvkt::shaderexecutor::Traits665 	static void			doPrintIVal		(const FloatFormat&	fmt,
666 										 const Interval&	ival,
667 										 ostream&			os)
668 	{
669 		os << fmt.intervalToHex(ival);
670 	}
671 
doPrintValue16vkt::shaderexecutor::Traits672 	static void			doPrintValue16	(const FloatFormat&	fmt,
673 										 const deFloat16&	value,
674 										 ostream&			os)
675 	{
676 		const float res0 = deFloat16To32(value);
677 		os << fmt.floatToHex(static_cast<double>(res0));
678 	}
doPrintValue32vkt::shaderexecutor::Traits679 	static void			doPrintValue32	(const FloatFormat&	fmt,
680 										 const deFloat16&	value,
681 										 ostream&			os)
682 	{
683 		const float res0 = deFloat16To32(value);
684 		os << fmt.floatToHex(static_cast<double>(res0));
685 	}
686 
doPrintValue64vkt::shaderexecutor::Traits687 	static void			doPrintValue64	(const FloatFormat&	fmt,
688 										 const deFloat16&	value,
689 										 ostream&			os)
690 	{
691 		const double res0 = deFloat16To64(value);
692 		os << fmt.floatToHex(res0);
693 	}
694 
695 	// When the value and divisor are both deFloat16, convert both to float to call the right intervalContains version.
doContainsvkt::shaderexecutor::Traits696 	static bool			doContains		(const Interval& a, const deFloat16& value, bool is16Bit, const tcu::Maybe<deFloat16>& modularDivisor)
697 	{
698 		DE_UNREF(is16Bit);
699 		float res0 = deFloat16To32(value);
700 		const tcu::Maybe<float> convertedDivisor = (modularDivisor ? tcu::just(deFloat16To32(modularDivisor.get())) : tcu::nothing<float>());
701 		return intervalContains(a, res0, convertedDivisor);
702 	}
703 
704 	// If the types don't match we should not be in a modulo operation, so no conversion should take place.
705 	template <class U>
doContainsvkt::shaderexecutor::Traits706 	static bool			doContains		(const Interval& a, const deFloat16& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
707 	{
708 		DE_UNREF(is16Bit);
709 		float res0 = deFloat16To32(value);
710 		return intervalContains(a, res0, modularDivisor);
711 	}
712 };
713 
714 template<>
715 struct Traits<bool> : ScalarTraits<bool>
716 {
doPrintValue16vkt::shaderexecutor::Traits717 	static void			doPrintValue16	(const FloatFormat&,
718 										 const float&		value,
719 										 ostream&			os)
720 	{
721 		os << (value != 0.0f ? "true" : "false");
722 	}
723 
doPrintValue32vkt::shaderexecutor::Traits724 	static void		doPrintValue32	(const			FloatFormat&,
725 									 const float&	value,
726 									 ostream&		os)
727 	{
728 		os << (value != 0.0f ? "true" : "false");
729 	}
730 
doPrintValue64vkt::shaderexecutor::Traits731 	static void		doPrintValue64	(const			FloatFormat&,
732 									 const float&	value,
733 									 ostream&		os)
734 	{
735 		os << (value != 0.0f ? "true" : "false");
736 	}
737 
doPrintIValvkt::shaderexecutor::Traits738 	static void			doPrintIVal		(const FloatFormat&,
739 										 const Interval&	ival,
740 										 ostream&			os)
741 	{
742 		os << "{";
743 		if (ival.contains(false))
744 			os << "false";
745 		if (ival.contains(false) && ival.contains(true))
746 			os << ", ";
747 		if (ival.contains(true))
748 			os << "true";
749 		os << "}";
750 	}
751 };
752 
753 template<>
754 struct Traits<int> : ScalarTraits<int>
755 {
doPrintValue16vkt::shaderexecutor::Traits756 	static void			doPrintValue16	(const FloatFormat&,
757 										 const int&			value,
758 										 ostream&			os)
759 	{
760 		int res0 = value & 0xFFFF;
761 		int res1 = value >> 16;
762 		os << res0 << " " << res1;
763 	}
764 
doPrintValue32vkt::shaderexecutor::Traits765 	static void		doPrintValue32		(const FloatFormat&,
766 										 const int&			value,
767 										 ostream&			os)
768 	{
769 		os << value;
770 	}
771 
doPrintValue64vkt::shaderexecutor::Traits772 	static void		doPrintValue64		(const FloatFormat&,
773 										 const int&			value,
774 										 ostream&			os)
775 	{
776 		os << value;
777 	}
778 
doPrintIValvkt::shaderexecutor::Traits779 	static void			doPrintIVal		(const FloatFormat&,
780 										 const Interval&	ival,
781 										 ostream&			os)
782 	{
783 		os << "[" << int(ival.lo()) << ", " << int(ival.hi()) << "]";
784 	}
785 
786 	template <typename U>
doContainsvkt::shaderexecutor::Traits787 	static bool			doContains		(const Interval& a, const int& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
788 	{
789 		DE_UNREF(is16Bit);
790 		return intervalContains(a, value, modularDivisor);
791 	}
792 };
793 
794 //! Common traits for containers, i.e. vectors and matrices.
795 //! T is the container type itself, I is the same type with interval elements.
796 template <typename T, typename I>
797 struct ContainerTraits
798 {
799 	typedef typename	T::Element		Element;
800 	typedef				I				IVal;
801 
doMakeIValvkt::shaderexecutor::ContainerTraits802 	static IVal			doMakeIVal		(const T& value)
803 	{
804 		IVal ret;
805 
806 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
807 			ret[ndx] = makeIVal(value[ndx]);
808 
809 		return ret;
810 	}
811 
doUnionvkt::shaderexecutor::ContainerTraits812 	static IVal			doUnion			(const IVal& a, const IVal& b)
813 	{
814 		IVal ret;
815 
816 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
817 			ret[ndx] = unionIVal<Element>(a[ndx], b[ndx]);
818 
819 		return ret;
820 	}
821 
822 	// When the input and output types match, we may be in a modulo operation. If the divisor is provided, use each of its
823 	// components to determine if the obtained result is fine.
doContainsvkt::shaderexecutor::ContainerTraits824 	static bool			doContains		(const IVal& ival, const T& value, bool is16Bit, const tcu::Maybe<T>& modularDivisor)
825 	{
826 		using DivisorElement = typename T::Element;
827 
828 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
829 		{
830 			const tcu::Maybe<DivisorElement> divisorElement = (modularDivisor ? tcu::just((*modularDivisor)[ndx]) : tcu::nothing<DivisorElement>());
831 			if (!contains(ival[ndx], value[ndx], is16Bit, divisorElement))
832 				return false;
833 		}
834 
835 		return true;
836 	}
837 
838 	// When the input and output types do not match we should not be in a modulo operation. This version is provided for syntactical
839 	// compatibility.
840 	template <typename U>
doContainsvkt::shaderexecutor::ContainerTraits841 	static bool			doContains		(const IVal& ival, const T& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor)
842 	{
843 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
844 		{
845 			if (!contains(ival[ndx], value[ndx], is16Bit, modularDivisor))
846 				return false;
847 		}
848 
849 		return true;
850 	}
851 
doPrintIValvkt::shaderexecutor::ContainerTraits852 	static void			doPrintIVal		(const FloatFormat& fmt, const IVal ival, ostream& os)
853 	{
854 		os << "(";
855 
856 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
857 		{
858 			if (ndx > 0)
859 				os << ", ";
860 
861 			printIVal<Element>(fmt, ival[ndx], os);
862 		}
863 
864 		os << ")";
865 	}
866 
doPrintValue16vkt::shaderexecutor::ContainerTraits867 	static void			doPrintValue16	(const FloatFormat& fmt, const T& value, ostream& os)
868 	{
869 		os << dataTypeNameOf<T>() << "(";
870 
871 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
872 		{
873 			if (ndx > 0)
874 				os << ", ";
875 
876 			printValue16<Element>(fmt, value[ndx], os);
877 		}
878 
879 		os << ")";
880 	}
881 
doPrintValue32vkt::shaderexecutor::ContainerTraits882 	static void			doPrintValue32	(const FloatFormat& fmt, const T& value, ostream& os)
883 	{
884 		os << dataTypeNameOf<T>() << "(";
885 
886 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
887 		{
888 			if (ndx > 0)
889 				os << ", ";
890 
891 			printValue32<Element>(fmt, value[ndx], os);
892 		}
893 
894 		os << ")";
895 	}
896 
doPrintValue64vkt::shaderexecutor::ContainerTraits897 	static void			doPrintValue64	(const FloatFormat& fmt, const T& value, ostream& os)
898 	{
899 		os << dataTypeNameOf<T>() << "(";
900 
901 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
902 		{
903 			if (ndx > 0)
904 				os << ", ";
905 
906 			printValue64<Element>(fmt, value[ndx], os);
907 		}
908 
909 		os << ")";
910 	}
911 
doConvertvkt::shaderexecutor::ContainerTraits912 	static IVal			doConvert		(const FloatFormat& fmt, const IVal& value)
913 	{
914 		IVal ret;
915 
916 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
917 			ret[ndx] = convert<Element>(fmt, value[ndx]);
918 
919 		return ret;
920 	}
921 
doRoundvkt::shaderexecutor::ContainerTraits922 	static IVal			doRound			(const FloatFormat& fmt, T value)
923 	{
924 		IVal ret;
925 
926 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
927 			ret[ndx] = round(fmt, value[ndx]);
928 
929 		return ret;
930 	}
931 };
932 
933 template <typename T, int Size>
934 struct Traits<Vector<T, Size> > :
935 	ContainerTraits<Vector<T, Size>, Vector<typename Traits<T>::IVal, Size> >
936 {
937 };
938 
939 template <typename T, int Rows, int Cols>
940 struct Traits<Matrix<T, Rows, Cols> > :
941 	ContainerTraits<Matrix<T, Rows, Cols>, Matrix<typename Traits<T>::IVal, Rows, Cols> >
942 {
943 };
944 
945 //! Void traits. These are just dummies, but technically valid: a Void is a
946 //! unit type with a single possible value.
947 template<>
948 struct Traits<Void>
949 {
950 	typedef		Void			IVal;
951 
doMakeIValvkt::shaderexecutor::Traits952 	static Void	doMakeIVal		(const Void& value)										{ return value; }
doUnionvkt::shaderexecutor::Traits953 	static Void	doUnion			(const Void&, const Void&)								{ return Void(); }
doContainsvkt::shaderexecutor::Traits954 	static bool	doContains		(const Void&, Void)										{ return true; }
955 	template <typename U>
doContainsvkt::shaderexecutor::Traits956 	static bool	doContains		(const Void&, const Void& value, bool is16Bit, const tcu::Maybe<U>& modularDivisor) { DE_UNREF(value); DE_UNREF(is16Bit); DE_UNREF(modularDivisor); return true; }
doRoundvkt::shaderexecutor::Traits957 	static Void	doRound			(const FloatFormat&, const Void& value)					{ return value; }
doConvertvkt::shaderexecutor::Traits958 	static Void	doConvert		(const FloatFormat&, const Void& value)					{ return value; }
959 
doPrintValue16vkt::shaderexecutor::Traits960 	static void	doPrintValue16	(const FloatFormat&, const Void&, ostream& os)
961 	{
962 		os << "()";
963 	}
964 
doPrintValue32vkt::shaderexecutor::Traits965 	static void	doPrintValue32	(const FloatFormat&, const Void&, ostream& os)
966 	{
967 		os << "()";
968 	}
969 
doPrintValue64vkt::shaderexecutor::Traits970 	static void	doPrintValue64	(const FloatFormat&, const Void&, ostream& os)
971 	{
972 		os << "()";
973 	}
974 
doPrintIValvkt::shaderexecutor::Traits975 	static void	doPrintIVal		(const FloatFormat&, const Void&, ostream& os)
976 	{
977 		os << "()";
978 	}
979 };
980 
981 //! This is needed for container-generic operations.
982 //! We want a scalar type T to be its own "one-element vector".
983 template <typename T, int Size> struct ContainerOf	{ typedef Vector<T, Size>	Container; };
984 
985 template <typename T>			struct ContainerOf<T, 1>		{ typedef T		Container; };
986 template <int Size>				struct ContainerOf<Void, Size>	{ typedef Void	Container; };
987 
988 // This is a kludge that is only needed to get the ExprP::operator[] syntactic sugar to work.
989 template <typename T>	struct ElementOf		{ typedef	typename T::Element	Element; };
990 template <>				struct ElementOf<float>	{ typedef	void				Element; };
991 template <>				struct ElementOf<double>{ typedef	void				Element; };
992 template <>				struct ElementOf<bool>	{ typedef	void				Element; };
993 template <>				struct ElementOf<int>	{ typedef	void				Element; };
994 
995 template <typename T>
comparisonMessageInterval(const typename Traits<T>::IVal & val)996 string comparisonMessageInterval(const typename Traits<T>::IVal& val)
997 {
998 	DE_UNREF(val);
999 	return "";
1000 }
1001 
1002 template <>
comparisonMessageInterval(const Traits<int>::IVal & val)1003 string comparisonMessageInterval<int>(const Traits<int>::IVal& val)
1004 {
1005 	return comparisonMessage(static_cast<int>(val.lo()));
1006 }
1007 
1008 template <>
comparisonMessageInterval(const Traits<float>::IVal & val)1009 string comparisonMessageInterval<float>(const Traits<float>::IVal& val)
1010 {
1011 	return comparisonMessage(static_cast<int>(val.lo()));
1012 }
1013 
1014 template <>
comparisonMessageInterval(const tcu::Vector<tcu::Interval,2> & val)1015 string comparisonMessageInterval<tcu::Vector<int, 2> >(const tcu::Vector<tcu::Interval, 2> & val)
1016 {
1017 	tcu::IVec2 result(static_cast<int>(val[0].lo()), static_cast<int>(val[1].lo()));
1018 	return comparisonMessage(result);
1019 }
1020 
1021 template <>
comparisonMessageInterval(const tcu::Vector<tcu::Interval,3> & val)1022 string comparisonMessageInterval<tcu::Vector<int, 3> >(const tcu::Vector<tcu::Interval, 3> & val)
1023 {
1024 	tcu::IVec3 result(static_cast<int>(val[0].lo()), static_cast<int>(val[1].lo()), static_cast<int>(val[2].lo()));
1025 	return comparisonMessage(result);
1026 }
1027 
1028 template <>
comparisonMessageInterval(const tcu::Vector<tcu::Interval,4> & val)1029 string comparisonMessageInterval<tcu::Vector<int, 4> >(const tcu::Vector<tcu::Interval, 4> & val)
1030 {
1031 	tcu::IVec4 result(static_cast<int>(val[0].lo()), static_cast<int>(val[1].lo()), static_cast<int>(val[2].lo()), static_cast<int>(val[3].lo()));
1032 	return comparisonMessage(result);
1033 }
1034 
1035 /*--------------------------------------------------------------------*//*!
1036  *
1037  * \name Abstract syntax for expressions and statements.
1038  *
1039  * We represent GLSL programs as syntax objects: an Expr<T> represents an
1040  * expression whose GLSL type corresponds to the C++ type T, and a Statement
1041  * represents a statement.
1042  *
1043  * To ease memory management, we use shared pointers to refer to expressions
1044  * and statements. ExprP<T> is a shared pointer to an Expr<T>, and StatementP
1045  * is a shared pointer to a Statement.
1046  *
1047  * \{
1048  *
1049  *//*--------------------------------------------------------------------*/
1050 
1051 class ExprBase;
1052 class ExpandContext;
1053 class Statement;
1054 class StatementP;
1055 class FuncBase;
1056 template <typename T> class ExprP;
1057 template <typename T> class Variable;
1058 template <typename T> class VariableP;
1059 template <typename T> class DefaultSampling;
1060 
1061 typedef set<const FuncBase*> FuncSet;
1062 
1063 template <typename T>
1064 VariableP<T>	variable			(const string& name);
1065 StatementP		compoundStatement	(const vector<StatementP>& statements);
1066 
1067 /*--------------------------------------------------------------------*//*!
1068  * \brief A variable environment.
1069  *
1070  * An Environment object maintains the mapping between variables of the
1071  * abstract syntax tree and their values.
1072  *
1073  * \todo [2014-03-28 lauri] At least run-time type safety.
1074  *
1075  *//*--------------------------------------------------------------------*/
1076 class Environment
1077 {
1078 public:
1079 	template<typename T>
bind(const Variable<T> & variable,const typename Traits<T>::IVal & value)1080 	void						bind	(const Variable<T>&					variable,
1081 										 const typename Traits<T>::IVal&	value)
1082 	{
1083 		deUint8* const data = new deUint8[sizeof(value)];
1084 
1085 		deMemcpy(data, &value, sizeof(value));
1086 		de::insert(m_map, variable.getName(), SharedPtr<deUint8>(data, de::ArrayDeleter<deUint8>()));
1087 	}
1088 
1089 	template<typename T>
lookup(const Variable<T> & variable) const1090 	typename Traits<T>::IVal&	lookup	(const Variable<T>& variable) const
1091 	{
1092 		deUint8* const data = de::lookup(m_map, variable.getName()).get();
1093 
1094 		return *reinterpret_cast<typename Traits<T>::IVal*>(data);
1095 	}
1096 
1097 private:
1098 	map<string, SharedPtr<deUint8> >	m_map;
1099 };
1100 
1101 /*--------------------------------------------------------------------*//*!
1102  * \brief Evaluation context.
1103  *
1104  * The evaluation context contains everything that separates one execution of
1105  * an expression from the next. Currently this means the desired floating
1106  * point precision and the current variable environment.
1107  *
1108  *//*--------------------------------------------------------------------*/
1109 struct EvalContext
1110 {
EvalContextvkt::shaderexecutor::EvalContext1111 	EvalContext (const FloatFormat&	format_,
1112 				 Precision			floatPrecision_,
1113 				 Environment&		env_,
1114 				 int				callDepth_)
1115 		: format				(format_)
1116 		, floatPrecision		(floatPrecision_)
1117 		, env					(env_)
1118 		, callDepth				(callDepth_) {}
1119 
1120 	FloatFormat		format;
1121 	Precision		floatPrecision;
1122 	Environment&	env;
1123 	int				callDepth;
1124 };
1125 
1126 /*--------------------------------------------------------------------*//*!
1127  * \brief Simple incremental counter.
1128  *
1129  * This is used to make sure that different ExpandContexts will not produce
1130  * overlapping temporary names.
1131  *
1132  *//*--------------------------------------------------------------------*/
1133 class Counter
1134 {
1135 public:
Counter(int count=0)1136 			Counter		(int count = 0) : m_count(count) {}
operator ()(void)1137 	int		operator()	(void) { return m_count++; }
1138 
1139 private:
1140 	int		m_count;
1141 };
1142 
1143 class ExpandContext
1144 {
1145 public:
ExpandContext(Counter & symCounter)1146 						ExpandContext	(Counter& symCounter) : m_symCounter(symCounter) {}
ExpandContext(const ExpandContext & parent)1147 						ExpandContext	(const ExpandContext& parent)
1148 							: m_symCounter(parent.m_symCounter) {}
1149 
1150 	template<typename T>
genSym(const string & baseName)1151 	VariableP<T>		genSym			(const string& baseName)
1152 	{
1153 		return variable<T>(baseName + de::toString(m_symCounter()));
1154 	}
1155 
addStatement(const StatementP & stmt)1156 	void				addStatement	(const StatementP& stmt)
1157 	{
1158 		m_statements.push_back(stmt);
1159 	}
1160 
getStatements(void) const1161 	vector<StatementP>	getStatements	(void) const
1162 	{
1163 		return m_statements;
1164 	}
1165 private:
1166 	Counter&			m_symCounter;
1167 	vector<StatementP>	m_statements;
1168 };
1169 
1170 /*--------------------------------------------------------------------*//*!
1171  * \brief A statement or declaration.
1172  *
1173  * Statements have no values. Instead, they are executed for their side
1174  * effects only: the execute() method should modify at least one variable in
1175  * the environment.
1176  *
1177  * As a bit of a kludge, a Statement object can also represent a declaration:
1178  * when it is evaluated, it can add a variable binding to the environment
1179  * instead of modifying a current one.
1180  *
1181  *//*--------------------------------------------------------------------*/
1182 class Statement
1183 {
1184 public:
~Statement(void)1185 	virtual			~Statement		(void)							{								 }
1186 	//! Execute the statement, modifying the environment of `ctx`
execute(EvalContext & ctx) const1187 	void			execute			(EvalContext&	ctx)	const	{ this->doExecute(ctx);			 }
print(ostream & os) const1188 	void			print			(ostream&		os)		const	{ this->doPrint(os);			 }
1189 	//! Add the functions used in this statement to `dst`.
getUsedFuncs(FuncSet & dst) const1190 	void			getUsedFuncs	(FuncSet& dst)			const	{ this->doGetUsedFuncs(dst);	 }
failed(EvalContext & ctx) const1191 	void			failed			(EvalContext& ctx)		const	{ this->doFail(ctx);			 }
1192 
1193 protected:
1194 	virtual void	doPrint			(ostream& os)			const	= 0;
1195 	virtual void	doExecute		(EvalContext& ctx)		const	= 0;
1196 	virtual void	doGetUsedFuncs	(FuncSet& dst)			const	= 0;
doFail(EvalContext & ctx) const1197 	virtual void	doFail			(EvalContext& ctx)		const	{ DE_UNREF(ctx); }
1198 };
1199 
operator <<(ostream & os,const Statement & stmt)1200 ostream& operator<<(ostream& os, const Statement& stmt)
1201 {
1202 	stmt.print(os);
1203 	return os;
1204 }
1205 
1206 /*--------------------------------------------------------------------*//*!
1207  * \brief Smart pointer for statements (and declarations)
1208  *
1209  *//*--------------------------------------------------------------------*/
1210 class StatementP : public SharedPtr<const Statement>
1211 {
1212 public:
1213 	typedef		SharedPtr<const Statement>	Super;
1214 
StatementP(void)1215 				StatementP			(void) {}
StatementP(const Statement * ptr)1216 	explicit	StatementP			(const Statement* ptr)	: Super(ptr) {}
StatementP(const Super & ptr)1217 				StatementP			(const Super& ptr)		: Super(ptr) {}
1218 };
1219 
1220 /*--------------------------------------------------------------------*//*!
1221  * \brief
1222  *
1223  * A statement that modifies a variable or a declaration that binds a variable.
1224  *
1225  *//*--------------------------------------------------------------------*/
1226 template <typename T>
1227 class VariableStatement : public Statement
1228 {
1229 public:
VariableStatement(const VariableP<T> & variable,const ExprP<T> & value,bool isDeclaration)1230 					VariableStatement	(const VariableP<T>& variable, const ExprP<T>& value,
1231 										 bool isDeclaration)
1232 						: m_variable		(variable)
1233 						, m_value			(value)
1234 						, m_isDeclaration	(isDeclaration) {}
1235 
1236 protected:
doPrint(ostream & os) const1237 	void			doPrint				(ostream& os)							const
1238 	{
1239 		if (m_isDeclaration)
1240 			os << glu::declare(getVarTypeOf<T>(), m_variable->getName());
1241 		else
1242 			os << m_variable->getName();
1243 
1244 		os << " = ";
1245 		os<< *m_value << ";\n";
1246 	}
1247 
doExecute(EvalContext & ctx) const1248 	void			doExecute			(EvalContext& ctx)						const
1249 	{
1250 		if (m_isDeclaration)
1251 			ctx.env.bind(*m_variable, m_value->evaluate(ctx));
1252 		else
1253 			ctx.env.lookup(*m_variable) = m_value->evaluate(ctx);
1254 	}
1255 
doGetUsedFuncs(FuncSet & dst) const1256 	void			doGetUsedFuncs		(FuncSet& dst)							const
1257 	{
1258 		m_value->getUsedFuncs(dst);
1259 	}
1260 
doFail(EvalContext & ctx) const1261 	virtual void	doFail			(EvalContext& ctx)		const
1262 	{
1263 		if (m_isDeclaration)
1264 			ctx.env.bind(*m_variable, m_value->fails(ctx));
1265 		else
1266 			ctx.env.lookup(*m_variable) = m_value->fails(ctx);
1267 	}
1268 
1269 	VariableP<T>	m_variable;
1270 	ExprP<T>		m_value;
1271 	bool			m_isDeclaration;
1272 };
1273 
1274 template <typename T>
variableStatement(const VariableP<T> & variable,const ExprP<T> & value,bool isDeclaration)1275 StatementP variableStatement (const VariableP<T>&	variable,
1276 							  const ExprP<T>&		value,
1277 							  bool					isDeclaration)
1278 {
1279 	return StatementP(new VariableStatement<T>(variable, value, isDeclaration));
1280 }
1281 
1282 template <typename T>
variableDeclaration(const VariableP<T> & variable,const ExprP<T> & definiens)1283 StatementP variableDeclaration (const VariableP<T>& variable, const ExprP<T>& definiens)
1284 {
1285 	return variableStatement(variable, definiens, true);
1286 }
1287 
1288 template <typename T>
variableAssignment(const VariableP<T> & variable,const ExprP<T> & value)1289 StatementP variableAssignment (const VariableP<T>& variable, const ExprP<T>& value)
1290 {
1291 	return variableStatement(variable, value, false);
1292 }
1293 
1294 /*--------------------------------------------------------------------*//*!
1295  * \brief A compound statement, i.e. a block.
1296  *
1297  * A compound statement is executed by executing its constituent statements in
1298  * sequence.
1299  *
1300  *//*--------------------------------------------------------------------*/
1301 class CompoundStatement : public Statement
1302 {
1303 public:
CompoundStatement(const vector<StatementP> & statements)1304 						CompoundStatement	(const vector<StatementP>& statements)
1305 							: m_statements	(statements) {}
1306 
1307 protected:
doPrint(ostream & os) const1308 	void				doPrint				(ostream&		os)						const
1309 	{
1310 		os << "{\n";
1311 
1312 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
1313 			os << *m_statements[ndx];
1314 
1315 		os << "}\n";
1316 	}
1317 
doExecute(EvalContext & ctx) const1318 	void				doExecute			(EvalContext&	ctx)					const
1319 	{
1320 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
1321 			m_statements[ndx]->execute(ctx);
1322 	}
1323 
doGetUsedFuncs(FuncSet & dst) const1324 	void				doGetUsedFuncs		(FuncSet& dst)							const
1325 	{
1326 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
1327 			m_statements[ndx]->getUsedFuncs(dst);
1328 	}
1329 
1330 	vector<StatementP>	m_statements;
1331 };
1332 
compoundStatement(const vector<StatementP> & statements)1333 StatementP compoundStatement(const vector<StatementP>& statements)
1334 {
1335 	return StatementP(new CompoundStatement(statements));
1336 }
1337 
1338 //! Common base class for all expressions regardless of their type.
1339 class ExprBase
1340 {
1341 public:
~ExprBase(void)1342 	virtual				~ExprBase		(void)									{}
printExpr(ostream & os) const1343 	void				printExpr		(ostream& os) const { this->doPrintExpr(os); }
1344 
1345 	//! Output the functions that this expression refers to
getUsedFuncs(FuncSet & dst) const1346 	void				getUsedFuncs	(FuncSet& dst) const
1347 	{
1348 		this->doGetUsedFuncs(dst);
1349 	}
1350 
1351 protected:
doPrintExpr(ostream &) const1352 	virtual void		doPrintExpr		(ostream&)	const	{}
doGetUsedFuncs(FuncSet &) const1353 	virtual void		doGetUsedFuncs	(FuncSet&)	const	{}
1354 };
1355 
1356 //! Type-specific operations for an expression representing type T.
1357 template <typename T>
1358 class Expr : public ExprBase
1359 {
1360 public:
1361 	typedef				T				Val;
1362 	typedef typename	Traits<T>::IVal	IVal;
1363 
1364 	IVal				evaluate		(const EvalContext&	ctx) const;
fails(const EvalContext & ctx) const1365 	IVal				fails			(const EvalContext&	ctx) const	{ return this->doFails(ctx); }
1366 
1367 protected:
1368 	virtual IVal		doEvaluate		(const EvalContext&	ctx) const = 0;
doFails(const EvalContext & ctx) const1369 	virtual IVal		doFails			(const EvalContext&	ctx) const {return doEvaluate(ctx);}
1370 };
1371 
1372 //! Evaluate an expression with the given context, optionally tracing the calls to stderr.
1373 template <typename T>
evaluate(const EvalContext & ctx) const1374 typename Traits<T>::IVal Expr<T>::evaluate (const EvalContext& ctx) const
1375 {
1376 #ifdef GLS_ENABLE_TRACE
1377 	static const FloatFormat	highpFmt	(-126, 127, 23, true,
1378 											 tcu::MAYBE,
1379 											 tcu::YES,
1380 											 tcu::MAYBE);
1381 	EvalContext					newCtx		(ctx.format, ctx.floatPrecision,
1382 											 ctx.env, ctx.callDepth + 1);
1383 	const IVal					ret			= this->doEvaluate(newCtx);
1384 
1385 	if (isTypeValid<T>())
1386 	{
1387 		std::cerr << string(ctx.callDepth, ' ');
1388 		this->printExpr(std::cerr);
1389 		std::cerr << " -> " << intervalToString<T>(highpFmt, ret) << std::endl;
1390 	}
1391 	return ret;
1392 #else
1393 	return this->doEvaluate(ctx);
1394 #endif
1395 }
1396 
1397 template <typename T>
1398 class ExprPBase : public SharedPtr<const Expr<T> >
1399 {
1400 public:
1401 };
1402 
operator <<(ostream & os,const ExprBase & expr)1403 ostream& operator<< (ostream& os, const ExprBase& expr)
1404 {
1405 	expr.printExpr(os);
1406 	return os;
1407 }
1408 
1409 /*--------------------------------------------------------------------*//*!
1410  * \brief Shared pointer to an expression of a container type.
1411  *
1412  * Container types (i.e. vectors and matrices) support the subscription
1413  * operator. This class provides a bit of syntactic sugar to allow us to use
1414  * the C++ subscription operator to create a subscription expression.
1415  *//*--------------------------------------------------------------------*/
1416 template <typename T>
1417 class ContainerExprPBase : public ExprPBase<T>
1418 {
1419 public:
1420 	ExprP<typename T::Element>	operator[]	(int i) const;
1421 };
1422 
1423 template <typename T>
1424 class ExprP : public ExprPBase<T> {};
1425 
1426 // We treat Voids as containers since the dummy parameters in generalized
1427 // vector functions are represented as Voids.
1428 template <>
1429 class ExprP<Void> : public ContainerExprPBase<Void> {};
1430 
1431 template <typename T, int Size>
1432 class ExprP<Vector<T, Size> > : public ContainerExprPBase<Vector<T, Size> > {};
1433 
1434 template <typename T, int Rows, int Cols>
1435 class ExprP<Matrix<T, Rows, Cols> > : public ContainerExprPBase<Matrix<T, Rows, Cols> > {};
1436 
exprP(void)1437 template <typename T> ExprP<T> exprP (void)
1438 {
1439 	return ExprP<T>();
1440 }
1441 
1442 template <typename T>
exprP(const SharedPtr<const Expr<T>> & ptr)1443 ExprP<T> exprP (const SharedPtr<const Expr<T> >& ptr)
1444 {
1445 	ExprP<T> ret;
1446 	static_cast<SharedPtr<const Expr<T> >&>(ret) = ptr;
1447 	return ret;
1448 }
1449 
1450 template <typename T>
exprP(const Expr<T> * ptr)1451 ExprP<T> exprP (const Expr<T>* ptr)
1452 {
1453 	return exprP(SharedPtr<const Expr<T> >(ptr));
1454 }
1455 
1456 /*--------------------------------------------------------------------*//*!
1457  * \brief A shared pointer to a variable expression.
1458  *
1459  * This is just a narrowing of ExprP for the operations that require a variable
1460  * instead of an arbitrary expression.
1461  *
1462  *//*--------------------------------------------------------------------*/
1463 template <typename T>
1464 class VariableP : public SharedPtr<const Variable<T> >
1465 {
1466 public:
1467 	typedef		SharedPtr<const Variable<T> >	Super;
VariableP(const Variable<T> * ptr)1468 	explicit	VariableP	(const Variable<T>* ptr) : Super(ptr) {}
VariableP(void)1469 				VariableP	(void) {}
VariableP(const Super & ptr)1470 				VariableP	(const Super& ptr) : Super(ptr) {}
1471 
operator ExprP<T>(void) const1472 	operator	ExprP<T>	(void) const { return exprP(SharedPtr<const Expr<T> >(*this)); }
1473 };
1474 
1475 /*--------------------------------------------------------------------*//*!
1476  * \name Syntactic sugar operators for expressions.
1477  *
1478  * @{
1479  *
1480  * These operators allow the use of C++ syntax to construct GLSL expressions
1481  * containing operators: e.g. "a+b" creates an addition expression with
1482  * operands a and b, and so on.
1483  *
1484  *//*--------------------------------------------------------------------*/
1485 ExprP<float>						operator+ (const ExprP<float>&						arg0,
1486 											  const ExprP<float>&						arg1);
1487 ExprP<deFloat16>					operator+ (const ExprP<deFloat16>&					arg0,
1488 											  const ExprP<deFloat16>&					arg1);
1489 ExprP<double>						operator+ (const ExprP<double>&						arg0,
1490 											  const ExprP<double>&						arg1);
1491 template <typename T>
1492 ExprP<T>							operator- (const ExprP<T>& arg0);
1493 template <typename T>
1494 ExprP<T>							operator- (const ExprP<T>&							arg0,
1495 											  const ExprP<T>&							arg1);
1496 template<int Left, int Mid, int Right, typename T>
1497 ExprP<Matrix<T, Left, Right> >		operator* (const ExprP<Matrix<T, Left, Mid> >&		left,
1498 											   const ExprP<Matrix<T, Mid, Right> >&		right);
1499 ExprP<float>						operator* (const ExprP<float>&						arg0,
1500 											  const ExprP<float>&						arg1);
1501 ExprP<deFloat16>					operator* (const ExprP<deFloat16>&					arg0,
1502 											   const ExprP<deFloat16>&					arg1);
1503 ExprP<double>						operator* (const ExprP<double>&						arg0,
1504 											  const ExprP<double>&						arg1);
1505 template <typename T>
1506 ExprP<T>							operator/ (const ExprP<T>&							arg0,
1507 											  const ExprP<T>&							arg1);
1508 template<typename T, int Size>
1509 ExprP<Vector<T, Size> >				operator- (const ExprP<Vector<T, Size> >&			arg0);
1510 template<typename T, int Size>
1511 ExprP<Vector<T, Size> >				operator- (const ExprP<Vector<T, Size> >&			arg0,
1512 											   const ExprP<Vector<T, Size> >&			arg1);
1513 template<int Size, typename T>
1514 ExprP<Vector<T, Size> >				operator* (const ExprP<Vector<T, Size> >&			arg0,
1515 											   const ExprP<T>&							arg1);
1516 template<typename T, int Size>
1517 ExprP<Vector<T, Size> >				operator* (const ExprP<Vector<T, Size> >&			arg0,
1518 											   const ExprP<Vector<T, Size> >&			arg1);
1519 template<int Rows, int Cols, typename T>
1520 ExprP<Vector<T, Rows> >				operator* (const ExprP<Vector<T, Cols> >&			left,
1521 											   const ExprP<Matrix<T, Rows, Cols> >&		right);
1522 template<int Rows, int Cols, typename T>
1523 ExprP<Vector<T, Cols> >				operator* (const ExprP<Matrix<T, Rows, Cols> >&		left,
1524 											   const ExprP<Vector<T, Rows> >&			right);
1525 template<int Rows, int Cols, typename T>
1526 ExprP<Matrix<T, Rows, Cols> >		operator* (const ExprP<Matrix<T, Rows, Cols> >&		left,
1527 											   const ExprP<T>&							right);
1528 template<int Rows, int Cols>
1529 ExprP<Matrix<float, Rows, Cols> >	operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
1530 											   const ExprP<Matrix<float, Rows, Cols> >&	right);
1531 template<int Rows, int Cols>
1532 ExprP<Matrix<deFloat16, Rows, Cols> >	operator+ (const ExprP<Matrix<deFloat16, Rows, Cols> >&	left,
1533 												   const ExprP<Matrix<deFloat16, Rows, Cols> >&	right);
1534 template<int Rows, int Cols>
1535 ExprP<Matrix<double, Rows, Cols> >	operator+ (const ExprP<Matrix<double, Rows, Cols> >&	left,
1536 											   const ExprP<Matrix<double, Rows, Cols> >&	right);
1537 template<typename T, int Rows, int Cols>
1538 ExprP<Matrix<T, Rows, Cols> >	operator- (const ExprP<Matrix<T, Rows, Cols> >&	mat);
1539 
1540 //! @}
1541 
1542 /*--------------------------------------------------------------------*//*!
1543  * \brief Variable expression.
1544  *
1545  * A variable is evaluated by looking up its range of possible values from an
1546  * environment.
1547  *//*--------------------------------------------------------------------*/
1548 template <typename T>
1549 class Variable : public Expr<T>
1550 {
1551 public:
1552 	typedef typename Expr<T>::IVal IVal;
1553 
Variable(const string & name)1554 					Variable	(const string& name) : m_name (name) {}
getName(void) const1555 	string			getName		(void)							const { return m_name; }
1556 
1557 protected:
doPrintExpr(ostream & os) const1558 	void			doPrintExpr	(ostream& os)					const { os << m_name; }
doEvaluate(const EvalContext & ctx) const1559 	IVal			doEvaluate	(const EvalContext& ctx)		const
1560 	{
1561 		return ctx.env.lookup<T>(*this);
1562 	}
1563 
1564 private:
1565 	string	m_name;
1566 };
1567 
1568 template <typename T>
variable(const string & name)1569 VariableP<T> variable (const string& name)
1570 {
1571 	return VariableP<T>(new Variable<T>(name));
1572 }
1573 
1574 template <typename T>
bindExpression(const string & name,ExpandContext & ctx,const ExprP<T> & expr)1575 VariableP<T> bindExpression (const string& name, ExpandContext& ctx, const ExprP<T>& expr)
1576 {
1577 	VariableP<T> var = ctx.genSym<T>(name);
1578 	ctx.addStatement(variableDeclaration(var, expr));
1579 	return var;
1580 }
1581 
1582 /*--------------------------------------------------------------------*//*!
1583  * \brief Constant expression.
1584  *
1585  * A constant is evaluated by rounding it to a set of possible values allowed
1586  * by the current floating point precision.
1587  *//*--------------------------------------------------------------------*/
1588 template <typename T>
1589 class Constant : public Expr<T>
1590 {
1591 public:
1592 	typedef typename Expr<T>::IVal IVal;
1593 
Constant(const T & value)1594 			Constant		(const T& value) : m_value(value) {}
1595 
1596 protected:
doPrintExpr(ostream & os) const1597 	void	doPrintExpr		(ostream& os) const			{ os << m_value; }
doEvaluate(const EvalContext &) const1598 	IVal	doEvaluate		(const EvalContext&) const	{ return makeIVal(m_value); }
1599 
1600 private:
1601 	T		m_value;
1602 };
1603 
1604 template <typename T>
constant(const T & value)1605 ExprP<T> constant (const T& value)
1606 {
1607 	return exprP(new Constant<T>(value));
1608 }
1609 
1610 //! Return a reference to a singleton void constant.
voidP(void)1611 const ExprP<Void>& voidP (void)
1612 {
1613 	static const ExprP<Void> singleton = constant(Void());
1614 
1615 	return singleton;
1616 }
1617 
1618 /*--------------------------------------------------------------------*//*!
1619  * \brief Four-element tuple.
1620  *
1621  * This is used for various things where we need one thing for each possible
1622  * function parameter. Currently the maximum supported number of parameters is
1623  * four.
1624  *//*--------------------------------------------------------------------*/
1625 template <typename T0 = Void, typename T1 = Void, typename T2 = Void, typename T3 = Void>
1626 struct Tuple4
1627 {
Tuple4vkt::shaderexecutor::Tuple41628 	explicit Tuple4 (const T0 e0 = T0(),
1629 					 const T1 e1 = T1(),
1630 					 const T2 e2 = T2(),
1631 					 const T3 e3 = T3())
1632 		: a	(e0)
1633 		, b	(e1)
1634 		, c	(e2)
1635 		, d	(e3)
1636 	{
1637 	}
1638 
1639 	T0 a;
1640 	T1 b;
1641 	T2 c;
1642 	T3 d;
1643 };
1644 
1645 /*--------------------------------------------------------------------*//*!
1646  * \brief Function signature.
1647  *
1648  * This is a purely compile-time structure used to bundle all types in a
1649  * function signature together. This makes passing the signature around in
1650  * templates easier, since we only need to take and pass a single Sig instead
1651  * of a bunch of parameter types and a return type.
1652  *
1653  *//*--------------------------------------------------------------------*/
1654 template <typename R,
1655 		  typename P0 = Void, typename P1 = Void,
1656 		  typename P2 = Void, typename P3 = Void>
1657 struct Signature
1658 {
1659 	typedef R							Ret;
1660 	typedef P0							Arg0;
1661 	typedef P1							Arg1;
1662 	typedef P2							Arg2;
1663 	typedef P3							Arg3;
1664 	typedef typename Traits<Ret>::IVal	IRet;
1665 	typedef typename Traits<Arg0>::IVal	IArg0;
1666 	typedef typename Traits<Arg1>::IVal	IArg1;
1667 	typedef typename Traits<Arg2>::IVal	IArg2;
1668 	typedef typename Traits<Arg3>::IVal	IArg3;
1669 
1670 	typedef Tuple4<	const Arg0&,	const Arg1&,	const Arg2&,	const Arg3&>	Args;
1671 	typedef Tuple4<	const IArg0&,	const IArg1&,	const IArg2&,	const IArg3&>	IArgs;
1672 	typedef Tuple4<	ExprP<Arg0>,	ExprP<Arg1>,	ExprP<Arg2>,	ExprP<Arg3> >	ArgExprs;
1673 };
1674 
1675 typedef vector<const ExprBase*> BaseArgExprs;
1676 
1677 /*--------------------------------------------------------------------*//*!
1678  * \brief Type-independent operations for function objects.
1679  *
1680  *//*--------------------------------------------------------------------*/
1681 class FuncBase
1682 {
1683 public:
~FuncBase(void)1684 	virtual				~FuncBase				(void)					{}
1685 	virtual string		getName					(void)					const = 0;
1686 	//! Name of extension that this function requires, or empty.
getRequiredExtension(void) const1687 	virtual string		getRequiredExtension	(void)					const { return ""; }
getInputRange(const bool is16bit) const1688 	virtual Interval	getInputRange			(const bool is16bit)	const {DE_UNREF(is16bit); return Interval(true, -TCU_INFINITY, TCU_INFINITY); }
1689 	virtual void		print					(ostream&,
1690 												 const BaseArgExprs&)	const = 0;
1691 	//! Index of output parameter, or -1 if none of the parameters is output.
getOutParamIndex(void) const1692 	virtual int			getOutParamIndex		(void)					const { return -1; }
1693 
getSpirvCase(void) const1694 	virtual SpirVCaseT	getSpirvCase			(void)					const { return SPIRV_CASETYPE_NONE; }
1695 
printDefinition(ostream & os) const1696 	void				printDefinition			(ostream& os)			const
1697 	{
1698 		doPrintDefinition(os);
1699 	}
1700 
getUsedFuncs(FuncSet & dst) const1701 	void				getUsedFuncs			(FuncSet& dst) const
1702 	{
1703 		this->doGetUsedFuncs(dst);
1704 	}
1705 
1706 protected:
1707 	virtual void		doPrintDefinition		(ostream& os)			const = 0;
1708 	virtual void		doGetUsedFuncs			(FuncSet& dst)			const = 0;
1709 };
1710 
1711 typedef Tuple4<string, string, string, string> ParamNames;
1712 
1713 /*--------------------------------------------------------------------*//*!
1714  * \brief Function objects.
1715  *
1716  * Each Func object represents a GLSL function. It can be applied to interval
1717  * arguments, and it returns the an interval that is a conservative
1718  * approximation of the image of the GLSL function over the argument
1719  * intervals. That is, it is given a set of possible arguments and it returns
1720  * the set of possible values.
1721  *
1722  *//*--------------------------------------------------------------------*/
1723 template <typename Sig_>
1724 class Func : public FuncBase
1725 {
1726 public:
1727 	typedef Sig_										Sig;
1728 	typedef typename Sig::Ret							Ret;
1729 	typedef typename Sig::Arg0							Arg0;
1730 	typedef typename Sig::Arg1							Arg1;
1731 	typedef typename Sig::Arg2							Arg2;
1732 	typedef typename Sig::Arg3							Arg3;
1733 	typedef typename Sig::IRet							IRet;
1734 	typedef typename Sig::IArg0							IArg0;
1735 	typedef typename Sig::IArg1							IArg1;
1736 	typedef typename Sig::IArg2							IArg2;
1737 	typedef typename Sig::IArg3							IArg3;
1738 	typedef typename Sig::Args							Args;
1739 	typedef typename Sig::IArgs							IArgs;
1740 	typedef typename Sig::ArgExprs						ArgExprs;
1741 
print(ostream & os,const BaseArgExprs & args) const1742 	void				print			(ostream&			os,
1743 										 const BaseArgExprs& args)				const
1744 	{
1745 		this->doPrint(os, args);
1746 	}
1747 
apply(const EvalContext & ctx,const IArg0 & arg0=IArg0 (),const IArg1 & arg1=IArg1 (),const IArg2 & arg2=IArg2 (),const IArg3 & arg3=IArg3 ()) const1748 	IRet				apply			(const EvalContext&	ctx,
1749 										 const IArg0&		arg0 = IArg0(),
1750 										 const IArg1&		arg1 = IArg1(),
1751 										 const IArg2&		arg2 = IArg2(),
1752 										 const IArg3&		arg3 = IArg3())		const
1753 	{
1754 		return this->applyArgs(ctx, IArgs(arg0, arg1, arg2, arg3));
1755 	}
1756 
fail(const EvalContext & ctx,const IArg0 & arg0=IArg0 (),const IArg1 & arg1=IArg1 (),const IArg2 & arg2=IArg2 (),const IArg3 & arg3=IArg3 ()) const1757 	IRet				fail			(const EvalContext&	ctx,
1758 										 const IArg0&		arg0 = IArg0(),
1759 										 const IArg1&		arg1 = IArg1(),
1760 										 const IArg2&		arg2 = IArg2(),
1761 										 const IArg3&		arg3 = IArg3())		const
1762 	{
1763 		return this->doFail(ctx, IArgs(arg0, arg1, arg2, arg3));
1764 	}
applyArgs(const EvalContext & ctx,const IArgs & args) const1765 	IRet				applyArgs		(const EvalContext&	ctx,
1766 										 const IArgs&		args)				const
1767 	{
1768 		return this->doApply(ctx, args);
1769 	}
1770 	ExprP<Ret>			operator()		(const ExprP<Arg0>&		arg0 = voidP(),
1771 										 const ExprP<Arg1>&		arg1 = voidP(),
1772 										 const ExprP<Arg2>&		arg2 = voidP(),
1773 										 const ExprP<Arg3>&		arg3 = voidP())		const;
1774 
getParamNames(void) const1775 	const ParamNames&	getParamNames	(void)									const
1776 	{
1777 		return this->doGetParamNames();
1778 	}
1779 
1780 protected:
1781 	virtual IRet		doApply			(const EvalContext&,
1782 										 const IArgs&)							const = 0;
doFail(const EvalContext & ctx,const IArgs & args) const1783 	virtual IRet		doFail			(const EvalContext&	ctx,
1784 										 const IArgs&		args)				const
1785 	{
1786 		return this->doApply(ctx, args);
1787 	}
doPrint(ostream & os,const BaseArgExprs & args) const1788 	virtual void		doPrint			(ostream& os, const BaseArgExprs& args)	const
1789 	{
1790 		os << getName() << "(";
1791 
1792 		if (isTypeValid<Arg0>())
1793 			os << *args[0];
1794 
1795 		if (isTypeValid<Arg1>())
1796 			os << ", " << *args[1];
1797 
1798 		if (isTypeValid<Arg2>())
1799 			os << ", " << *args[2];
1800 
1801 		if (isTypeValid<Arg3>())
1802 			os << ", " << *args[3];
1803 
1804 		os << ")";
1805 	}
1806 
doGetParamNames(void) const1807 	virtual const ParamNames&	doGetParamNames	(void)							const
1808 	{
1809 		static ParamNames	names	("a", "b", "c", "d");
1810 		return names;
1811 	}
1812 };
1813 
1814 template <typename Sig>
1815 class Apply : public Expr<typename Sig::Ret>
1816 {
1817 public:
1818 	typedef typename Sig::Ret				Ret;
1819 	typedef typename Sig::Arg0				Arg0;
1820 	typedef typename Sig::Arg1				Arg1;
1821 	typedef typename Sig::Arg2				Arg2;
1822 	typedef typename Sig::Arg3				Arg3;
1823 	typedef typename Expr<Ret>::Val			Val;
1824 	typedef typename Expr<Ret>::IVal		IVal;
1825 	typedef Func<Sig>						ApplyFunc;
1826 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
1827 
Apply(const ApplyFunc & func,const ExprP<Arg0> & arg0=voidP (),const ExprP<Arg1> & arg1=voidP (),const ExprP<Arg2> & arg2=voidP (),const ExprP<Arg3> & arg3=voidP ())1828 						Apply	(const ApplyFunc&		func,
1829 								 const ExprP<Arg0>&		arg0 = voidP(),
1830 								 const ExprP<Arg1>&		arg1 = voidP(),
1831 								 const ExprP<Arg2>&		arg2 = voidP(),
1832 								 const ExprP<Arg3>&		arg3 = voidP())
1833 							: m_func	(func),
1834 							  m_args	(arg0, arg1, arg2, arg3) {}
1835 
Apply(const ApplyFunc & func,const ArgExprs & args)1836 						Apply	(const ApplyFunc&	func,
1837 								 const ArgExprs&	args)
1838 							: m_func	(func),
1839 							  m_args	(args) {}
1840 protected:
doPrintExpr(ostream & os) const1841 	void				doPrintExpr			(ostream& os) const
1842 	{
1843 		BaseArgExprs	args;
1844 		args.push_back(m_args.a.get());
1845 		args.push_back(m_args.b.get());
1846 		args.push_back(m_args.c.get());
1847 		args.push_back(m_args.d.get());
1848 		m_func.print(os, args);
1849 	}
1850 
doEvaluate(const EvalContext & ctx) const1851 	IVal				doEvaluate		(const EvalContext& ctx) const
1852 	{
1853 		return m_func.apply(ctx,
1854 							m_args.a->evaluate(ctx), m_args.b->evaluate(ctx),
1855 							m_args.c->evaluate(ctx), m_args.d->evaluate(ctx));
1856 	}
1857 
doGetUsedFuncs(FuncSet & dst) const1858 	void				doGetUsedFuncs	(FuncSet& dst) const
1859 	{
1860 		m_func.getUsedFuncs(dst);
1861 		m_args.a->getUsedFuncs(dst);
1862 		m_args.b->getUsedFuncs(dst);
1863 		m_args.c->getUsedFuncs(dst);
1864 		m_args.d->getUsedFuncs(dst);
1865 	}
1866 
1867 	const ApplyFunc&	m_func;
1868 	ArgExprs			m_args;
1869 };
1870 
1871 template<typename T>
1872 class Alternatives : public Func<Signature<T, T, T> >
1873 {
1874 public:
1875 	typedef typename	Alternatives::Sig		Sig;
1876 
1877 protected:
1878 	typedef typename	Alternatives::IRet		IRet;
1879 	typedef typename	Alternatives::IArgs		IArgs;
1880 
getName(void) const1881 	virtual string		getName				(void) const			{ return "alternatives"; }
doPrintDefinition(std::ostream &) const1882 	virtual void		doPrintDefinition	(std::ostream&) const	{}
doGetUsedFuncs(FuncSet &) const1883 	void				doGetUsedFuncs		(FuncSet&) const		{}
1884 
doApply(const EvalContext &,const IArgs & args) const1885 	virtual IRet		doApply				(const EvalContext&, const IArgs& args) const
1886 	{
1887 		return unionIVal<T>(args.a, args.b);
1888 	}
1889 
doPrint(ostream & os,const BaseArgExprs & args) const1890 	virtual void		doPrint				(ostream& os, const BaseArgExprs& args)	const
1891 	{
1892 		os << "{" << *args[0] << " | " << *args[1] << "}";
1893 	}
1894 };
1895 
1896 template <typename Sig>
createApply(const Func<Sig> & func,const typename Func<Sig>::ArgExprs & args)1897 ExprP<typename Sig::Ret> createApply (const Func<Sig>&						func,
1898 									  const typename Func<Sig>::ArgExprs&	args)
1899 {
1900 	return exprP(new Apply<Sig>(func, args));
1901 }
1902 
1903 template <typename Sig>
createApply(const Func<Sig> & func,const ExprP<typename Sig::Arg0> & arg0=voidP (),const ExprP<typename Sig::Arg1> & arg1=voidP (),const ExprP<typename Sig::Arg2> & arg2=voidP (),const ExprP<typename Sig::Arg3> & arg3=voidP ())1904 ExprP<typename Sig::Ret> createApply (
1905 	const Func<Sig>&			func,
1906 	const ExprP<typename Sig::Arg0>&	arg0 = voidP(),
1907 	const ExprP<typename Sig::Arg1>&	arg1 = voidP(),
1908 	const ExprP<typename Sig::Arg2>&	arg2 = voidP(),
1909 	const ExprP<typename Sig::Arg3>&	arg3 = voidP())
1910 {
1911 	return exprP(new Apply<Sig>(func, arg0, arg1, arg2, arg3));
1912 }
1913 
1914 template <typename Sig>
operator ()(const ExprP<typename Sig::Arg0> & arg0,const ExprP<typename Sig::Arg1> & arg1,const ExprP<typename Sig::Arg2> & arg2,const ExprP<typename Sig::Arg3> & arg3) const1915 ExprP<typename Sig::Ret> Func<Sig>::operator() (const ExprP<typename Sig::Arg0>& arg0,
1916 												const ExprP<typename Sig::Arg1>& arg1,
1917 												const ExprP<typename Sig::Arg2>& arg2,
1918 												const ExprP<typename Sig::Arg3>& arg3) const
1919 {
1920 	return createApply(*this, arg0, arg1, arg2, arg3);
1921 }
1922 
1923 template <typename F>
app(const ExprP<typename F::Arg0> & arg0=voidP (),const ExprP<typename F::Arg1> & arg1=voidP (),const ExprP<typename F::Arg2> & arg2=voidP (),const ExprP<typename F::Arg3> & arg3=voidP ())1924 ExprP<typename F::Ret> app (const ExprP<typename F::Arg0>& arg0 = voidP(),
1925 							const ExprP<typename F::Arg1>& arg1 = voidP(),
1926 							const ExprP<typename F::Arg2>& arg2 = voidP(),
1927 							const ExprP<typename F::Arg3>& arg3 = voidP())
1928 {
1929 	return createApply(instance<F>(), arg0, arg1, arg2, arg3);
1930 }
1931 
1932 template <typename F>
call(const EvalContext & ctx,const typename F::IArg0 & arg0=Void (),const typename F::IArg1 & arg1=Void (),const typename F::IArg2 & arg2=Void (),const typename F::IArg3 & arg3=Void ())1933 typename F::IRet call (const EvalContext&			ctx,
1934 					   const typename F::IArg0&		arg0 = Void(),
1935 					   const typename F::IArg1&		arg1 = Void(),
1936 					   const typename F::IArg2&		arg2 = Void(),
1937 					   const typename F::IArg3&		arg3 = Void())
1938 {
1939 	return instance<F>().apply(ctx, arg0, arg1, arg2, arg3);
1940 }
1941 
1942 template <typename T>
alternatives(const ExprP<T> & arg0,const ExprP<T> & arg1)1943 ExprP<T> alternatives (const ExprP<T>& arg0,
1944 					   const ExprP<T>& arg1)
1945 {
1946 	return createApply<typename Alternatives<T>::Sig>(instance<Alternatives<T> >(), arg0, arg1);
1947 }
1948 
1949 template <typename Sig>
1950 class ApplyVar : public Apply<Sig>
1951 {
1952 public:
1953 	typedef typename Sig::Ret				Ret;
1954 	typedef typename Sig::Arg0				Arg0;
1955 	typedef typename Sig::Arg1				Arg1;
1956 	typedef typename Sig::Arg2				Arg2;
1957 	typedef typename Sig::Arg3				Arg3;
1958 	typedef typename Expr<Ret>::Val			Val;
1959 	typedef typename Expr<Ret>::IVal		IVal;
1960 	typedef Func<Sig>						ApplyFunc;
1961 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
1962 
ApplyVar(const ApplyFunc & func,const VariableP<Arg0> & arg0,const VariableP<Arg1> & arg1,const VariableP<Arg2> & arg2,const VariableP<Arg3> & arg3)1963 						ApplyVar	(const ApplyFunc&			func,
1964 									 const VariableP<Arg0>&		arg0,
1965 									 const VariableP<Arg1>&		arg1,
1966 									 const VariableP<Arg2>&		arg2,
1967 									 const VariableP<Arg3>&		arg3)
1968 							: Apply<Sig> (func, arg0, arg1, arg2, arg3) {}
1969 protected:
doEvaluate(const EvalContext & ctx) const1970 	IVal				doEvaluate		(const EvalContext& ctx) const
1971 	{
1972 		const Variable<Arg0>&	var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a);
1973 		const Variable<Arg1>&	var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b);
1974 		const Variable<Arg2>&	var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c);
1975 		const Variable<Arg3>&	var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d);
1976 		return this->m_func.apply(ctx,
1977 								  ctx.env.lookup(var0), ctx.env.lookup(var1),
1978 								  ctx.env.lookup(var2), ctx.env.lookup(var3));
1979 	}
1980 
doFails(const EvalContext & ctx) const1981 	IVal				doFails		(const EvalContext& ctx) const
1982 	{
1983 		const Variable<Arg0>&	var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a);
1984 		const Variable<Arg1>&	var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b);
1985 		const Variable<Arg2>&	var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c);
1986 		const Variable<Arg3>&	var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d);
1987 		return this->m_func.fail(ctx,
1988 								  ctx.env.lookup(var0), ctx.env.lookup(var1),
1989 								  ctx.env.lookup(var2), ctx.env.lookup(var3));
1990 	}
1991 };
1992 
1993 template <typename Sig>
applyVar(const Func<Sig> & func,const VariableP<typename Sig::Arg0> & arg0,const VariableP<typename Sig::Arg1> & arg1,const VariableP<typename Sig::Arg2> & arg2,const VariableP<typename Sig::Arg3> & arg3)1994 ExprP<typename Sig::Ret> applyVar (const Func<Sig>&						func,
1995 								   const VariableP<typename Sig::Arg0>&	arg0,
1996 								   const VariableP<typename Sig::Arg1>&	arg1,
1997 								   const VariableP<typename Sig::Arg2>&	arg2,
1998 								   const VariableP<typename Sig::Arg3>&	arg3)
1999 {
2000 	return exprP(new ApplyVar<Sig>(func, arg0, arg1, arg2, arg3));
2001 }
2002 
2003 template <typename Sig_>
2004 class DerivedFunc : public Func<Sig_>
2005 {
2006 public:
2007 	typedef typename DerivedFunc::ArgExprs		ArgExprs;
2008 	typedef typename DerivedFunc::IRet			IRet;
2009 	typedef typename DerivedFunc::IArgs			IArgs;
2010 	typedef typename DerivedFunc::Ret			Ret;
2011 	typedef typename DerivedFunc::Arg0			Arg0;
2012 	typedef typename DerivedFunc::Arg1			Arg1;
2013 	typedef typename DerivedFunc::Arg2			Arg2;
2014 	typedef typename DerivedFunc::Arg3			Arg3;
2015 	typedef typename DerivedFunc::IArg0			IArg0;
2016 	typedef typename DerivedFunc::IArg1			IArg1;
2017 	typedef typename DerivedFunc::IArg2			IArg2;
2018 	typedef typename DerivedFunc::IArg3			IArg3;
2019 
2020 protected:
doPrintDefinition(ostream & os) const2021 	void						doPrintDefinition	(ostream& os) const
2022 	{
2023 		const ParamNames&	paramNames	= this->getParamNames();
2024 
2025 		initialize();
2026 
2027 		os << dataTypeNameOf<Ret>() << " " << this->getName()
2028 			<< "(";
2029 		if (isTypeValid<Arg0>())
2030 			os << dataTypeNameOf<Arg0>() << " " << paramNames.a;
2031 		if (isTypeValid<Arg1>())
2032 			os << ", " << dataTypeNameOf<Arg1>() << " " << paramNames.b;
2033 		if (isTypeValid<Arg2>())
2034 			os << ", " << dataTypeNameOf<Arg2>() << " " << paramNames.c;
2035 		if (isTypeValid<Arg3>())
2036 			os << ", " << dataTypeNameOf<Arg3>() << " " << paramNames.d;
2037 		os << ")\n{\n";
2038 
2039 		for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
2040 			os << *m_body[ndx];
2041 		os << "return " << *m_ret << ";\n";
2042 		os << "}\n";
2043 	}
2044 
doApply(const EvalContext & ctx,const IArgs & args) const2045 	IRet						doApply			(const EvalContext&	ctx,
2046 												 const IArgs&		args) const
2047 	{
2048 		Environment	funEnv;
2049 		IArgs&		mutArgs		= const_cast<IArgs&>(args);
2050 		IRet		ret;
2051 
2052 		initialize();
2053 
2054 		funEnv.bind(*m_var0, args.a);
2055 		funEnv.bind(*m_var1, args.b);
2056 		funEnv.bind(*m_var2, args.c);
2057 		funEnv.bind(*m_var3, args.d);
2058 
2059 		{
2060 			EvalContext	funCtx(ctx.format, ctx.floatPrecision, funEnv, ctx.callDepth);
2061 
2062 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
2063 				m_body[ndx]->execute(funCtx);
2064 
2065 			ret = m_ret->evaluate(funCtx);
2066 		}
2067 
2068 		// \todo [lauri] Store references instead of values in environment
2069 		const_cast<IArg0&>(mutArgs.a) = funEnv.lookup(*m_var0);
2070 		const_cast<IArg1&>(mutArgs.b) = funEnv.lookup(*m_var1);
2071 		const_cast<IArg2&>(mutArgs.c) = funEnv.lookup(*m_var2);
2072 		const_cast<IArg3&>(mutArgs.d) = funEnv.lookup(*m_var3);
2073 
2074 		return ret;
2075 	}
2076 
doGetUsedFuncs(FuncSet & dst) const2077 	void						doGetUsedFuncs	(FuncSet& dst) const
2078 	{
2079 		initialize();
2080 		if (dst.insert(this).second)
2081 		{
2082 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
2083 				m_body[ndx]->getUsedFuncs(dst);
2084 			m_ret->getUsedFuncs(dst);
2085 		}
2086 	}
2087 
2088 	virtual ExprP<Ret>			doExpand		(ExpandContext& ctx, const ArgExprs& args_) const = 0;
2089 
2090 	// These are transparently initialized when first needed. They cannot be
2091 	// initialized in the constructor because they depend on the doExpand
2092 	// method of the subclass.
2093 
2094 	mutable VariableP<Arg0>		m_var0;
2095 	mutable VariableP<Arg1>		m_var1;
2096 	mutable VariableP<Arg2>		m_var2;
2097 	mutable VariableP<Arg3>		m_var3;
2098 	mutable vector<StatementP>	m_body;
2099 	mutable ExprP<Ret>			m_ret;
2100 
2101 private:
2102 
initialize(void) const2103 	void				initialize		(void)	const
2104 	{
2105 		if (!m_ret)
2106 		{
2107 			const ParamNames&	paramNames	= this->getParamNames();
2108 			Counter				symCounter;
2109 			ExpandContext		ctx			(symCounter);
2110 			ArgExprs			args;
2111 
2112 			args.a	= m_var0 = variable<Arg0>(paramNames.a);
2113 			args.b	= m_var1 = variable<Arg1>(paramNames.b);
2114 			args.c	= m_var2 = variable<Arg2>(paramNames.c);
2115 			args.d	= m_var3 = variable<Arg3>(paramNames.d);
2116 
2117 			m_ret	= this->doExpand(ctx, args);
2118 			m_body	= ctx.getStatements();
2119 		}
2120 	}
2121 };
2122 
2123 template <typename Sig>
2124 class PrimitiveFunc : public Func<Sig>
2125 {
2126 public:
2127 	typedef typename PrimitiveFunc::Ret			Ret;
2128 	typedef typename PrimitiveFunc::ArgExprs	ArgExprs;
2129 
2130 protected:
doPrintDefinition(ostream &) const2131 	void	doPrintDefinition	(ostream&) const	{}
doGetUsedFuncs(FuncSet &) const2132 	void	doGetUsedFuncs		(FuncSet&) const	{}
2133 };
2134 
2135 template <typename T>
2136 class Cond : public PrimitiveFunc<Signature<T, bool, T, T> >
2137 {
2138 public:
2139 	typedef typename Cond::IArgs	IArgs;
2140 	typedef typename Cond::IRet		IRet;
2141 
getName(void) const2142 	string	getName	(void) const
2143 	{
2144 		return "_cond";
2145 	}
2146 
2147 protected:
2148 
doPrint(ostream & os,const BaseArgExprs & args) const2149 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
2150 	{
2151 		os << "(" << *args[0] << " ? " << *args[1] << " : " << *args[2] << ")";
2152 	}
2153 
doApply(const EvalContext &,const IArgs & iargs) const2154 	IRet	doApply	(const EvalContext&, const IArgs& iargs)const
2155 	{
2156 		IRet	ret;
2157 
2158 		if (iargs.a.contains(true))
2159 			ret = unionIVal<T>(ret, iargs.b);
2160 
2161 		if (iargs.a.contains(false))
2162 			ret = unionIVal<T>(ret, iargs.c);
2163 
2164 		return ret;
2165 	}
2166 };
2167 
2168 template <typename T>
2169 class CompareOperator : public PrimitiveFunc<Signature<bool, T, T> >
2170 {
2171 public:
2172 	typedef typename CompareOperator::IArgs	IArgs;
2173 	typedef typename CompareOperator::IArg0	IArg0;
2174 	typedef typename CompareOperator::IArg1	IArg1;
2175 	typedef typename CompareOperator::IRet	IRet;
2176 
2177 protected:
doPrint(ostream & os,const BaseArgExprs & args) const2178 	void			doPrint	(ostream& os, const BaseArgExprs& args) const
2179 	{
2180 		os << "(" << *args[0] << getSymbol() << *args[1] << ")";
2181 	}
2182 
doApply(const EvalContext &,const IArgs & iargs) const2183 	Interval		doApply	(const EvalContext&, const IArgs& iargs) const
2184 	{
2185 		const IArg0&	arg0 = iargs.a;
2186 		const IArg1&	arg1 = iargs.b;
2187 		IRet	ret;
2188 
2189 		if (canSucceed(arg0, arg1))
2190 			ret |= true;
2191 		if (canFail(arg0, arg1))
2192 			ret |= false;
2193 
2194 		return ret;
2195 	}
2196 
2197 	virtual string	getSymbol	(void) const = 0;
2198 	virtual bool	canSucceed	(const IArg0&, const IArg1&) const = 0;
2199 	virtual bool	canFail		(const IArg0&, const IArg1&) const = 0;
2200 };
2201 
2202 template <typename T>
2203 class LessThan : public CompareOperator<T>
2204 {
2205 public:
getName(void) const2206 	string	getName		(void) const									{ return "lessThan"; }
2207 
2208 protected:
getSymbol(void) const2209 	string	getSymbol	(void) const									{ return "<";		}
2210 
canSucceed(const Interval & a,const Interval & b) const2211 	bool	canSucceed	(const Interval& a, const Interval& b) const
2212 	{
2213 		return (a.lo() < b.hi());
2214 	}
2215 
canFail(const Interval & a,const Interval & b) const2216 	bool	canFail		(const Interval& a, const Interval& b) const
2217 	{
2218 		return !(a.hi() < b.lo());
2219 	}
2220 };
2221 
2222 template <typename T>
operator <(const ExprP<T> & a,const ExprP<T> & b)2223 ExprP<bool> operator< (const ExprP<T>& a, const ExprP<T>& b)
2224 {
2225 	return app<LessThan<T> >(a, b);
2226 }
2227 
2228 template <typename T>
cond(const ExprP<bool> & test,const ExprP<T> & consequent,const ExprP<T> & alternative)2229 ExprP<T> cond (const ExprP<bool>&	test,
2230 			   const ExprP<T>&		consequent,
2231 			   const ExprP<T>&		alternative)
2232 {
2233 	return app<Cond<T> >(test, consequent, alternative);
2234 }
2235 
2236 /*--------------------------------------------------------------------*//*!
2237  *
2238  * @}
2239  *
2240  *//*--------------------------------------------------------------------*/
2241 //Proper parameters for template T
2242 //	Signature<float, float>		32bit tests
2243 //	Signature<float, deFloat16>	16bit tests
2244 //	Signature<double, double>	64bit tests
2245 template< class T>
2246 class FloatFunc1 : public PrimitiveFunc<T>
2247 {
2248 protected:
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0>::IArgs & iargs) const2249 		Interval			doApply			(const EvalContext& ctx, const typename Signature<typename T::Ret, typename T::Arg0>::IArgs& iargs) const
2250 	{
2251 		return this->applyMonotone(ctx, iargs.a);
2252 	}
2253 
applyMonotone(const EvalContext & ctx,const Interval & iarg0) const2254 	Interval			applyMonotone	(const EvalContext& ctx, const Interval& iarg0) const
2255 	{
2256 		Interval ret;
2257 
2258 		TCU_INTERVAL_APPLY_MONOTONE1(ret, arg0, iarg0, val,
2259 									 TCU_SET_INTERVAL(val, point,
2260 													  point = this->applyPoint(ctx, arg0)));
2261 
2262 		ret |= innerExtrema(ctx, iarg0);
2263 		ret &= (this->getCodomain(ctx) | TCU_NAN);
2264 
2265 		return ctx.format.convert(ret);
2266 	}
2267 
innerExtrema(const EvalContext &,const Interval &) const2268 	virtual Interval	innerExtrema	(const EvalContext&, const Interval&) const
2269 	{
2270 		return Interval(); // empty interval, i.e. no extrema
2271 	}
2272 
applyPoint(const EvalContext & ctx,double arg0) const2273 	virtual Interval	applyPoint		(const EvalContext& ctx, double arg0) const
2274 	{
2275 		const double	exact	= this->applyExact(arg0);
2276 		const double	prec	= this->precision(ctx, exact, arg0);
2277 
2278 		return exact + Interval(-prec, prec);
2279 	}
2280 
applyExact(double) const2281 	virtual double		applyExact		(double) const
2282 	{
2283 		TCU_THROW(InternalError, "Cannot apply");
2284 	}
2285 
getCodomain(const EvalContext &) const2286 	virtual Interval	getCodomain		(const EvalContext&) const
2287 	{
2288 		return Interval::unbounded(true);
2289 	}
2290 
2291 	virtual double		precision		(const EvalContext& ctx, double, double) const = 0;
2292 };
2293 
2294 /*Proper parameters for template T
2295 	Signature<double, double>	64bit tests
2296 	Signature<float, float>		32bit tests
2297 	Signature<float, deFloat16>	16bit tests*/
2298 template <class T>
2299 class CFloatFunc1 : public FloatFunc1<T>
2300 {
2301 public:
CFloatFunc1(const string & name,tcu::DoubleFunc1 & func)2302 						CFloatFunc1	(const string& name, tcu::DoubleFunc1& func)
2303 							: m_name(name), m_func(func) {}
2304 
getName(void) const2305 	string				getName		(void) const		{ return m_name; }
2306 
2307 protected:
applyExact(double x) const2308 	double				applyExact	(double x) const	{ return m_func(x); }
2309 
2310 	const string		m_name;
2311 	tcu::DoubleFunc1&	m_func;
2312 };
2313 
2314 //<Signature<float, deFloat16, deFloat16> >
2315 //<Signature<float, float, float> >
2316 //<Signature<double, double, double> >
2317 template <class T>
2318 class FloatFunc2 : public PrimitiveFunc<T>
2319 {
2320 protected:
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2321 	Interval			doApply			(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2322 	{
2323 		return this->applyMonotone(ctx, iargs.a, iargs.b);
2324 	}
2325 
applyMonotone(const EvalContext & ctx,const Interval & xi,const Interval & yi) const2326 	Interval			applyMonotone	(const EvalContext&	ctx,
2327 										 const Interval&	xi,
2328 										 const Interval&	yi) const
2329 	{
2330 		Interval reti;
2331 
2332 		TCU_INTERVAL_APPLY_MONOTONE2(reti, x, xi, y, yi, ret,
2333 									 TCU_SET_INTERVAL(ret, point,
2334 													  point = this->applyPoint(ctx, x, y)));
2335 		reti |= innerExtrema(ctx, xi, yi);
2336 		reti &= (this->getCodomain(ctx) | TCU_NAN);
2337 
2338 		return ctx.format.convert(reti);
2339 	}
2340 
innerExtrema(const EvalContext &,const Interval &,const Interval &) const2341 	virtual Interval	innerExtrema	(const EvalContext&,
2342 										 const Interval&,
2343 										 const Interval&) const
2344 	{
2345 		return Interval(); // empty interval, i.e. no extrema
2346 	}
2347 
applyPoint(const EvalContext & ctx,double x,double y) const2348 	virtual Interval	applyPoint		(const EvalContext&	ctx,
2349 										 double				x,
2350 										 double				y) const
2351 	{
2352 		const double exact	= this->applyExact(x, y);
2353 		const double prec	= this->precision(ctx, exact, x, y);
2354 
2355 		return exact + Interval(-prec, prec);
2356 	}
2357 
applyExact(double,double) const2358 	virtual double		applyExact		(double, double) const
2359 	{
2360 		TCU_THROW(InternalError, "Cannot apply");
2361 	}
2362 
getCodomain(const EvalContext &) const2363 	virtual Interval	getCodomain		(const EvalContext&) const
2364 	{
2365 		return Interval::unbounded(true);
2366 	}
2367 
2368 	virtual double		precision		(const EvalContext&	ctx,
2369 										 double				ret,
2370 										 double				x,
2371 										 double				y) const = 0;
2372 };
2373 
2374 template <class T>
2375 class CFloatFunc2 : public FloatFunc2<T>
2376 {
2377 public:
CFloatFunc2(const string & name,tcu::DoubleFunc2 & func)2378 						CFloatFunc2	(const string&		name,
2379 									 tcu::DoubleFunc2&	func)
2380 							: m_name(name)
2381 							, m_func(func)
2382 	{
2383 	}
2384 
getName(void) const2385 	string				getName		(void) const						{ return m_name; }
2386 
2387 protected:
applyExact(double x,double y) const2388 	double				applyExact	(double x, double y) const			{ return m_func(x, y); }
2389 
2390 	const string		m_name;
2391 	tcu::DoubleFunc2&	m_func;
2392 };
2393 
2394 template <class T>
2395 class InfixOperator : public FloatFunc2<T>
2396 {
2397 protected:
2398 	virtual string	getSymbol		(void) const = 0;
2399 
doPrint(ostream & os,const BaseArgExprs & args) const2400 	void			doPrint			(ostream& os, const BaseArgExprs& args) const
2401 	{
2402 		os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
2403 	}
2404 
applyPoint(const EvalContext & ctx,double x,double y) const2405 	Interval		applyPoint		(const EvalContext&	ctx,
2406 									 double				x,
2407 									 double				y) const
2408 	{
2409 		const double exact	= this->applyExact(x, y);
2410 
2411 		// Allow either representable number on both sides of the exact value,
2412 		// but require exactly representable values to be preserved.
2413 		return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
2414 	}
2415 
precision(const EvalContext &,double,double,double) const2416 	double			precision		(const EvalContext&, double, double, double) const
2417 	{
2418 		return 0.0;
2419 	}
2420 };
2421 
2422 class InfixOperator16Bit : public FloatFunc2 <Signature<float, deFloat16, deFloat16> >
2423 {
2424 protected:
2425 	virtual string	getSymbol		(void) const = 0;
2426 
doPrint(ostream & os,const BaseArgExprs & args) const2427 	void			doPrint			(ostream& os, const BaseArgExprs& args) const
2428 	{
2429 		os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
2430 	}
2431 
applyPoint(const EvalContext & ctx,double x,double y) const2432 	Interval		applyPoint		(const EvalContext&	ctx,
2433 									 double				x,
2434 									 double				y) const
2435 	{
2436 		const double exact	= this->applyExact(x, y);
2437 
2438 		// Allow either representable number on both sides of the exact value,
2439 		// but require exactly representable values to be preserved.
2440 		return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
2441 	}
2442 
precision(const EvalContext &,double,double,double) const2443 	double			precision		(const EvalContext&, double, double, double) const
2444 	{
2445 		return 0.0;
2446 	}
2447 };
2448 
2449 template <class T>
2450 class FloatFunc3 : public PrimitiveFunc<T>
2451 {
2452 protected:
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1,typename T::Arg2>::IArgs & iargs) const2453 	Interval			doApply			(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1, typename T::Arg2>::IArgs& iargs) const
2454 	{
2455 		return this->applyMonotone(ctx, iargs.a, iargs.b, iargs.c);
2456 	}
2457 
applyMonotone(const EvalContext & ctx,const Interval & xi,const Interval & yi,const Interval & zi) const2458 	Interval			applyMonotone	(const EvalContext&	ctx,
2459 										 const Interval&	xi,
2460 										 const Interval&	yi,
2461 										 const Interval&	zi) const
2462 	{
2463 		Interval reti;
2464 		TCU_INTERVAL_APPLY_MONOTONE3(reti, x, xi, y, yi, z, zi, ret,
2465 									 TCU_SET_INTERVAL(ret, point,
2466 													  point = this->applyPoint(ctx, x, y, z)));
2467 		return ctx.format.convert(reti);
2468 	}
2469 
applyPoint(const EvalContext & ctx,double x,double y,double z) const2470 	virtual Interval	applyPoint		(const EvalContext&	ctx,
2471 										 double				x,
2472 										 double				y,
2473 										 double				z) const
2474 	{
2475 		const double exact	= this->applyExact(x, y, z);
2476 		const double prec	= this->precision(ctx, exact, x, y, z);
2477 		return exact + Interval(-prec, prec);
2478 	}
2479 
applyExact(double,double,double) const2480 	virtual double		applyExact		(double, double, double) const
2481 	{
2482 		TCU_THROW(InternalError, "Cannot apply");
2483 	}
2484 
2485 	virtual double		precision		(const EvalContext&	ctx,
2486 										 double				result,
2487 										 double				x,
2488 										 double				y,
2489 										 double				z) const = 0;
2490 };
2491 
2492 // We define syntactic sugar functions for expression constructors. Since
2493 // these have the same names as ordinary mathematical operations (sin, log
2494 // etc.), it's better to give them a dedicated namespace.
2495 namespace Functions
2496 {
2497 
2498 using namespace tcu;
2499 
2500 template <class T>
2501 class Comparison : public InfixOperator < T >
2502 {
2503 public:
getName(void) const2504 	string		getName			(void) const	{ return "comparison"; }
getSymbol(void) const2505 	string		getSymbol		(void) const	{ return ""; }
2506 
getSpirvCase() const2507 	SpirVCaseT	getSpirvCase	() const		{ return SPIRV_CASETYPE_COMPARE; }
2508 
doApply(const EvalContext & ctx,const typename Comparison<T>::IArgs & iargs) const2509 	Interval	doApply			(const EvalContext&						ctx,
2510 								 const typename Comparison<T>::IArgs&	iargs) const
2511 	{
2512 		DE_UNREF(ctx);
2513 		if (iargs.a.hasNaN() || iargs.b.hasNaN())
2514 		{
2515 			return TCU_NAN; // one of the floats is NaN: block analysis
2516 		}
2517 
2518 		int operationFlag = 1;
2519 		int result = 0;
2520 		const double a = iargs.a.midpoint();
2521 		const double b = iargs.b.midpoint();
2522 
2523 		for (int i = 0; i<2; ++i)
2524 		{
2525 			if (a == b)
2526 				result += operationFlag;
2527 			operationFlag = operationFlag << 1;
2528 
2529 			if (a > b)
2530 				result += operationFlag;
2531 			operationFlag = operationFlag << 1;
2532 
2533 			if (a < b)
2534 				result += operationFlag;
2535 			operationFlag = operationFlag << 1;
2536 
2537 			if (a >= b)
2538 				result += operationFlag;
2539 			operationFlag = operationFlag << 1;
2540 
2541 			if (a <= b)
2542 				result += operationFlag;
2543 			operationFlag = operationFlag << 1;
2544 		}
2545 		return result;
2546 	}
2547 };
2548 
2549 template <class T>
2550 class Add : public InfixOperator < T >
2551 {
2552 public:
getName(void) const2553 	string		getName		(void) const						{ return "add"; }
getSymbol(void) const2554 	string		getSymbol	(void) const						{ return "+"; }
2555 
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2556 	Interval	doApply		(const EvalContext&	ctx,
2557 							 const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2558 	{
2559 		// Fast-path for common case
2560 		if (iargs.a.isOrdinary() && iargs.b.isOrdinary())
2561 		{
2562 			Interval ret;
2563 			TCU_SET_INTERVAL_BOUNDS(ret, sum,
2564 									sum = iargs.a.lo() + iargs.b.lo(),
2565 									sum = iargs.a.hi() + iargs.b.hi());
2566 			return ctx.format.convert(ctx.format.roundOut(ret, true));
2567 		}
2568 		return this->applyMonotone(ctx, iargs.a, iargs.b);
2569 	}
2570 
2571 protected:
applyExact(double x,double y) const2572 	double		applyExact	(double x, double y) const			{ return x + y; }
2573 };
2574 
2575 template<class T>
2576 class Mul : public InfixOperator<T>
2577 {
2578 public:
getName(void) const2579 	string		getName		(void) const									{ return "mul"; }
getSymbol(void) const2580 	string		getSymbol	(void) const									{ return "*"; }
2581 
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2582 	Interval	doApply		(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2583 	{
2584 		Interval a = iargs.a;
2585 		Interval b = iargs.b;
2586 
2587 		// Fast-path for common case
2588 		if (a.isOrdinary() && b.isOrdinary())
2589 		{
2590 			Interval ret;
2591 			if (a.hi() < 0)
2592 			{
2593 				a = -a;
2594 				b = -b;
2595 			}
2596 			if (a.lo() >= 0 && b.lo() >= 0)
2597 			{
2598 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
2599 										prod = a.lo() * b.lo(),
2600 										prod = a.hi() * b.hi());
2601 				return ctx.format.convert(ctx.format.roundOut(ret, true));
2602 			}
2603 			if (a.lo() >= 0 && b.hi() <= 0)
2604 			{
2605 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
2606 										prod = a.hi() * b.lo(),
2607 										prod = a.lo() * b.hi());
2608 				return ctx.format.convert(ctx.format.roundOut(ret, true));
2609 			}
2610 		}
2611 		return this->applyMonotone(ctx, iargs.a, iargs.b);
2612 	}
2613 
2614 protected:
applyExact(double x,double y) const2615 	double		applyExact	(double x, double y) const						{ return x * y; }
2616 
innerExtrema(const EvalContext &,const Interval & xi,const Interval & yi) const2617 	Interval	innerExtrema(const EvalContext&, const Interval& xi, const Interval& yi) const
2618 	{
2619 		if (((xi.contains(-TCU_INFINITY) || xi.contains(TCU_INFINITY)) && yi.contains(0.0)) ||
2620 			((yi.contains(-TCU_INFINITY) || yi.contains(TCU_INFINITY)) && xi.contains(0.0)))
2621 			return Interval(TCU_NAN);
2622 
2623 		return Interval();
2624 	}
2625 };
2626 
2627 template<class T>
2628 class Sub : public InfixOperator <T>
2629 {
2630 public:
getName(void) const2631 	string		getName		(void) const				{ return "sub"; }
getSymbol(void) const2632 	string		getSymbol	(void) const				{ return "-"; }
2633 
doApply(const EvalContext & ctx,const typename Signature<typename T::Ret,typename T::Arg0,typename T::Arg1>::IArgs & iargs) const2634 	Interval	doApply		(const EvalContext&	ctx, const typename Signature<typename T::Ret, typename T::Arg0, typename T::Arg1>::IArgs& iargs) const
2635 	{
2636 		// Fast-path for common case
2637 		if (iargs.a.isOrdinary() && iargs.b.isOrdinary())
2638 		{
2639 			Interval ret;
2640 
2641 			TCU_SET_INTERVAL_BOUNDS(ret, diff,
2642 									diff = iargs.a.lo() - iargs.b.hi(),
2643 									diff = iargs.a.hi() - iargs.b.lo());
2644 			return ctx.format.convert(ctx.format.roundOut(ret, true));
2645 
2646 		}
2647 		else
2648 		{
2649 			return this->applyMonotone(ctx, iargs.a, iargs.b);
2650 		}
2651 	}
2652 
2653 protected:
applyExact(double x,double y) const2654 	double		applyExact	(double x, double y) const	{ return x - y; }
2655 };
2656 
2657 template <class T>
2658 class Negate : public FloatFunc1<T>
2659 {
2660 public:
getName(void) const2661 	string	getName		(void) const									{ return "_negate"; }
doPrint(ostream & os,const BaseArgExprs & args) const2662 	void	doPrint		(ostream& os, const BaseArgExprs& args) const	{ os << "-" << *args[0]; }
2663 
2664 protected:
precision(const EvalContext &,double,double) const2665 	double	precision	(const EvalContext&, double, double) const		{ return 0.0; }
applyExact(double x) const2666 	double	applyExact	(double x) const								{ return -x; }
2667 };
2668 
2669 template <class T>
2670 class Div : public InfixOperator<T>
2671 {
2672 public:
getName(void) const2673 	string		getName			(void) const						{ return "div"; }
2674 
2675 protected:
getSymbol(void) const2676 	string		getSymbol		(void) const						{ return "/"; }
2677 
innerExtrema(const EvalContext &,const Interval & nom,const Interval & den) const2678 	Interval	innerExtrema	(const EvalContext&,
2679 								 const Interval&		nom,
2680 								 const Interval&		den) const
2681 	{
2682 		Interval ret;
2683 
2684 		if (den.contains(0.0))
2685 		{
2686 			if (nom.contains(0.0))
2687 				ret |= TCU_NAN;
2688 
2689 			if (nom.lo() < 0.0 || nom.hi() > 0.0)
2690 				ret |= Interval::unbounded();
2691 		}
2692 
2693 		return ret;
2694 	}
2695 
applyExact(double x,double y) const2696 	double		applyExact		(double x, double y) const { return x / y; }
2697 
applyPoint(const EvalContext & ctx,double x,double y) const2698 	Interval	applyPoint		(const EvalContext&	ctx, double x, double y) const
2699 	{
2700 		Interval ret = FloatFunc2<T>::applyPoint(ctx, x, y);
2701 
2702 		if (!deIsInf(x) && !deIsInf(y) && y != 0.0)
2703 		{
2704 			const Interval dst = ctx.format.convert(ret);
2705 			if (dst.contains(-TCU_INFINITY)) ret |= -ctx.format.getMaxValue();
2706 			if (dst.contains(+TCU_INFINITY)) ret |= +ctx.format.getMaxValue();
2707 		}
2708 
2709 		return ret;
2710 	}
2711 
precision(const EvalContext & ctx,double ret,double,double den) const2712 	double		precision		(const EvalContext& ctx, double ret, double, double den) const
2713 	{
2714 		const FloatFormat&	fmt		= ctx.format;
2715 
2716 		// \todo [2014-03-05 lauri] Check that the limits in GLSL 3.10 are actually correct.
2717 		// For now, we assume that division's precision is 2.5 ULP when the value is within
2718 		// [2^MINEXP, 2^MAXEXP-1]
2719 
2720 		if (den == 0.0)
2721 			return 0.0; // Result must be exactly inf
2722 		else if (de::inBounds(deAbs(den),
2723 							  deLdExp(1.0, fmt.getMinExp()),
2724 							  deLdExp(1.0, fmt.getMaxExp() - 1)))
2725 			return fmt.ulp(ret, 2.5);
2726 		else
2727 			return TCU_INFINITY; // Can be any number, but must be a number.
2728 	}
2729 };
2730 
2731 template <class T>
2732 class InverseSqrt : public FloatFunc1 <T>
2733 {
2734 public:
getName(void) const2735 	string		getName		(void) const							{ return "inversesqrt"; }
2736 
2737 protected:
applyExact(double x) const2738 	double		applyExact	(double x) const						{ return 1.0 / deSqrt(x); }
2739 
precision(const EvalContext & ctx,double ret,double x) const2740 	double		precision	(const EvalContext& ctx, double ret, double x) const
2741 	{
2742 		return x <= 0 ? TCU_NAN : ctx.format.ulp(ret, 2.0);
2743 	}
2744 
getCodomain(const EvalContext &) const2745 	Interval	getCodomain	(const EvalContext&) const
2746 	{
2747 		return Interval(0.0, TCU_INFINITY);
2748 	}
2749 };
2750 
2751 template <class T>
2752 class ExpFunc : public CFloatFunc1<T>
2753 {
2754 public:
ExpFunc(const string & name,DoubleFunc1 & func)2755 				ExpFunc		(const string& name, DoubleFunc1& func)
2756 					: CFloatFunc1<T> (name, func)
2757 				{}
2758 protected:
2759 	double		precision	(const EvalContext& ctx, double ret, double x) const;
getCodomain(const EvalContext &) const2760 	Interval	getCodomain	(const EvalContext&) const
2761 	{
2762 		return Interval(0.0, TCU_INFINITY);
2763 	}
2764 };
2765 
2766 template <>
precision(const EvalContext & ctx,double ret,double x) const2767 double ExpFunc <Signature<float, float> >::precision (const EvalContext& ctx, double ret, double x) const
2768 {
2769 	switch (ctx.floatPrecision)
2770 	{
2771 	case glu::PRECISION_HIGHP:
2772 		return ctx.format.ulp(ret, 3.0 + 2.0 * deAbs(x));
2773 	case glu::PRECISION_MEDIUMP:
2774 	case glu::PRECISION_LAST:
2775 		return ctx.format.ulp(ret, 1.0 + 2.0 * deAbs(x));
2776 	default:
2777 		DE_FATAL("Impossible");
2778 	}
2779 
2780 	return 0.0;
2781 }
2782 
2783 template <>
precision(const EvalContext & ctx,double ret,double x) const2784 double ExpFunc <Signature<deFloat16, deFloat16> >::precision(const EvalContext& ctx, double ret, double x) const
2785 {
2786 	return ctx.format.ulp(ret, 1.0 + 2.0 * deAbs(x));
2787 }
2788 
2789 template <>
precision(const EvalContext & ctx,double ret,double x) const2790 double ExpFunc <Signature<double, double> >::precision(const EvalContext& ctx, double ret, double x) const
2791 {
2792 	return ctx.format.ulp(ret, 1.0 + 2.0 * deAbs(x));
2793 }
2794 
2795 template <class T>
Exp2(void)2796 class Exp2	: public ExpFunc<T>	{ public: Exp2 (void)	: ExpFunc<T>("exp2", deExp2) {} };
2797 template <class T>
Exp(void)2798 class Exp	: public ExpFunc<T>	{ public: Exp (void)	: ExpFunc<T>("exp", deExp) {} };
2799 
2800 template <typename T>
exp2(const ExprP<T> & x)2801 ExprP<T> exp2	(const ExprP<T>& x)	{ return app<Exp2< Signature<T, T> > >(x); }
2802 template <typename T>
exp(const ExprP<T> & x)2803 ExprP<T> exp	(const ExprP<T>& x)	{ return app<Exp< Signature<T, T> > >(x); }
2804 
2805 template <class T>
2806 class LogFunc : public CFloatFunc1<T>
2807 {
2808 public:
LogFunc(const string & name,DoubleFunc1 & func)2809 				LogFunc		(const string& name, DoubleFunc1& func)
2810 					: CFloatFunc1<T>(name, func) {}
2811 
2812 protected:
2813 	double		precision	(const EvalContext& ctx, double ret, double x) const;
2814 };
2815 
2816 template <>
precision(const EvalContext & ctx,double ret,double x) const2817 double LogFunc<Signature<float, float> >::precision(const EvalContext& ctx, double ret, double x) const
2818 {
2819 	if (x <= 0)
2820 		return TCU_NAN;
2821 
2822 	switch (ctx.floatPrecision)
2823 	{
2824 	case glu::PRECISION_HIGHP:
2825 		return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
2826 	case glu::PRECISION_MEDIUMP:
2827 	case glu::PRECISION_LAST:
2828 		return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 3.0);
2829 	default:
2830 		DE_FATAL("Impossible");
2831 	}
2832 
2833 	return 0;
2834 }
2835 
2836 template <>
precision(const EvalContext & ctx,double ret,double x) const2837 double LogFunc<Signature<deFloat16, deFloat16> >::precision(const EvalContext& ctx, double ret, double x) const
2838 {
2839 	if (x <= 0)
2840 		return TCU_NAN;
2841 	return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 3.0);
2842 }
2843 
2844 // Spec: "The precision of double-precision instructions is at least that of single precision."
2845 // Lets pick float high precision as a reference.
2846 template <>
precision(const EvalContext & ctx,double ret,double x) const2847 double LogFunc<Signature<double, double> >::precision(const EvalContext& ctx, double ret, double x) const
2848 {
2849 	if (x <= 0)
2850 		return TCU_NAN;
2851 	return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
2852 }
2853 
2854 template <class T>
Log2(void)2855 class Log2	: public LogFunc<T>		{ public: Log2	(void) : LogFunc<T>("log2", deLog2) {} };
2856 template <class T>
Log(void)2857 class Log	: public LogFunc<T>		{ public: Log	(void) : LogFunc<T>("log", deLog) {} };
2858 
log2(const ExprP<float> & x)2859 ExprP<float> log2	(const ExprP<float>& x)	{ return app<Log2< Signature<float, float> > >(x); }
log(const ExprP<float> & x)2860 ExprP<float> log	(const ExprP<float>& x)	{ return app<Log< Signature<float, float> > >(x); }
2861 
log2(const ExprP<deFloat16> & x)2862 ExprP<deFloat16> log2	(const ExprP<deFloat16>& x)	{ return app<Log2< Signature<deFloat16, deFloat16> > >(x); }
log(const ExprP<deFloat16> & x)2863 ExprP<deFloat16> log	(const ExprP<deFloat16>& x)	{ return app<Log< Signature<deFloat16, deFloat16> > >(x); }
2864 
log2(const ExprP<double> & x)2865 ExprP<double> log2	(const ExprP<double>& x)	{ return app<Log2< Signature<double, double> > >(x); }
log(const ExprP<double> & x)2866 ExprP<double> log	(const ExprP<double>& x)	{ return app<Log< Signature<double, double> > >(x); }
2867 
2868 #define DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) \
2869 ExprP<TRET> NAME (const ExprP<T0>& arg0) { return app<CLASS>(arg0); }
2870 
2871 #define DEFINE_DERIVED1(CLASS, TRET, NAME, T0, ARG0, EXPANSION)				\
2872 class CLASS : public DerivedFunc<Signature<TRET, T0> > /* NOLINT(CLASS) */	\
2873 {																			\
2874 public:																		\
2875 	string			getName		(void) const		{ return #NAME; }		\
2876 																			\
2877 protected:																	\
2878 	ExprP<TRET>		doExpand		(ExpandContext&,						\
2879 									 const CLASS::ArgExprs& args_) const	\
2880 	{																		\
2881 		const ExprP<T0>& ARG0 = args_.a;									\
2882 		return EXPANSION;													\
2883 	}																		\
2884 };																			\
2885 DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
2886 
2887 #define DEFINE_DERIVED_DOUBLE1(CLASS, NAME, ARG0, EXPANSION) \
2888 	DEFINE_DERIVED1(CLASS, double, NAME, double, ARG0, EXPANSION)
2889 
2890 #define DEFINE_DERIVED_FLOAT1(CLASS, NAME, ARG0, EXPANSION) \
2891 	DEFINE_DERIVED1(CLASS, float, NAME, float, ARG0, EXPANSION)
2892 
2893 
2894 #define DEFINE_DERIVED1_INPUTRANGE(CLASS, TRET, NAME, T0, ARG0, EXPANSION, INTERVAL)	\
2895 class CLASS : public DerivedFunc<Signature<TRET, T0> > /* NOLINT(CLASS) */				\
2896 {																						\
2897 public:																					\
2898 	string			getName		(void) const		{ return #NAME; }					\
2899 																						\
2900 protected:																				\
2901 	ExprP<TRET>		doExpand		(ExpandContext&,									\
2902 									 const CLASS::ArgExprs& args_) const				\
2903 	{																					\
2904 		const ExprP<T0>& ARG0 = args_.a;												\
2905 		return EXPANSION;																\
2906 	}																					\
2907 	Interval	getInputRange	(const bool /*is16bit*/) const							\
2908 	{																					\
2909 		return INTERVAL;																\
2910 	}																					\
2911 };																						\
2912 DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
2913 
2914 #define DEFINE_DERIVED_FLOAT1_INPUTRANGE(CLASS, NAME, ARG0, EXPANSION, INTERVAL) \
2915 	DEFINE_DERIVED1_INPUTRANGE(CLASS, float, NAME, float, ARG0, EXPANSION, INTERVAL)
2916 
2917 #define DEFINE_DERIVED_DOUBLE1_INPUTRANGE(CLASS, NAME, ARG0, EXPANSION, INTERVAL) \
2918 	DEFINE_DERIVED1_INPUTRANGE(CLASS, double, NAME, double, ARG0, EXPANSION, INTERVAL)
2919 
2920 #define DEFINE_DERIVED_FLOAT1_16BIT(CLASS, NAME, ARG0, EXPANSION) \
2921 	DEFINE_DERIVED1(CLASS, deFloat16, NAME, deFloat16, ARG0, EXPANSION)
2922 
2923 #define DEFINE_DERIVED_FLOAT1_INPUTRANGE_16BIT(CLASS, NAME, ARG0, EXPANSION, INTERVAL) \
2924 	DEFINE_DERIVED1_INPUTRANGE(CLASS, deFloat16, NAME, deFloat16, ARG0, EXPANSION, INTERVAL)
2925 
2926 #define DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)				\
2927 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1)		\
2928 {																	\
2929 	return app<CLASS>(arg0, arg1);									\
2930 }
2931 
2932 #define DEFINE_CASED_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION, SPIRVCASE) \
2933 class CLASS : public DerivedFunc<Signature<TRET, T0, T1> > /* NOLINT(CLASS) */ \
2934 {																		\
2935 public:																	\
2936 	string			getName		(void) const	{ return #NAME; }		\
2937 																		\
2938 	SpirVCaseT		getSpirvCase(void) const	{ return SPIRVCASE; }	\
2939 																		\
2940 protected:																\
2941 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const \
2942 	{																	\
2943 		const ExprP<T0>& Arg0 = args_.a;								\
2944 		const ExprP<T1>& Arg1 = args_.b;								\
2945 		return EXPANSION;												\
2946 	}																	\
2947 };																		\
2948 DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)
2949 
2950 #define DEFINE_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION) \
2951 	DEFINE_CASED_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION, SPIRV_CASETYPE_NONE)
2952 
2953 #define DEFINE_DERIVED_DOUBLE2(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
2954 	DEFINE_DERIVED2(CLASS, double, NAME, double, Arg0, double, Arg1, EXPANSION)
2955 
2956 #define DEFINE_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
2957 	DEFINE_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION)
2958 
2959 #define DEFINE_DERIVED_FLOAT2_16BIT(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
2960 	DEFINE_DERIVED2(CLASS, deFloat16, NAME, deFloat16, Arg0, deFloat16, Arg1, EXPANSION)
2961 
2962 #define DEFINE_CASED_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION, SPIRVCASE) \
2963 	DEFINE_CASED_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION, SPIRVCASE)
2964 
2965 #define DEFINE_CASED_DERIVED_FLOAT2_16BIT(CLASS, NAME, Arg0, Arg1, EXPANSION, SPIRVCASE) \
2966 	DEFINE_CASED_DERIVED2(CLASS, deFloat16, NAME, deFloat16, Arg0, deFloat16, Arg1, EXPANSION, SPIRVCASE)
2967 
2968 #define DEFINE_CASED_DERIVED_DOUBLE2(CLASS, NAME, Arg0, Arg1, EXPANSION, SPIRVCASE) \
2969 	DEFINE_CASED_DERIVED2(CLASS, double, NAME, double, Arg0, double, Arg1, EXPANSION, SPIRVCASE)
2970 
2971 #define DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)				\
2972 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1, const ExprP<T2>& arg2) \
2973 {																		\
2974 	return app<CLASS>(arg0, arg1, arg2);								\
2975 }
2976 
2977 #define DEFINE_DERIVED3(CLASS, TRET, NAME, T0, ARG0, T1, ARG1, T2, ARG2, EXPANSION) \
2978 class CLASS : public DerivedFunc<Signature<TRET, T0, T1, T2> > /* NOLINT(CLASS) */ \
2979 {																				\
2980 public:																			\
2981 	string			getName		(void) const	{ return #NAME; }				\
2982 																				\
2983 protected:																		\
2984 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const	\
2985 	{																			\
2986 		const ExprP<T0>& ARG0 = args_.a;										\
2987 		const ExprP<T1>& ARG1 = args_.b;										\
2988 		const ExprP<T2>& ARG2 = args_.c;										\
2989 		return EXPANSION;														\
2990 	}																			\
2991 };																				\
2992 DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)
2993 
2994 #define DEFINE_DERIVED_DOUBLE3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
2995 	DEFINE_DERIVED3(CLASS, double, NAME, double, ARG0, double, ARG1, double, ARG2, EXPANSION)
2996 
2997 #define DEFINE_DERIVED_FLOAT3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
2998 	DEFINE_DERIVED3(CLASS, float, NAME, float, ARG0, float, ARG1, float, ARG2, EXPANSION)
2999 
3000 #define DEFINE_DERIVED_FLOAT3_16BIT(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
3001 	DEFINE_DERIVED3(CLASS, deFloat16, NAME, deFloat16, ARG0, deFloat16, ARG1, deFloat16, ARG2, EXPANSION)
3002 
3003 #define DEFINE_CONSTRUCTOR4(CLASS, TRET, NAME, T0, T1, T2, T3)			\
3004 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1,			\
3005 				  const ExprP<T2>& arg2, const ExprP<T3>& arg3)			\
3006 {																		\
3007 	return app<CLASS>(arg0, arg1, arg2, arg3);							\
3008 }
3009 
3010 typedef	 InverseSqrt< Signature<deFloat16, deFloat16> >	InverseSqrt16Bit;
3011 typedef	 InverseSqrt< Signature<float, float> >			InverseSqrt32Bit;
3012 typedef InverseSqrt< Signature<double, double> >		InverseSqrt64Bit;
3013 
3014 DEFINE_DERIVED_FLOAT1(Sqrt32Bit,		sqrt,		x,		constant(1.0f) / app<InverseSqrt32Bit>(x));
3015 DEFINE_DERIVED_FLOAT1_16BIT(Sqrt16Bit,	sqrt,		x,		constant((deFloat16)FLOAT16_1_0) / app<InverseSqrt16Bit>(x));
3016 DEFINE_DERIVED_DOUBLE1(Sqrt64Bit,		sqrt,		x,		constant(1.0) / app<InverseSqrt64Bit>(x));
3017 DEFINE_DERIVED_FLOAT2(Pow,				pow,		x,	y,	exp2<float>(y * log2(x)));
3018 DEFINE_DERIVED_FLOAT2_16BIT(Pow16,		pow,		x,	y,	exp2<deFloat16>(y * log2(x)));
3019 DEFINE_DERIVED_DOUBLE2(Pow64,			pow,		x,	y,	exp2<double>(y * log2(x)));
3020 DEFINE_DERIVED_FLOAT1(Radians,			radians,	d,		(constant(DE_PI) / constant(180.0f)) * d);
3021 DEFINE_DERIVED_FLOAT1_16BIT(Radians16,	radians,	d,		(constant((deFloat16)DE_PI_16BIT) / constant((deFloat16)FLOAT16_180_0)) * d);
3022 DEFINE_DERIVED_DOUBLE1(Radians64,		radians,	d,		(constant((double)(DE_PI)) / constant(180.0)) * d);
3023 DEFINE_DERIVED_FLOAT1(Degrees,			degrees,	r,		(constant(180.0f) / constant(DE_PI)) * r);
3024 DEFINE_DERIVED_FLOAT1_16BIT(Degrees16,	degrees,	r,		(constant((deFloat16)FLOAT16_180_0) / constant((deFloat16)DE_PI_16BIT)) * r);
3025 DEFINE_DERIVED_DOUBLE1(Degrees64,		degrees,	r,		(constant(180.0) / constant((double)(DE_PI))) * r);
3026 
3027 /*Proper parameters for template T
3028 	Signature<float, float>		32bit tests
3029 	Signature<float, deFloat16>	16bit tests*/
3030 template<class T>
3031 class TrigFunc : public CFloatFunc1<T>
3032 {
3033 public:
TrigFunc(const string & name,DoubleFunc1 & func,const Interval & loEx,const Interval & hiEx)3034 					TrigFunc		(const string&		name,
3035 									 DoubleFunc1&		func,
3036 									 const Interval&	loEx,
3037 									 const Interval&	hiEx)
3038 						: CFloatFunc1<T>	(name, func)
3039 						, m_loExtremum		(loEx)
3040 						, m_hiExtremum		(hiEx) {}
3041 
3042 protected:
innerExtrema(const EvalContext &,const Interval & angle) const3043 	Interval		innerExtrema	(const EvalContext&, const Interval& angle) const
3044 	{
3045 		const double		lo		= angle.lo();
3046 		const double		hi		= angle.hi();
3047 		const int			loSlope	= doGetSlope(lo);
3048 		const int			hiSlope	= doGetSlope(hi);
3049 
3050 		// Detect the high and low values the function can take between the
3051 		// interval endpoints.
3052 		if (angle.length() >= 2.0 * DE_PI_DOUBLE)
3053 		{
3054 			// The interval is longer than a full cycle, so it must get all possible values.
3055 			return m_hiExtremum | m_loExtremum;
3056 		}
3057 		else if (loSlope == 1 && hiSlope == -1)
3058 		{
3059 			// The slope can change from positive to negative only at the maximum value.
3060 			return m_hiExtremum;
3061 		}
3062 		else if (loSlope == -1 && hiSlope == 1)
3063 		{
3064 			// The slope can change from negative to positive only at the maximum value.
3065 			return m_loExtremum;
3066 		}
3067 		else if (loSlope == hiSlope &&
3068 				 deIntSign(CFloatFunc1<T>::applyExact(hi) - CFloatFunc1<T>::applyExact(lo)) * loSlope == -1)
3069 		{
3070 			// The slope has changed twice between the endpoints, so both extrema are included.
3071 			return m_hiExtremum | m_loExtremum;
3072 		}
3073 
3074 		return Interval();
3075 	}
3076 
getCodomain(const EvalContext &) const3077 	Interval	getCodomain				(const EvalContext&) const
3078 	{
3079 		// Ensure that result is always within [-1, 1], or NaN (for +-inf)
3080 		return Interval(-1.0, 1.0) | TCU_NAN;
3081 	}
3082 
3083 	double		precision				(const EvalContext& ctx, double ret, double arg) const;
3084 
3085 	Interval	getInputRange			(const bool is16bit) const;
3086 	virtual int	doGetSlope				(double angle) const = 0;
3087 
3088 	Interval		m_loExtremum;
3089 	Interval		m_hiExtremum;
3090 };
3091 
3092 //Only -DE_PI_DOUBLE, DE_PI_DOUBLE input range
3093 template<>
getInputRange(const bool is16bit) const3094 Interval TrigFunc<Signature<float, float> >::getInputRange(const bool is16bit) const
3095 {
3096 	DE_UNREF(is16bit);
3097 	return Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE);
3098 }
3099 
3100 //Only -DE_PI_DOUBLE, DE_PI_DOUBLE input range
3101 template<>
getInputRange(const bool is16bit) const3102 Interval TrigFunc<Signature<deFloat16, deFloat16> >::getInputRange(const bool is16bit) const
3103 {
3104 	DE_UNREF(is16bit);
3105 	return Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE);
3106 }
3107 
3108 //Only -DE_PI_DOUBLE, DE_PI_DOUBLE input range
3109 template<>
getInputRange(const bool is16bit) const3110 Interval TrigFunc<Signature<double, double> >::getInputRange(const bool is16bit) const
3111 {
3112 	DE_UNREF(is16bit);
3113 	return Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE);
3114 }
3115 
3116 template<>
precision(const EvalContext & ctx,double ret,double arg) const3117 double TrigFunc<Signature<float, float> >::precision(const EvalContext& ctx, double ret, double arg) const
3118 {
3119 	DE_UNREF(ret);
3120 	if (ctx.floatPrecision == glu::PRECISION_HIGHP)
3121 	{
3122 		if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
3123 			return deLdExp(1.0, -11);
3124 		else
3125 		{
3126 			// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
3127 			// 2^-11 at x == pi.
3128 			return deLdExp(deAbs(arg), -12);
3129 		}
3130 	}
3131 	else
3132 	{
3133 		DE_ASSERT(ctx.floatPrecision == glu::PRECISION_MEDIUMP || ctx.floatPrecision == glu::PRECISION_LAST);
3134 
3135 		if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
3136 			return deLdExp(1.0, -7);
3137 		else
3138 		{
3139 			// |x| * 2^-8, slightly larger than 2^-7 at x == pi
3140 			return deLdExp(deAbs(arg), -8);
3141 		}
3142 	}
3143 }
3144 //
3145 /*
3146  * Half tests
3147  * From Spec:
3148  * Absolute error 2^{-7} inside the range [-pi, pi].
3149 */
3150 template<>
precision(const EvalContext & ctx,double ret,double arg) const3151 double TrigFunc<Signature<deFloat16, deFloat16> >::precision(const EvalContext& ctx, double ret, double arg) const
3152 {
3153 	DE_UNREF(ctx);
3154 	DE_UNREF(ret);
3155 	DE_UNREF(arg);
3156 	DE_ASSERT(-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE && ctx.floatPrecision == glu::PRECISION_LAST);
3157 	return deLdExp(1.0, -7);
3158 }
3159 
3160 // Spec: "The precision of double-precision instructions is at least that of single precision."
3161 // Lets pick float high precision as a reference.
3162 template<>
precision(const EvalContext & ctx,double ret,double arg) const3163 double TrigFunc<Signature<double, double> >::precision(const EvalContext& ctx, double ret, double arg) const
3164 {
3165 	DE_UNREF(ctx);
3166 	DE_UNREF(ret);
3167 	if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
3168 		return deLdExp(1.0, -11);
3169 	else
3170 	{
3171 		// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
3172 		// 2^-11 at x == pi.
3173 		return deLdExp(deAbs(arg), -12);
3174 	}
3175 }
3176 
3177 /*Proper parameters for template T
3178 	Signature<float, float>		32bit tests
3179 	Signature<float, deFloat16>	16bit tests*/
3180 template <class T>
3181 class Sin : public TrigFunc<T>
3182 {
3183 public:
Sin(void)3184 				Sin			(void) : TrigFunc<T>("sin", deSin, -1.0, 1.0) {}
3185 
3186 protected:
doGetSlope(double angle) const3187 	int			doGetSlope	(double angle) const { return deIntSign(deCos(angle)); }
3188 };
3189 
sin(const ExprP<float> & x)3190 ExprP<float> sin (const ExprP<float>& x) { return app<Sin<Signature<float, float> > >(x); }
sin(const ExprP<deFloat16> & x)3191 ExprP<deFloat16> sin (const ExprP<deFloat16>& x) { return app<Sin<Signature<deFloat16, deFloat16> > >(x); }
sin(const ExprP<double> & x)3192 ExprP<double> sin (const ExprP<double>& x) { return app<Sin<Signature<double, double> > >(x); }
3193 
3194 template <class T>
3195 class Cos : public TrigFunc<T>
3196 {
3197 public:
Cos(void)3198 				Cos			(void) : TrigFunc<T> ("cos", deCos, -1.0, 1.0) {}
3199 
3200 protected:
doGetSlope(double angle) const3201 	int			doGetSlope	(double angle) const { return -deIntSign(deSin(angle)); }
3202 };
3203 
cos(const ExprP<float> & x)3204 ExprP<float> cos (const ExprP<float>& x) { return app<Cos<Signature<float, float> > >(x); }
cos(const ExprP<deFloat16> & x)3205 ExprP<deFloat16> cos (const ExprP<deFloat16>& x) { return app<Cos<Signature<deFloat16, deFloat16> > >(x); }
cos(const ExprP<double> & x)3206 ExprP<double> cos (const ExprP<double>& x) { return app<Cos<Signature<double, double> > >(x); }
3207 
3208 DEFINE_DERIVED_FLOAT1_INPUTRANGE(Tan, tan, x, sin(x) * (constant(1.0f) / cos(x)), Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE));
3209 DEFINE_DERIVED_FLOAT1_INPUTRANGE_16BIT(Tan16Bit, tan, x, sin(x) * (constant((deFloat16)FLOAT16_1_0) / cos(x)), Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE));
3210 DEFINE_DERIVED_DOUBLE1_INPUTRANGE(Tan64Bit, tan, x, sin(x) * (constant(1.0) / cos(x)), Interval(false, -DE_PI_DOUBLE, DE_PI_DOUBLE));
3211 
3212 template <class T>
3213 class ATan : public CFloatFunc1<T>
3214 {
3215 public:
ATan(void)3216 			ATan		(void) : CFloatFunc1<T>	("atan", deAtanOver) {}
3217 
3218 protected:
precision(const EvalContext & ctx,double ret,double) const3219 	double	precision	(const EvalContext& ctx, double ret, double) const
3220 	{
3221 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
3222 			return ctx.format.ulp(ret, 4096.0);
3223 		else
3224 			return ctx.format.ulp(ret, 5.0);
3225 	}
3226 
getCodomain(const EvalContext & ctx) const3227 	Interval getCodomain(const EvalContext& ctx) const
3228 	{
3229 		return ctx.format.roundOut(Interval(-0.5 * DE_PI_DOUBLE, 0.5 * DE_PI_DOUBLE), true);
3230 	}
3231 };
3232 
3233 template <class T>
3234 class ATan2 : public CFloatFunc2<T>
3235 {
3236 public:
ATan2(void)3237 				ATan2			(void) : CFloatFunc2<T> ("atan", deAtan2) {}
3238 
3239 protected:
innerExtrema(const EvalContext & ctx,const Interval & yi,const Interval & xi) const3240 	Interval	innerExtrema	(const EvalContext&		ctx,
3241 								 const Interval&		yi,
3242 								 const Interval&		xi) const
3243 	{
3244 		Interval ret;
3245 
3246 		if (yi.contains(0.0))
3247 		{
3248 			if (xi.contains(0.0))
3249 				ret |= TCU_NAN;
3250 			if (xi.intersects(Interval(-TCU_INFINITY, 0.0)))
3251 				ret |= ctx.format.roundOut(Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE), true);
3252 		}
3253 
3254 		if (ctx.format.hasInf() != YES && (!yi.isFinite() || !xi.isFinite()))
3255 		{
3256 			// Infinities may not be supported, allow anything, including NaN
3257 			ret |= TCU_NAN;
3258 		}
3259 
3260 		return ret;
3261 	}
3262 
precision(const EvalContext & ctx,double ret,double,double) const3263 	double		precision		(const EvalContext& ctx, double ret, double, double) const
3264 	{
3265 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
3266 			return ctx.format.ulp(ret, 4096.0);
3267 		else
3268 			return ctx.format.ulp(ret, 5.0);
3269 	}
3270 
getCodomain(const EvalContext & ctx) const3271 	Interval getCodomain(const EvalContext& ctx) const
3272 	{
3273 		return ctx.format.roundOut(Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE), true);
3274 	}
3275 };
3276 
atan2(const ExprP<float> & x,const ExprP<float> & y)3277 ExprP<float> atan2	(const ExprP<float>& x, const ExprP<float>& y)	{ return app<ATan2<Signature<float, float, float> > >(x, y); }
3278 
atan2(const ExprP<deFloat16> & x,const ExprP<deFloat16> & y)3279 ExprP<deFloat16> atan2	(const ExprP<deFloat16>& x, const ExprP<deFloat16>& y)	{ return app<ATan2<Signature<deFloat16, deFloat16, deFloat16> > >(x, y); }
3280 
atan2(const ExprP<double> & x,const ExprP<double> & y)3281 ExprP<double> atan2	(const ExprP<double>& x, const ExprP<double>& y)	{ return app<ATan2<Signature<double, double, double> > >(x, y); }
3282 
3283 
3284 DEFINE_DERIVED_FLOAT1(Sinh, sinh, x, (exp<float>(x) - exp<float>(-x)) / constant(2.0f));
3285 DEFINE_DERIVED_FLOAT1(Cosh, cosh, x, (exp<float>(x) + exp<float>(-x)) / constant(2.0f));
3286 DEFINE_DERIVED_FLOAT1(Tanh, tanh, x, sinh(x) / cosh(x));
3287 
3288 DEFINE_DERIVED_FLOAT1_16BIT(Sinh16Bit, sinh, x, (exp(x) - exp(-x)) / constant((deFloat16)FLOAT16_2_0));
3289 DEFINE_DERIVED_FLOAT1_16BIT(Cosh16Bit, cosh, x, (exp(x) + exp(-x)) / constant((deFloat16)FLOAT16_2_0));
3290 DEFINE_DERIVED_FLOAT1_16BIT(Tanh16Bit, tanh, x, sinh(x) / cosh(x));
3291 
3292 DEFINE_DERIVED_DOUBLE1(Sinh64Bit, sinh, x, (exp<double>(x) - exp<double>(-x)) / constant(2.0));
3293 DEFINE_DERIVED_DOUBLE1(Cosh64Bit, cosh, x, (exp<double>(x) + exp<double>(-x)) / constant(2.0));
3294 DEFINE_DERIVED_DOUBLE1(Tanh64Bit, tanh, x, sinh(x) / cosh(x));
3295 
3296 DEFINE_DERIVED_FLOAT1(ASin, asin, x, atan2(x, sqrt(constant(1.0f) - x * x)));
3297 DEFINE_DERIVED_FLOAT1(ACos, acos, x, atan2(sqrt(constant(1.0f) - x * x), x));
3298 DEFINE_DERIVED_FLOAT1(ASinh, asinh, x, log(x + sqrt(x * x + constant(1.0f))));
3299 DEFINE_DERIVED_FLOAT1(ACosh, acosh, x, log(x + sqrt(alternatives((x + constant(1.0f)) * (x - constant(1.0f)),
3300 																 (x * x - constant(1.0f))))));
3301 DEFINE_DERIVED_FLOAT1(ATanh, atanh, x, constant(0.5f) * log((constant(1.0f) + x) /
3302 															(constant(1.0f) - x)));
3303 
3304 DEFINE_DERIVED_FLOAT1_16BIT(ASin16Bit, asin, x, atan2(x, sqrt(constant((deFloat16)FLOAT16_1_0) - x * x)));
3305 DEFINE_DERIVED_FLOAT1_16BIT(ACos16Bit, acos, x, atan2(sqrt(constant((deFloat16)FLOAT16_1_0) - x * x), x));
3306 DEFINE_DERIVED_FLOAT1_16BIT(ASinh16Bit, asinh, x, log(x + sqrt(x * x + constant((deFloat16)FLOAT16_1_0))));
3307 DEFINE_DERIVED_FLOAT1_16BIT(ACosh16Bit, acosh, x, log(x + sqrt(alternatives((x + constant((deFloat16)FLOAT16_1_0)) * (x - constant((deFloat16)FLOAT16_1_0)),
3308 																 (x * x - constant((deFloat16)FLOAT16_1_0))))));
3309 DEFINE_DERIVED_FLOAT1_16BIT(ATanh16Bit, atanh, x, constant((deFloat16)FLOAT16_0_5) * log((constant((deFloat16)FLOAT16_1_0) + x) /
3310 															(constant((deFloat16)FLOAT16_1_0) - x)));
3311 
3312 DEFINE_DERIVED_DOUBLE1(ASin64Bit, asin, x, atan2(x, sqrt(constant(1.0) - pow(x, constant(2.0)))));
3313 DEFINE_DERIVED_DOUBLE1(ACos64Bit, acos, x, atan2(sqrt(constant(1.0) - pow(x, constant(2.0))), x));
3314 DEFINE_DERIVED_DOUBLE1(ASinh64Bit, asinh, x, log(x + sqrt(x * x + constant(1.0))));
3315 DEFINE_DERIVED_DOUBLE1(ACosh64Bit, acosh, x, log(x + sqrt(alternatives((x + constant(1.0)) * (x - constant(1.0)),
3316 																 (x * x - constant(1.0))))));
3317 DEFINE_DERIVED_DOUBLE1(ATanh64Bit, atanh, x, constant(0.5) * log((constant(1.0) + x) /
3318 															(constant(1.0) - x)));
3319 
3320 template <typename T>
3321 class GetComponent : public PrimitiveFunc<Signature<typename T::Element, T, int> >
3322 {
3323 public:
3324 	typedef		typename GetComponent::IRet	IRet;
3325 
getName(void) const3326 	string		getName		(void) const { return "_getComponent"; }
3327 
print(ostream & os,const BaseArgExprs & args) const3328 	void		print		(ostream&				os,
3329 							 const BaseArgExprs&	args) const
3330 	{
3331 		os << *args[0] << "[" << *args[1] << "]";
3332 	}
3333 
3334 protected:
doApply(const EvalContext &,const typename GetComponent::IArgs & iargs) const3335 	IRet		doApply		(const EvalContext&,
3336 							 const typename GetComponent::IArgs& iargs) const
3337 	{
3338 		IRet ret;
3339 
3340 		for (int compNdx = 0; compNdx < T::SIZE; ++compNdx)
3341 		{
3342 			if (iargs.b.contains(compNdx))
3343 				ret = unionIVal<typename T::Element>(ret, iargs.a[compNdx]);
3344 		}
3345 
3346 		return ret;
3347 	}
3348 
3349 };
3350 
3351 template <typename T>
getComponent(const ExprP<T> & container,int ndx)3352 ExprP<typename T::Element> getComponent (const ExprP<T>& container, int ndx)
3353 {
3354 	DE_ASSERT(0 <= ndx && ndx < T::SIZE);
3355 	return app<GetComponent<T> >(container, constant(ndx));
3356 }
3357 
3358 template <typename T>	string	vecNamePrefix			(void);
vecNamePrefix(void)3359 template <>				string	vecNamePrefix<float>	(void) { return ""; }
vecNamePrefix(void)3360 template <>				string	vecNamePrefix<deFloat16>(void) { return ""; }
vecNamePrefix(void)3361 template <>				string	vecNamePrefix<double>	(void) { return "d"; }
vecNamePrefix(void)3362 template <>				string	vecNamePrefix<int>		(void) { return "i"; }
vecNamePrefix(void)3363 template <>				string	vecNamePrefix<bool>		(void) { return "b"; }
3364 
3365 template <typename T, int Size>
vecName(void)3366 string vecName (void) { return vecNamePrefix<T>() + "vec" + de::toString(Size); }
3367 
3368 template <typename T, int Size> class GenVec;
3369 
3370 template <typename T>
3371 class GenVec<T, 1> : public DerivedFunc<Signature<T, T> >
3372 {
3373 public:
3374 	typedef typename GenVec<T, 1>::ArgExprs ArgExprs;
3375 
getName(void) const3376 	string		getName		(void) const
3377 	{
3378 		return "_" + vecName<T, 1>();
3379 	}
3380 
3381 protected:
3382 
doExpand(ExpandContext &,const ArgExprs & args) const3383 	ExprP<T>	doExpand	(ExpandContext&, const ArgExprs& args) const { return args.a; }
3384 };
3385 
3386 template <typename T>
3387 class GenVec<T, 2> : public PrimitiveFunc<Signature<Vector<T, 2>, T, T> >
3388 {
3389 public:
3390 	typedef typename GenVec::IRet	IRet;
3391 	typedef typename GenVec::IArgs	IArgs;
3392 
getName(void) const3393 	string		getName		(void) const
3394 	{
3395 		return vecName<T, 2>();
3396 	}
3397 
3398 protected:
doApply(const EvalContext &,const IArgs & iargs) const3399 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
3400 	{
3401 		return IRet(iargs.a, iargs.b);
3402 	}
3403 };
3404 
3405 template <typename T>
3406 class GenVec<T, 3> : public PrimitiveFunc<Signature<Vector<T, 3>, T, T, T> >
3407 {
3408 public:
3409 	typedef typename GenVec::IRet	IRet;
3410 	typedef typename GenVec::IArgs	IArgs;
3411 
getName(void) const3412 	string	getName		(void) const
3413 	{
3414 		return vecName<T, 3>();
3415 	}
3416 
3417 protected:
doApply(const EvalContext &,const IArgs & iargs) const3418 	IRet	doApply		(const EvalContext&, const IArgs& iargs) const
3419 	{
3420 		return IRet(iargs.a, iargs.b, iargs.c);
3421 	}
3422 };
3423 
3424 template <typename T>
3425 class GenVec<T, 4> : public PrimitiveFunc<Signature<Vector<T, 4>, T, T, T, T> >
3426 {
3427 public:
3428 	typedef typename GenVec::IRet	IRet;
3429 	typedef typename GenVec::IArgs	IArgs;
3430 
getName(void) const3431 	string		getName		(void) const { return vecName<T, 4>(); }
3432 
3433 protected:
doApply(const EvalContext &,const IArgs & iargs) const3434 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
3435 	{
3436 		return IRet(iargs.a, iargs.b, iargs.c, iargs.d);
3437 	}
3438 };
3439 
3440 template <typename T, int Rows, int Columns>
3441 class GenMat;
3442 
3443 template <typename T, int Rows>
3444 class GenMat<T, Rows, 2> : public PrimitiveFunc<
3445 	Signature<Matrix<T, Rows, 2>, Vector<T, Rows>, Vector<T, Rows> > >
3446 {
3447 public:
3448 	typedef typename GenMat::Ret	Ret;
3449 	typedef typename GenMat::IRet	IRet;
3450 	typedef typename GenMat::IArgs	IArgs;
3451 
getName(void) const3452 	string		getName		(void) const
3453 	{
3454 		return dataTypeNameOf<Ret>();
3455 	}
3456 
3457 protected:
3458 
doApply(const EvalContext &,const IArgs & iargs) const3459 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
3460 	{
3461 		IRet	ret;
3462 		ret[0] = iargs.a;
3463 		ret[1] = iargs.b;
3464 		return ret;
3465 	}
3466 };
3467 
3468 template <typename T, int Rows>
3469 class GenMat<T, Rows, 3> : public PrimitiveFunc<
3470 	Signature<Matrix<T, Rows, 3>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
3471 {
3472 public:
3473 	typedef typename GenMat::Ret	Ret;
3474 	typedef typename GenMat::IRet	IRet;
3475 	typedef typename GenMat::IArgs	IArgs;
3476 
getName(void) const3477 	string	getName	(void) const
3478 	{
3479 		return dataTypeNameOf<Ret>();
3480 	}
3481 
3482 protected:
3483 
doApply(const EvalContext &,const IArgs & iargs) const3484 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
3485 	{
3486 		IRet	ret;
3487 		ret[0] = iargs.a;
3488 		ret[1] = iargs.b;
3489 		ret[2] = iargs.c;
3490 		return ret;
3491 	}
3492 };
3493 
3494 template <typename T, int Rows>
3495 class GenMat<T, Rows, 4> : public PrimitiveFunc<
3496 	Signature<Matrix<T, Rows, 4>,
3497 			  Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
3498 {
3499 public:
3500 	typedef typename GenMat::Ret	Ret;
3501 	typedef typename GenMat::IRet	IRet;
3502 	typedef typename GenMat::IArgs	IArgs;
3503 
getName(void) const3504 	string	getName	(void) const
3505 	{
3506 		return dataTypeNameOf<Ret>();
3507 	}
3508 
3509 protected:
doApply(const EvalContext &,const IArgs & iargs) const3510 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
3511 	{
3512 		IRet	ret;
3513 		ret[0] = iargs.a;
3514 		ret[1] = iargs.b;
3515 		ret[2] = iargs.c;
3516 		ret[3] = iargs.d;
3517 		return ret;
3518 	}
3519 };
3520 
3521 template <typename T, int Rows>
mat2(const ExprP<Vector<T,Rows>> & arg0,const ExprP<Vector<T,Rows>> & arg1)3522 ExprP<Matrix<T, Rows, 2> > mat2 (const ExprP<Vector<T, Rows> >& arg0,
3523 								 const ExprP<Vector<T, Rows> >& arg1)
3524 {
3525 	return app<GenMat<T, Rows, 2> >(arg0, arg1);
3526 }
3527 
3528 template <typename T, int Rows>
mat3(const ExprP<Vector<T,Rows>> & arg0,const ExprP<Vector<T,Rows>> & arg1,const ExprP<Vector<T,Rows>> & arg2)3529 ExprP<Matrix<T, Rows, 3> > mat3 (const ExprP<Vector<T, Rows> >& arg0,
3530 								 const ExprP<Vector<T, Rows> >& arg1,
3531 								 const ExprP<Vector<T, Rows> >& arg2)
3532 {
3533 	return app<GenMat<T, Rows, 3> >(arg0, arg1, arg2);
3534 }
3535 
3536 template <typename T, int Rows>
mat4(const ExprP<Vector<T,Rows>> & arg0,const ExprP<Vector<T,Rows>> & arg1,const ExprP<Vector<T,Rows>> & arg2,const ExprP<Vector<T,Rows>> & arg3)3537 ExprP<Matrix<T, Rows, 4> > mat4 (const ExprP<Vector<T, Rows> >& arg0,
3538 								 const ExprP<Vector<T, Rows> >& arg1,
3539 								 const ExprP<Vector<T, Rows> >& arg2,
3540 								 const ExprP<Vector<T, Rows> >& arg3)
3541 {
3542 	return app<GenMat<T, Rows, 4> >(arg0, arg1, arg2, arg3);
3543 }
3544 
3545 template <typename T, int Rows, int Cols>
3546 class MatNeg : public PrimitiveFunc<Signature<Matrix<T, Rows, Cols>,
3547 											  Matrix<T, Rows, Cols> > >
3548 {
3549 public:
3550 	typedef typename MatNeg::IRet		IRet;
3551 	typedef typename MatNeg::IArgs		IArgs;
3552 
getName(void) const3553 	string	getName	(void) const
3554 	{
3555 		return "_matNeg";
3556 	}
3557 
3558 protected:
doPrint(ostream & os,const BaseArgExprs & args) const3559 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
3560 	{
3561 		os << "-(" << *args[0] << ")";
3562 	}
3563 
doApply(const EvalContext &,const IArgs & iargs) const3564 	IRet	doApply	(const EvalContext&, const IArgs& iargs)			const
3565 	{
3566 		IRet	ret;
3567 
3568 		for (int col = 0; col < Cols; ++col)
3569 		{
3570 			for (int row = 0; row < Rows; ++row)
3571 				ret[col][row] = -iargs.a[col][row];
3572 		}
3573 
3574 		return ret;
3575 	}
3576 };
3577 
3578 template <typename T, typename Sig>
3579 class CompWiseFunc : public PrimitiveFunc<Sig>
3580 {
3581 public:
3582 	typedef Func<Signature<T, T, T> >	ScalarFunc;
3583 
getName(void) const3584 	string				getName			(void)									const
3585 	{
3586 		return doGetScalarFunc().getName();
3587 	}
3588 protected:
doPrint(ostream & os,const BaseArgExprs & args) const3589 	void				doPrint			(ostream&				os,
3590 										 const BaseArgExprs&	args)			const
3591 	{
3592 		doGetScalarFunc().print(os, args);
3593 	}
3594 
3595 	virtual
3596 	const ScalarFunc&	doGetScalarFunc	(void)									const = 0;
3597 };
3598 
3599 template <typename T, int Rows, int Cols>
3600 class CompMatFuncBase : public CompWiseFunc<T, Signature<Matrix<T, Rows, Cols>,
3601 														 Matrix<T, Rows, Cols>,
3602 														 Matrix<T, Rows, Cols> > >
3603 {
3604 public:
3605 	typedef typename CompMatFuncBase::IRet		IRet;
3606 	typedef typename CompMatFuncBase::IArgs		IArgs;
3607 
3608 protected:
3609 
doApply(const EvalContext & ctx,const IArgs & iargs) const3610 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
3611 	{
3612 		IRet			ret;
3613 
3614 		for (int col = 0; col < Cols; ++col)
3615 		{
3616 			for (int row = 0; row < Rows; ++row)
3617 				ret[col][row] = this->doGetScalarFunc().apply(ctx,
3618 															  iargs.a[col][row],
3619 															  iargs.b[col][row]);
3620 		}
3621 
3622 		return ret;
3623 	}
3624 };
3625 
3626 template <typename F, typename T, int Rows, int Cols>
3627 class CompMatFunc : public CompMatFuncBase<T, Rows, Cols>
3628 {
3629 protected:
doGetScalarFunc(void) const3630 	const typename CompMatFunc::ScalarFunc&	doGetScalarFunc	(void) const
3631 	{
3632 		return instance<F>();
3633 	}
3634 };
3635 
3636 template <class T>
3637 class ScalarMatrixCompMult : public Mul< Signature<T, T, T> >
3638 {
3639 public:
3640 
getName(void) const3641 	string	getName	(void) const
3642 	{
3643 		return "matrixCompMult";
3644 	}
3645 
doPrint(ostream & os,const BaseArgExprs & args) const3646 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
3647 	{
3648 		Func<Signature<T, T, T> >::doPrint(os, args);
3649 	}
3650 };
3651 
3652 template <int Rows, int Cols, class T>
3653 class MatrixCompMult : public CompMatFunc<ScalarMatrixCompMult<T>, T, Rows, Cols>
3654 {
3655 };
3656 
3657 template <int Rows, int Cols>
3658 class ScalarMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>,
3659 															   Matrix<float, Rows, Cols>,
3660 															   float> >
3661 {
3662 public:
3663 	typedef typename ScalarMatFuncBase::IRet	IRet;
3664 	typedef typename ScalarMatFuncBase::IArgs	IArgs;
3665 
3666 protected:
3667 
doApply(const EvalContext & ctx,const IArgs & iargs) const3668 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
3669 	{
3670 		IRet	ret;
3671 
3672 		for (int col = 0; col < Cols; ++col)
3673 		{
3674 			for (int row = 0; row < Rows; ++row)
3675 				ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b);
3676 		}
3677 
3678 		return ret;
3679 	}
3680 };
3681 
3682 template <typename F, int Rows, int Cols>
3683 class ScalarMatFunc : public ScalarMatFuncBase<Rows, Cols>
3684 {
3685 protected:
doGetScalarFunc(void) const3686 	const typename ScalarMatFunc::ScalarFunc&	doGetScalarFunc	(void)	const
3687 	{
3688 		return instance<F>();
3689 	}
3690 };
3691 
3692 template<typename T, int Size> struct GenXType;
3693 
3694 template<typename T>
3695 struct GenXType<T, 1>
3696 {
genXTypevkt::shaderexecutor::Functions::GenXType3697 	static ExprP<T>	genXType	(const ExprP<T>& x) { return x; }
3698 };
3699 
3700 template<typename T>
3701 struct GenXType<T, 2>
3702 {
genXTypevkt::shaderexecutor::Functions::GenXType3703 	static ExprP<Vector<T, 2> >	genXType	(const ExprP<T>& x)
3704 	{
3705 		return app<GenVec<T, 2> >(x, x);
3706 	}
3707 };
3708 
3709 template<typename T>
3710 struct GenXType<T, 3>
3711 {
genXTypevkt::shaderexecutor::Functions::GenXType3712 	static ExprP<Vector<T, 3> >	genXType	(const ExprP<T>& x)
3713 	{
3714 		return app<GenVec<T, 3> >(x, x, x);
3715 	}
3716 };
3717 
3718 template<typename T>
3719 struct GenXType<T, 4>
3720 {
genXTypevkt::shaderexecutor::Functions::GenXType3721 	static ExprP<Vector<T, 4> >	genXType	(const ExprP<T>& x)
3722 	{
3723 		return app<GenVec<T, 4> >(x, x, x, x);
3724 	}
3725 };
3726 
3727 //! Returns an expression of vector of size `Size` (or scalar if Size == 1),
3728 //! with each element initialized with the expression `x`.
3729 template<typename T, int Size>
genXType(const ExprP<T> & x)3730 ExprP<typename ContainerOf<T, Size>::Container> genXType (const ExprP<T>& x)
3731 {
3732 	return GenXType<T, Size>::genXType(x);
3733 }
3734 
3735 typedef GenVec<float, 2> FloatVec2;
3736 DEFINE_CONSTRUCTOR2(FloatVec2, Vec2, vec2, float, float)
3737 
3738 typedef GenVec<deFloat16, 2> FloatVec2_16bit;
3739 DEFINE_CONSTRUCTOR2(FloatVec2_16bit, Vec2_16Bit, vec2, deFloat16, deFloat16)
3740 
3741 typedef GenVec<double, 2> DoubleVec2;
3742 DEFINE_CONSTRUCTOR2(DoubleVec2, Vec2_64Bit, vec2, double, double)
3743 
3744 typedef GenVec<float, 3> FloatVec3;
3745 DEFINE_CONSTRUCTOR3(FloatVec3, Vec3, vec3, float, float, float)
3746 
3747 typedef GenVec<deFloat16, 3> FloatVec3_16bit;
3748 DEFINE_CONSTRUCTOR3(FloatVec3_16bit, Vec3_16Bit, vec3, deFloat16, deFloat16, deFloat16)
3749 
3750 typedef GenVec<double, 3> DoubleVec3;
3751 DEFINE_CONSTRUCTOR3(DoubleVec3, Vec3_64Bit, vec3, double, double, double)
3752 
3753 typedef GenVec<float, 4> FloatVec4;
3754 DEFINE_CONSTRUCTOR4(FloatVec4, Vec4, vec4, float, float, float, float)
3755 
3756 typedef GenVec<deFloat16, 4> FloatVec4_16bit;
3757 DEFINE_CONSTRUCTOR4(FloatVec4_16bit, Vec4_16Bit, vec4, deFloat16, deFloat16, deFloat16, deFloat16)
3758 
3759 typedef GenVec<double, 4> DoubleVec4;
3760 DEFINE_CONSTRUCTOR4(DoubleVec4, Vec4_64Bit, vec4, double, double, double, double)
3761 
3762 template <class T>
3763 const ExprP<T> getConstZero(void);
3764 template <class T>
3765 const ExprP<T> getConstOne(void);
3766 template <class T>
3767 const ExprP<T> getConstTwo(void);
3768 
3769 template <>
getConstZero(void)3770 const ExprP<float> getConstZero<float>(void)
3771 {
3772 	return constant(0.0f);
3773 }
3774 
3775 template <>
getConstZero(void)3776 const ExprP<deFloat16> getConstZero<deFloat16>(void)
3777 {
3778 	return constant((deFloat16)FLOAT16_0_0);
3779 }
3780 
3781 template <>
getConstZero(void)3782 const ExprP<double> getConstZero<double>(void)
3783 {
3784 	return constant(0.0);
3785 }
3786 
3787 template <>
getConstOne(void)3788 const ExprP<float> getConstOne<float>(void)
3789 {
3790 	return constant(1.0f);
3791 }
3792 
3793 template <>
getConstOne(void)3794 const ExprP<deFloat16> getConstOne<deFloat16>(void)
3795 {
3796 	return constant((deFloat16)FLOAT16_1_0);
3797 }
3798 
3799 template <>
getConstOne(void)3800 const ExprP<double> getConstOne<double>(void)
3801 {
3802 	return constant(1.0);
3803 }
3804 
3805 template <>
getConstTwo(void)3806 const ExprP<float> getConstTwo<float>(void)
3807 {
3808 	return constant(2.0f);
3809 }
3810 
3811 template <>
getConstTwo(void)3812 const ExprP<deFloat16> getConstTwo<deFloat16>(void)
3813 {
3814 	return constant((deFloat16)FLOAT16_2_0);
3815 }
3816 
3817 template <>
getConstTwo(void)3818 const ExprP<double> getConstTwo<double>(void)
3819 {
3820 	return constant(2.0);
3821 }
3822 
3823 template <int Size, class T>
3824 class Dot : public DerivedFunc<Signature<T, Vector<T, Size>, Vector<T, Size> > >
3825 {
3826 public:
3827 	typedef typename Dot::ArgExprs ArgExprs;
3828 
getName(void) const3829 	string			getName		(void) const
3830 	{
3831 		return "dot";
3832 	}
3833 
3834 protected:
doExpand(ExpandContext &,const ArgExprs & args) const3835 	ExprP<T>	doExpand	(ExpandContext&, const ArgExprs& args) const
3836 	{
3837 		ExprP<T> op[Size];
3838 		// Precompute all products.
3839 		for (int ndx = 0; ndx < Size; ++ndx)
3840 			op[ndx] = args.a[ndx] * args.b[ndx];
3841 
3842 		int idx[Size];
3843 		//Prepare an array of indices.
3844 		for (int ndx = 0; ndx < Size; ++ndx)
3845 			idx[ndx] = ndx;
3846 
3847 		ExprP<T> res = op[0];
3848 		// Compute the first dot alternative: SUM(a[i]*b[i]), i = 0 .. Size-1
3849 		for (int ndx = 1; ndx < Size; ++ndx)
3850 			res = res + op[ndx];
3851 
3852 		// Generate all permutations of indices and
3853 		// using a permutation compute a dot alternative.
3854 		// Generates all possible variants fo summation of products in the dot product expansion expression.
3855 		do {
3856 			ExprP<T> alt = getConstZero<T>();
3857 			for (int ndx = 0; ndx < Size; ++ndx)
3858 				alt = alt + op[idx[ndx]];
3859 			res = alternatives(res, alt);
3860 		} while (std::next_permutation(idx, idx + Size));
3861 
3862 		return res;
3863 	}
3864 };
3865 
3866 template <class T>
3867 class Dot<1, T> : public DerivedFunc<Signature<T, T, T> >
3868 {
3869 public:
3870 	typedef typename DerivedFunc<Signature<T, T, T> >::ArgExprs	TArgExprs;
3871 
getName(void) const3872 	string			getName		(void) const
3873 	{
3874 		return "dot";
3875 	}
3876 
doExpand(ExpandContext &,const TArgExprs & args) const3877 	ExprP<T>	doExpand	(ExpandContext&, const TArgExprs& args) const
3878 	{
3879 		return args.a * args.b;
3880 	}
3881 };
3882 
3883 template <int Size>
dot(const ExprP<Vector<deFloat16,Size>> & x,const ExprP<Vector<deFloat16,Size>> & y)3884 ExprP<deFloat16> dot (const ExprP<Vector<deFloat16, Size> >& x, const ExprP<Vector<deFloat16, Size> >& y)
3885 {
3886 	return app<Dot<Size, deFloat16> >(x, y);
3887 }
3888 
dot(const ExprP<deFloat16> & x,const ExprP<deFloat16> & y)3889 ExprP<deFloat16> dot (const ExprP<deFloat16>& x, const ExprP<deFloat16>& y)
3890 {
3891 	return app<Dot<1, deFloat16> >(x, y);
3892 }
3893 
3894 template <int Size>
dot(const ExprP<Vector<float,Size>> & x,const ExprP<Vector<float,Size>> & y)3895 ExprP<float> dot (const ExprP<Vector<float, Size> >& x, const ExprP<Vector<float, Size> >& y)
3896 {
3897 	return app<Dot<Size, float> >(x, y);
3898 }
3899 
dot(const ExprP<float> & x,const ExprP<float> & y)3900 ExprP<float> dot (const ExprP<float>& x, const ExprP<float>& y)
3901 {
3902 	return app<Dot<1, float> >(x, y);
3903 }
3904 
3905 template <int Size>
dot(const ExprP<Vector<double,Size>> & x,const ExprP<Vector<double,Size>> & y)3906 ExprP<double> dot (const ExprP<Vector<double, Size> >& x, const ExprP<Vector<double, Size> >& y)
3907 {
3908 	return app<Dot<Size, double> >(x, y);
3909 }
3910 
dot(const ExprP<double> & x,const ExprP<double> & y)3911 ExprP<double> dot (const ExprP<double>& x, const ExprP<double>& y)
3912 {
3913 	return app<Dot<1, double> >(x, y);
3914 }
3915 
3916 template <int Size, class T>
3917 class Length : public DerivedFunc<
3918 	Signature<T, typename ContainerOf<T, Size>::Container> >
3919 {
3920 public:
3921 	typedef typename Length::ArgExprs ArgExprs;
3922 
getName(void) const3923 	string			getName		(void) const
3924 	{
3925 		return "length";
3926 	}
3927 
3928 protected:
doExpand(ExpandContext &,const ArgExprs & args) const3929 	ExprP<T>		doExpand	(ExpandContext&, const ArgExprs& args) const
3930 	{
3931 		return sqrt(dot(args.a, args.a));
3932 	}
3933 };
3934 
3935 
3936 template <class T, class TRet>
length(const ExprP<T> & x)3937 ExprP<TRet> length (const ExprP<T>& x)
3938 {
3939 	return app<Length<1, T> >(x);
3940 }
3941 
3942 template <int Size, class T, class TRet>
length(const ExprP<typename ContainerOf<T,Size>::Container> & x)3943 ExprP<TRet> length (const ExprP<typename ContainerOf<T, Size>::Container>& x)
3944 {
3945 	return app<Length<Size, T> >(x);
3946 }
3947 
3948 template <int Size, class T>
3949 class Distance : public DerivedFunc<
3950 	Signature<T,
3951 			  typename ContainerOf<T, Size>::Container,
3952 			  typename ContainerOf<T, Size>::Container> >
3953 {
3954 public:
3955 	typedef typename	Distance::Ret		Ret;
3956 	typedef typename	Distance::ArgExprs	ArgExprs;
3957 
getName(void) const3958 	string		getName		(void) const
3959 	{
3960 		return "distance";
3961 	}
3962 
3963 protected:
doExpand(ExpandContext &,const ArgExprs & args) const3964 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
3965 	{
3966 		return length<Size, T, Ret>(args.a - args.b);
3967 	}
3968 };
3969 
3970 // cross
3971 
3972 class Cross : public DerivedFunc<Signature<Vec3, Vec3, Vec3> >
3973 {
3974 public:
getName(void) const3975 	string			getName		(void) const
3976 	{
3977 		return "cross";
3978 	}
3979 
3980 protected:
doExpand(ExpandContext &,const ArgExprs & x) const3981 	ExprP<Vec3>		doExpand	(ExpandContext&, const ArgExprs& x) const
3982 	{
3983 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
3984 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
3985 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
3986 	}
3987 };
3988 
3989 class Cross16Bit : public DerivedFunc<Signature<Vec3_16Bit, Vec3_16Bit, Vec3_16Bit> >
3990 {
3991 public:
getName(void) const3992 	string			getName		(void) const
3993 	{
3994 		return "cross";
3995 	}
3996 
3997 protected:
doExpand(ExpandContext &,const ArgExprs & x) const3998 	ExprP<Vec3_16Bit>		doExpand	(ExpandContext&, const ArgExprs& x) const
3999 	{
4000 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
4001 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
4002 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
4003 	}
4004 };
4005 
4006 class Cross64Bit : public DerivedFunc<Signature<Vec3_64Bit, Vec3_64Bit, Vec3_64Bit> >
4007 {
4008 public:
getName(void) const4009 	string			getName		(void) const
4010 	{
4011 		return "cross";
4012 	}
4013 
4014 protected:
doExpand(ExpandContext &,const ArgExprs & x) const4015 	ExprP<Vec3_64Bit>		doExpand	(ExpandContext&, const ArgExprs& x) const
4016 	{
4017 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
4018 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
4019 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
4020 	}
4021 };
4022 
4023 DEFINE_CONSTRUCTOR2(Cross, Vec3, cross, Vec3, Vec3)
4024 DEFINE_CONSTRUCTOR2(Cross16Bit, Vec3_16Bit, cross, Vec3_16Bit, Vec3_16Bit)
4025 DEFINE_CONSTRUCTOR2(Cross64Bit, Vec3_64Bit, cross, Vec3_64Bit, Vec3_64Bit)
4026 
4027 template<int Size, class T>
4028 class Normalize : public DerivedFunc<
4029 	Signature<typename ContainerOf<T, Size>::Container,
4030 			  typename ContainerOf<T, Size>::Container> >
4031 {
4032 public:
4033 	typedef typename	Normalize::Ret		Ret;
4034 	typedef typename	Normalize::ArgExprs	ArgExprs;
4035 
getName(void) const4036 	string		getName		(void) const
4037 	{
4038 		return "normalize";
4039 	}
4040 
4041 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4042 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
4043 	{
4044 		return args.a / length<Size, T, T>(args.a);
4045 	}
4046 };
4047 
4048 template <int Size, class T>
4049 class FaceForward : public DerivedFunc<
4050 	Signature<typename ContainerOf<T, Size>::Container,
4051 			  typename ContainerOf<T, Size>::Container,
4052 			  typename ContainerOf<T, Size>::Container,
4053 			  typename ContainerOf<T, Size>::Container> >
4054 {
4055 public:
4056 	typedef typename	FaceForward::Ret		Ret;
4057 	typedef typename	FaceForward::ArgExprs	ArgExprs;
4058 
getName(void) const4059 	string		getName		(void) const
4060 	{
4061 		return "faceforward";
4062 	}
4063 
4064 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4065 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
4066 	{
4067 		return cond(dot(args.c, args.b) < getConstZero<T>(), args.a, -args.a);
4068 	}
4069 };
4070 
4071 template <int Size, class T>
4072 class Reflect : public DerivedFunc<
4073 	Signature<typename ContainerOf<T, Size>::Container,
4074 			  typename ContainerOf<T, Size>::Container,
4075 			  typename ContainerOf<T, Size>::Container> >
4076 {
4077 public:
4078 	typedef typename	Reflect::Ret		Ret;
4079 	typedef typename	Reflect::Arg0		Arg0;
4080 	typedef typename	Reflect::Arg1		Arg1;
4081 	typedef typename	Reflect::ArgExprs	ArgExprs;
4082 
getName(void) const4083 	string		getName		(void) const
4084 	{
4085 		return "reflect";
4086 	}
4087 
4088 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4089 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
4090 	{
4091 		const ExprP<Arg0>&	i		= args.a;
4092 		const ExprP<Arg1>&	n		= args.b;
4093 		const ExprP<T>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
4094 
4095 		return i - alternatives((n * dotNI) * getConstTwo<T>(),
4096 								   alternatives( n * (dotNI * getConstTwo<T>()),
4097 												alternatives(n * dot(i * getConstTwo<T>(), n),
4098 															 n * dot(i, n * getConstTwo<T>())
4099 												)
4100 									)
4101 								);
4102 	}
4103 };
4104 
4105 template <int Size, class T>
4106 class Refract : public DerivedFunc<
4107 	Signature<typename ContainerOf<T, Size>::Container,
4108 			  typename ContainerOf<T, Size>::Container,
4109 			  typename ContainerOf<T, Size>::Container,
4110 			  T> >
4111 {
4112 public:
4113 	typedef typename	Refract::Ret		Ret;
4114 	typedef typename	Refract::Arg0		Arg0;
4115 	typedef typename	Refract::Arg1		Arg1;
4116 	typedef typename	Refract::Arg2		Arg2;
4117 	typedef typename	Refract::ArgExprs	ArgExprs;
4118 
getName(void) const4119 	string		getName		(void) const
4120 	{
4121 		return "refract";
4122 	}
4123 
4124 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4125 	ExprP<Ret>	doExpand	(ExpandContext&	ctx, const ArgExprs& args) const
4126 	{
4127 		const ExprP<Arg0>&	i		= args.a;
4128 		const ExprP<Arg1>&	n		= args.b;
4129 		const ExprP<Arg2>&	eta		= args.c;
4130 		const ExprP<T>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
4131 		const ExprP<T>	k		= bindExpression("k", ctx, getConstOne<T>() - eta * eta *
4132 												 (getConstOne<T>() - dotNI * dotNI));
4133 		return cond(k < getConstZero<T>(),
4134 					genXType<T, Size>(getConstZero<T>()),
4135 					i * eta - n * (eta * dotNI + sqrt(k)));
4136 	}
4137 };
4138 
4139 template <class T>
4140 class PreciseFunc1 : public CFloatFunc1<T>
4141 {
4142 public:
PreciseFunc1(const string & name,DoubleFunc1 & func)4143 			PreciseFunc1	(const string& name, DoubleFunc1& func) : CFloatFunc1<T> (name, func) {}
4144 protected:
precision(const EvalContext &,double,double) const4145 	double	precision		(const EvalContext&, double, double) const	{ return 0.0; }
4146 };
4147 
4148 template <class T>
4149 class Abs : public PreciseFunc1<T>
4150 {
4151 public:
Abs(void)4152 	Abs (void) : PreciseFunc1<T> ("abs", deAbs) {}
4153 };
4154 
4155 template <class T>
4156 class Sign : public PreciseFunc1<T>
4157 {
4158 public:
Sign(void)4159 	Sign (void) : PreciseFunc1<T> ("sign", deSign) {}
4160 };
4161 
4162 template <class T>
4163 class Floor : public PreciseFunc1<T>
4164 {
4165 public:
Floor(void)4166 	Floor (void) : PreciseFunc1<T> ("floor", deFloor) {}
4167 };
4168 
4169 template <class T>
4170 class Trunc : public PreciseFunc1<T>
4171 {
4172 public:
Trunc(void)4173 	Trunc (void) : PreciseFunc1<T> ("trunc", deTrunc) {}
4174 };
4175 
4176 template <class T>
4177 class Round : public FloatFunc1<T>
4178 {
4179 public:
getName(void) const4180 	string		getName		(void) const								{ return "round"; }
4181 
4182 protected:
applyPoint(const EvalContext &,double x) const4183 	Interval	applyPoint	(const EvalContext&, double x) const
4184 	{
4185 		double			truncated	= 0.0;
4186 		const double	fract		= deModf(x, &truncated);
4187 		Interval		ret;
4188 
4189 		if (fabs(fract) <= 0.5)
4190 			ret |= truncated;
4191 		if (fabs(fract) >= 0.5)
4192 			ret |= truncated + deSign(fract);
4193 
4194 		return ret;
4195 	}
4196 
precision(const EvalContext &,double,double) const4197 	double		precision	(const EvalContext&, double, double) const	{ return 0.0; }
4198 };
4199 
4200 template <class T>
4201 class RoundEven : public PreciseFunc1<T>
4202 {
4203 public:
RoundEven(void)4204 	RoundEven (void) : PreciseFunc1<T> ("roundEven", deRoundEven) {}
4205 };
4206 
4207 template <class T>
4208 class Ceil : public PreciseFunc1<T>
4209 {
4210 public:
Ceil(void)4211 	Ceil (void) : PreciseFunc1<T> ("ceil", deCeil) {}
4212 };
4213 
4214 typedef Floor< Signature<float, float> > Floor32Bit;
4215 typedef Floor< Signature<deFloat16, deFloat16> > Floor16Bit;
4216 typedef Floor< Signature<double, double> > Floor64Bit;
4217 
4218 typedef Trunc< Signature<float, float> > Trunc32Bit;
4219 typedef Trunc< Signature<deFloat16, deFloat16> > Trunc16Bit;
4220 typedef Trunc< Signature<double, double> > Trunc64Bit;
4221 
4222 typedef Trunc< Signature<float, float> > Trunc32Bit;
4223 typedef Trunc< Signature<deFloat16, deFloat16> > Trunc16Bit;
4224 
4225 DEFINE_DERIVED_FLOAT1(Fract, fract, x, x - app<Floor32Bit>(x));
4226 DEFINE_DERIVED_FLOAT1_16BIT(Fract16Bit, fract, x, x - app<Floor16Bit>(x));
4227 DEFINE_DERIVED_DOUBLE1(Fract64Bit, fract, x, x - app<Floor64Bit>(x));
4228 
4229 template <class T>
4230 class PreciseFunc2 : public CFloatFunc2<T>
4231 {
4232 public:
PreciseFunc2(const string & name,DoubleFunc2 & func)4233 			PreciseFunc2	(const string& name, DoubleFunc2& func) : CFloatFunc2<T> (name, func) {}
4234 protected:
precision(const EvalContext &,double,double,double) const4235 	double	precision		(const EvalContext&, double, double, double) const { return 0.0; }
4236 };
4237 
4238 DEFINE_DERIVED_FLOAT2(Mod32Bit, mod, x, y, x - y * app<Floor32Bit>(x / y));
4239 DEFINE_DERIVED_FLOAT2_16BIT(Mod16Bit, mod, x, y, x - y * app<Floor16Bit>(x / y));
4240 DEFINE_DERIVED_DOUBLE2(Mod64Bit, mod, x, y, x - y * app<Floor64Bit>(x / y));
4241 
4242 DEFINE_CASED_DERIVED_FLOAT2(FRem32Bit, frem, x, y, x - y * app<Trunc32Bit>(x / y), SPIRV_CASETYPE_FREM);
4243 DEFINE_CASED_DERIVED_FLOAT2_16BIT(FRem16Bit, frem, x, y, x - y * app<Trunc16Bit>(x / y), SPIRV_CASETYPE_FREM);
4244 DEFINE_CASED_DERIVED_DOUBLE2(FRem64Bit, frem, x, y, x - y * app<Trunc64Bit>(x / y), SPIRV_CASETYPE_FREM);
4245 
4246 template <class T>
4247 class Modf : public PrimitiveFunc<T>
4248 {
4249 public:
4250 	typedef typename Modf<T>::IArgs	TIArgs;
4251 	typedef typename Modf<T>::IRet	TIRet;
getName(void) const4252 	string	getName				(void) const
4253 	{
4254 		return "modf";
4255 	}
4256 
4257 protected:
doApply(const EvalContext &,const TIArgs & iargs) const4258 	TIRet	doApply				(const EvalContext&, const TIArgs& iargs) const
4259 	{
4260 		Interval	fracIV;
4261 		Interval&	wholeIV		= const_cast<Interval&>(iargs.b);
4262 		double		intPart		= 0;
4263 
4264 		TCU_INTERVAL_APPLY_MONOTONE1(fracIV, x, iargs.a, frac, frac = deModf(x, &intPart));
4265 		TCU_INTERVAL_APPLY_MONOTONE1(wholeIV, x, iargs.a, whole,
4266 									 deModf(x, &intPart); whole = intPart);
4267 
4268 		if (!iargs.a.isFinite())
4269 		{
4270 			// Behavior on modf(Inf) not well-defined, allow anything as a fractional part
4271 			// See Khronos bug 13907
4272 			fracIV |= TCU_NAN;
4273 		}
4274 
4275 		return fracIV;
4276 	}
4277 
getOutParamIndex(void) const4278 	int		getOutParamIndex	(void) const
4279 	{
4280 		return 1;
4281 	}
4282 };
4283 typedef Modf< Signature<float, float, float> >				Modf32Bit;
4284 typedef Modf< Signature<deFloat16, deFloat16, deFloat16> >	Modf16Bit;
4285 typedef Modf< Signature<double, double, double> >			Modf64Bit;
4286 
4287 template <class T>
4288 class ModfStruct : public Modf<T>
4289 {
4290 public:
getName(void) const4291 	virtual string		getName			(void) const	{ return "modfstruct"; }
getSpirvCase(void) const4292 	virtual SpirVCaseT	getSpirvCase	(void) const	{ return SPIRV_CASETYPE_MODFSTRUCT; }
4293 };
4294 typedef ModfStruct< Signature<float, float, float> >				ModfStruct32Bit;
4295 typedef ModfStruct< Signature<deFloat16, deFloat16, deFloat16> >	ModfStruct16Bit;
4296 typedef ModfStruct< Signature<double, double, double> >				ModfStruct64Bit;
4297 
4298 template <class T>
Min(void)4299 class Min : public PreciseFunc2<T> { public: Min (void) : PreciseFunc2<T> ("min", deMin) {} };
4300 template <class T>
Max(void)4301 class Max : public PreciseFunc2<T> { public: Max (void) : PreciseFunc2<T> ("max", deMax) {} };
4302 
4303 template <class T>
4304 class Clamp : public FloatFunc3<T>
4305 {
4306 public:
getName(void) const4307 	string	getName		(void) const { return "clamp"; }
4308 
applyExact(double x,double minVal,double maxVal) const4309 	double	applyExact	(double x, double minVal, double maxVal) const
4310 	{
4311 		return de::min(de::max(x, minVal), maxVal);
4312 	}
4313 
precision(const EvalContext &,double,double,double minVal,double maxVal) const4314 	double	precision	(const EvalContext&, double, double, double minVal, double maxVal) const
4315 	{
4316 		return minVal > maxVal ? TCU_NAN : 0.0;
4317 	}
4318 };
4319 
clamp(const ExprP<deFloat16> & x,const ExprP<deFloat16> & minVal,const ExprP<deFloat16> & maxVal)4320 ExprP<deFloat16> clamp(const ExprP<deFloat16>& x, const ExprP<deFloat16>& minVal, const ExprP<deFloat16>& maxVal)
4321 {
4322 	return app<Clamp< Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(x, minVal, maxVal);
4323 }
4324 
clamp(const ExprP<float> & x,const ExprP<float> & minVal,const ExprP<float> & maxVal)4325 ExprP<float> clamp(const ExprP<float>& x, const ExprP<float>& minVal, const ExprP<float>& maxVal)
4326 {
4327 	return app<Clamp< Signature<float, float, float, float> > >(x, minVal, maxVal);
4328 }
4329 
clamp(const ExprP<double> & x,const ExprP<double> & minVal,const ExprP<double> & maxVal)4330 ExprP<double> clamp(const ExprP<double>& x, const ExprP<double>& minVal, const ExprP<double>& maxVal)
4331 {
4332 	return app<Clamp< Signature<double, double, double, double> > >(x, minVal, maxVal);
4333 }
4334 
4335 template <class T>
4336 class NanIfGreaterOrEqual : public FloatFunc2<T>
4337 {
4338 public:
getName(void) const4339 	string	getName		(void) const { return "nanIfGreaterOrEqual"; }
4340 
applyExact(double edge0,double edge1) const4341 	double	applyExact	(double edge0, double edge1) const
4342 	{
4343 		return (edge0 >= edge1) ? TCU_NAN : 0.0;
4344 	}
4345 
precision(const EvalContext &,double,double edge0,double edge1) const4346 	double	precision	(const EvalContext&, double, double edge0, double edge1) const
4347 	{
4348 		return (edge0 >= edge1) ? TCU_NAN : 0.0;
4349 	}
4350 };
4351 
nanIfGreaterOrEqual(const ExprP<deFloat16> & edge0,const ExprP<deFloat16> & edge1)4352 ExprP<deFloat16> nanIfGreaterOrEqual(const ExprP<deFloat16>& edge0, const ExprP<deFloat16>& edge1)
4353 {
4354 	return app<NanIfGreaterOrEqual< Signature<deFloat16, deFloat16, deFloat16> > >(edge0, edge1);
4355 }
4356 
nanIfGreaterOrEqual(const ExprP<float> & edge0,const ExprP<float> & edge1)4357 ExprP<float> nanIfGreaterOrEqual(const ExprP<float>& edge0, const ExprP<float>& edge1)
4358 {
4359 	return app<NanIfGreaterOrEqual< Signature<float, float, float> > >(edge0, edge1);
4360 }
4361 
nanIfGreaterOrEqual(const ExprP<double> & edge0,const ExprP<double> & edge1)4362 ExprP<double> nanIfGreaterOrEqual(const ExprP<double>& edge0, const ExprP<double>& edge1)
4363 {
4364 	return app<NanIfGreaterOrEqual< Signature<double, double, double> > >(edge0, edge1);
4365 }
4366 
4367 DEFINE_DERIVED_FLOAT3(Mix, mix, x, y, a, alternatives((x * (constant(1.0f) - a)) + y * a,
4368 													  x + (y - x) * a));
4369 
4370 DEFINE_DERIVED_FLOAT3_16BIT(Mix16Bit, mix, x, y, a, alternatives((x * (constant((deFloat16)FLOAT16_1_0) - a)) + y * a,
4371 													  x + (y - x) * a));
4372 
4373 DEFINE_DERIVED_DOUBLE3(Mix64Bit, mix, x, y, a, alternatives((x * (constant(1.0) - a)) + y * a,
4374 													  x + (y - x) * a));
4375 
step(double edge,double x)4376 static double step (double edge, double x)
4377 {
4378 	return x < edge ? 0.0 : 1.0;
4379 }
4380 
4381 template <class T>
Step(void)4382 class Step : public PreciseFunc2<T> { public: Step (void) : PreciseFunc2<T> ("step", step) {} };
4383 
4384 template <class T>
4385 class SmoothStep : public DerivedFunc<T>
4386 {
4387 public:
4388 	typedef typename SmoothStep<T>::ArgExprs	TArgExprs;
4389 	typedef typename SmoothStep<T>::Ret			TRet;
getName(void) const4390 	string		getName		(void) const
4391 	{
4392 		return "smoothstep";
4393 	}
4394 
4395 protected:
4396 
4397 	ExprP<TRet>	doExpand	(ExpandContext& ctx, const TArgExprs& args) const;
4398 };
4399 
4400 template<>
doExpand(ExpandContext & ctx,const SmoothStep<Signature<float,float,float,float>>::ArgExprs & args) const4401 ExprP<SmoothStep< Signature<float, float, float, float> >::Ret>	SmoothStep< Signature<float, float, float, float> >::doExpand (ExpandContext& ctx, const SmoothStep< Signature<float, float, float, float> >::ArgExprs& args) const
4402 {
4403 	const ExprP<float>&		edge0	= args.a;
4404 	const ExprP<float>&		edge1	= args.b;
4405 	const ExprP<float>&		x		= args.c;
4406 	const ExprP<float>		tExpr	= clamp((x - edge0) / (edge1 - edge0), constant(0.0f), constant(1.0f))
4407 									+ nanIfGreaterOrEqual(edge0, edge1); // force NaN (and non-analyzable result) for cases edge0 >= edge1
4408 	const ExprP<float>		t		= bindExpression("t", ctx, tExpr);
4409 
4410 	return (t * t * (constant(3.0f) - constant(2.0f) * t));
4411 }
4412 
4413 template<>
doExpand(ExpandContext & ctx,const TArgExprs & args) const4414 ExprP<SmoothStep< Signature<deFloat16, deFloat16, deFloat16, deFloat16> >::TRet>	SmoothStep< Signature<deFloat16, deFloat16, deFloat16, deFloat16> >::doExpand (ExpandContext& ctx, const TArgExprs& args) const
4415 {
4416 	const ExprP<deFloat16>&		edge0	= args.a;
4417 	const ExprP<deFloat16>&		edge1	= args.b;
4418 	const ExprP<deFloat16>&		x		= args.c;
4419 	const ExprP<deFloat16>		tExpr	= clamp(( x - edge0 ) / ( edge1 - edge0 ),
4420 											constant((deFloat16)FLOAT16_0_0), constant((deFloat16)FLOAT16_1_0))
4421 										+ nanIfGreaterOrEqual(edge0, edge1); // force NaN (and non-analyzable result) for cases edge0 >= edge1
4422 	const ExprP<deFloat16>		t		= bindExpression("t", ctx, tExpr);
4423 
4424 	return (t * t * (constant((deFloat16)FLOAT16_3_0) - constant((deFloat16)FLOAT16_2_0) * t));
4425 }
4426 
4427 template<>
doExpand(ExpandContext & ctx,const SmoothStep<Signature<double,double,double,double>>::ArgExprs & args) const4428 ExprP<SmoothStep< Signature<double, double, double, double> >::Ret>	SmoothStep< Signature<double, double, double, double> >::doExpand (ExpandContext& ctx, const SmoothStep< Signature<double, double, double, double> >::ArgExprs& args) const
4429 {
4430 	const ExprP<double>&	edge0	= args.a;
4431 	const ExprP<double>&	edge1	= args.b;
4432 	const ExprP<double>&	x		= args.c;
4433 	const ExprP<double>		tExpr	= clamp((x - edge0) / (edge1 - edge0), constant(0.0), constant(1.0))
4434 									+ nanIfGreaterOrEqual(edge0, edge1); // force NaN (and non-analyzable result) for cases edge0 >= edge1
4435 	const ExprP<double>		t		= bindExpression("t", ctx, tExpr);
4436 
4437 	return (t * t * (constant(3.0) - constant(2.0) * t));
4438 }
4439 
4440 //Signature<float, float, int>
4441 //Signature<float, deFloat16, int>
4442 //Signature<double, double, int>
4443 template <class T>
4444 class FrExp : public PrimitiveFunc<T>
4445 {
4446 public:
getName(void) const4447 	string	getName			(void) const
4448 	{
4449 		return "frexp";
4450 	}
4451 
4452 	typedef typename	FrExp::IRet		IRet;
4453 	typedef typename	FrExp::IArgs	IArgs;
4454 	typedef typename	FrExp::IArg0	IArg0;
4455 	typedef typename	FrExp::IArg1	IArg1;
4456 
4457 protected:
doApply(const EvalContext &,const IArgs & iargs) const4458 	IRet	doApply			(const EvalContext&, const IArgs& iargs) const
4459 	{
4460 		IRet			ret;
4461 		const IArg0&	x			= iargs.a;
4462 		IArg1&			exponent	= const_cast<IArg1&>(iargs.b);
4463 
4464 		if (x.hasNaN() || x.contains(TCU_INFINITY) || x.contains(-TCU_INFINITY))
4465 		{
4466 			// GLSL (in contrast to IEEE) says that result of applying frexp
4467 			// to infinity is undefined
4468 			ret = Interval::unbounded() | TCU_NAN;
4469 			exponent = Interval(-deLdExp(1.0, 31), deLdExp(1.0, 31)-1);
4470 		}
4471 		else if (!x.empty())
4472 		{
4473 			int				loExp	= 0;
4474 			const double	loFrac	= deFrExp(x.lo(), &loExp);
4475 			int				hiExp	= 0;
4476 			const double	hiFrac	= deFrExp(x.hi(), &hiExp);
4477 
4478 			if (deSign(loFrac) != deSign(hiFrac))
4479 			{
4480 				exponent = Interval(-TCU_INFINITY, de::max(loExp, hiExp));
4481 				ret = Interval();
4482 				if (deSign(loFrac) < 0)
4483 					ret |= Interval(-1.0 + DBL_EPSILON*0.5, 0.0);
4484 				if (deSign(hiFrac) > 0)
4485 					ret |= Interval(0.0, 1.0 - DBL_EPSILON*0.5);
4486 			}
4487 			else
4488 			{
4489 				exponent = Interval(loExp, hiExp);
4490 				if (loExp == hiExp)
4491 					ret = Interval(loFrac, hiFrac);
4492 				else
4493 					ret = deSign(loFrac) * Interval(0.5, 1.0 - DBL_EPSILON*0.5);
4494 			}
4495 		}
4496 
4497 		return ret;
4498 	}
4499 
getOutParamIndex(void) const4500 	int	getOutParamIndex	(void) const
4501 	{
4502 		return 1;
4503 	}
4504 };
4505 typedef FrExp< Signature<float, float, int> >			Frexp32Bit;
4506 typedef FrExp< Signature<deFloat16, deFloat16, int> >	Frexp16Bit;
4507 typedef FrExp< Signature<double, double, int> >			Frexp64Bit;
4508 
4509 template <class T>
4510 class FrexpStruct : public FrExp<T>
4511 {
4512 public:
getName(void) const4513 	virtual string		getName			(void) const	{ return "frexpstruct"; }
getSpirvCase(void) const4514 	virtual SpirVCaseT	getSpirvCase	(void) const	{ return SPIRV_CASETYPE_FREXPSTRUCT; }
4515 };
4516 typedef FrexpStruct< Signature<float, float, int> >				FrexpStruct32Bit;
4517 typedef FrexpStruct< Signature<deFloat16, deFloat16, int> >		FrexpStruct16Bit;
4518 typedef FrexpStruct< Signature<double, double, int> >			FrexpStruct64Bit;
4519 
4520 //Signature<float, float, int>
4521 //Signature<deFloat16, deFloat16, int>
4522 //Signature<double, double, int>
4523 template <class T>
4524 class LdExp : public PrimitiveFunc<T >
4525 {
4526 public:
4527 	typedef typename	LdExp::IRet		IRet;
4528 	typedef typename	LdExp::IArgs	IArgs;
4529 
getName(void) const4530 	string		getName			(void) const
4531 	{
4532 		return "ldexp";
4533 	}
4534 
4535 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4536 	Interval	doApply			(const EvalContext& ctx, const IArgs& iargs) const
4537 	{
4538 		const int minExp = ctx.format.getMinExp();
4539 		const int maxExp = ctx.format.getMaxExp();
4540 		// Restrictions from the GLSL.std.450 instruction set.
4541 		// See Khronos bugzilla 11180 for rationale.
4542 		bool any = iargs.a.hasNaN() || iargs.b.hi() > (maxExp + 1);
4543 		Interval ret(any, ldexp(iargs.a.lo(), (int)iargs.b.lo()), ldexp(iargs.a.hi(), (int)iargs.b.hi()));
4544 		if (iargs.b.lo() < minExp) ret |= 0.0;
4545 		if (!ret.isFinite()) ret |= TCU_NAN;
4546 		return ctx.format.convert(ret);
4547 	}
4548 };
4549 
4550 template <>
doApply(const EvalContext & ctx,const IArgs & iargs) const4551 Interval LdExp <Signature<double, double, int>>::doApply(const EvalContext& ctx, const IArgs& iargs) const
4552 {
4553 	const int minExp = ctx.format.getMinExp();
4554 	const int maxExp = ctx.format.getMaxExp();
4555 	// Restrictions from the GLSL.std.450 instruction set.
4556 	// See Khronos bugzilla 11180 for rationale.
4557 	bool any = iargs.a.hasNaN() || iargs.b.hi() > (maxExp + 1);
4558 	Interval ret(any, ldexp(iargs.a.lo(), (int)iargs.b.lo()), ldexp(iargs.a.hi(), (int)iargs.b.hi()));
4559 	// Add 1ULP precision tolerance to account for differing rounding modes between the GPU and deLdExp.
4560 	ret += Interval(-ctx.format.ulp(ret.lo()), ctx.format.ulp(ret.hi()));
4561 	if (iargs.b.lo() < minExp) ret |= 0.0;
4562 	if (!ret.isFinite()) ret |= TCU_NAN;
4563 	return ctx.format.convert(ret);
4564 }
4565 
4566 template<int Rows, int Columns, class T>
4567 class Transpose : public PrimitiveFunc<Signature<Matrix<T, Rows, Columns>,
4568 												 Matrix<T, Columns, Rows> > >
4569 {
4570 public:
4571 	typedef typename Transpose::IRet	IRet;
4572 	typedef typename Transpose::IArgs	IArgs;
4573 
getName(void) const4574 	string		getName		(void) const
4575 	{
4576 		return "transpose";
4577 	}
4578 
4579 protected:
doApply(const EvalContext &,const IArgs & iargs) const4580 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
4581 	{
4582 		IRet ret;
4583 
4584 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
4585 		{
4586 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
4587 				ret(rowNdx, colNdx) = iargs.a(colNdx, rowNdx);
4588 		}
4589 
4590 		return ret;
4591 	}
4592 };
4593 
4594 template<typename Ret, typename Arg0, typename Arg1>
4595 class MulFunc : public PrimitiveFunc<Signature<Ret, Arg0, Arg1> >
4596 {
4597 public:
getName(void) const4598 	string	getName	(void) const									{ return "mul"; }
4599 
4600 protected:
doPrint(ostream & os,const BaseArgExprs & args) const4601 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
4602 	{
4603 		os << "(" << *args[0] << " * " << *args[1] << ")";
4604 	}
4605 };
4606 
4607 template<typename T, int LeftRows, int Middle, int RightCols>
4608 class MatMul : public MulFunc<Matrix<T, LeftRows, RightCols>,
4609 							  Matrix<T, LeftRows, Middle>,
4610 							  Matrix<T, Middle, RightCols> >
4611 {
4612 protected:
4613 	typedef typename MatMul::IRet	IRet;
4614 	typedef typename MatMul::IArgs	IArgs;
4615 	typedef typename MatMul::IArg0	IArg0;
4616 	typedef typename MatMul::IArg1	IArg1;
4617 
doApply(const EvalContext & ctx,const IArgs & iargs) const4618 	IRet	doApply	(const EvalContext&	ctx, const IArgs& iargs) const
4619 	{
4620 		const IArg0&	left	= iargs.a;
4621 		const IArg1&	right	= iargs.b;
4622 		IRet			ret;
4623 
4624 		for (int row = 0; row < LeftRows; ++row)
4625 		{
4626 			for (int col = 0; col < RightCols; ++col)
4627 			{
4628 				Interval	element	(0.0);
4629 
4630 				for (int ndx = 0; ndx < Middle; ++ndx)
4631 					element = call<Add< Signature<T, T, T> > >(ctx, element,
4632 										call<Mul< Signature<T, T, T> > >(ctx, left[ndx][row], right[col][ndx]));
4633 
4634 				ret[col][row] = element;
4635 			}
4636 		}
4637 
4638 		return ret;
4639 	}
4640 };
4641 
4642 template<typename T, int Rows, int Cols>
4643 class VecMatMul : public MulFunc<Vector<T, Cols>,
4644 								 Vector<T, Rows>,
4645 								 Matrix<T, Rows, Cols> >
4646 {
4647 public:
4648 	typedef typename VecMatMul::IRet	IRet;
4649 	typedef typename VecMatMul::IArgs	IArgs;
4650 	typedef typename VecMatMul::IArg0	IArg0;
4651 	typedef typename VecMatMul::IArg1	IArg1;
4652 
4653 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4654 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
4655 	{
4656 		const IArg0&	left	= iargs.a;
4657 		const IArg1&	right	= iargs.b;
4658 		IRet			ret;
4659 
4660 		for (int col = 0; col < Cols; ++col)
4661 		{
4662 			Interval	element	(0.0);
4663 
4664 			for (int row = 0; row < Rows; ++row)
4665 				element = call<Add< Signature<T, T, T> > >(ctx, element, call<Mul< Signature<T, T, T> > >(ctx, left[row], right[col][row]));
4666 
4667 			ret[col] = element;
4668 		}
4669 
4670 		return ret;
4671 	}
4672 };
4673 
4674 template<int Rows, int Cols, class T>
4675 class MatVecMul : public MulFunc<Vector<T, Rows>,
4676 								 Matrix<T, Rows, Cols>,
4677 								 Vector<T, Cols> >
4678 {
4679 public:
4680 	typedef typename MatVecMul::IRet	IRet;
4681 	typedef typename MatVecMul::IArgs	IArgs;
4682 	typedef typename MatVecMul::IArg0	IArg0;
4683 	typedef typename MatVecMul::IArg1	IArg1;
4684 
4685 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4686 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
4687 	{
4688 		const IArg0&	left	= iargs.a;
4689 		const IArg1&	right	= iargs.b;
4690 
4691 		return call<VecMatMul<T, Cols, Rows> >(ctx, right,
4692 											call<Transpose<Rows, Cols, T> >(ctx, left));
4693 	}
4694 };
4695 
4696 template<int Rows, int Cols, class T>
4697 class OuterProduct : public PrimitiveFunc<Signature<Matrix<T, Rows, Cols>,
4698 													Vector<T, Rows>,
4699 													Vector<T, Cols> > >
4700 {
4701 public:
4702 	typedef typename OuterProduct::IRet		IRet;
4703 	typedef typename OuterProduct::IArgs	IArgs;
4704 
getName(void) const4705 	string	getName	(void) const
4706 	{
4707 		return "outerProduct";
4708 	}
4709 
4710 protected:
doApply(const EvalContext & ctx,const IArgs & iargs) const4711 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
4712 	{
4713 		IRet	ret;
4714 
4715 		for (int row = 0; row < Rows; ++row)
4716 		{
4717 			for (int col = 0; col < Cols; ++col)
4718 				ret[col][row] = call<Mul< Signature<T, T, T> > >(ctx, iargs.a[row], iargs.b[col]);
4719 		}
4720 
4721 		return ret;
4722 	}
4723 };
4724 
4725 template<int Rows, int Cols, class T>
outerProduct(const ExprP<Vector<T,Rows>> & left,const ExprP<Vector<T,Cols>> & right)4726 ExprP<Matrix<T, Rows, Cols> > outerProduct (const ExprP<Vector<T, Rows> >& left,
4727 												const ExprP<Vector<T, Cols> >& right)
4728 {
4729 	return app<OuterProduct<Rows, Cols, T> >(left, right);
4730 }
4731 
4732 template<class T>
4733 class DeterminantBase : public DerivedFunc<T>
4734 {
4735 public:
getName(void) const4736 	string	getName	(void) const { return "determinant"; }
4737 };
4738 
4739 template<int Size> class Determinant;
4740 template<int Size> class Determinant16bit;
4741 template<int Size> class Determinant64bit;
4742 
4743 template<int Size>
determinant(ExprP<Matrix<float,Size,Size>> mat)4744 ExprP<float> determinant (ExprP<Matrix<float, Size, Size> > mat)
4745 {
4746 	return app<Determinant<Size> >(mat);
4747 }
4748 
4749 template<int Size>
determinant(ExprP<Matrix<deFloat16,Size,Size>> mat)4750 ExprP<deFloat16> determinant (ExprP<Matrix<deFloat16, Size, Size> > mat)
4751 {
4752 	return app<Determinant16bit<Size> >(mat);
4753 }
4754 
4755 template<int Size>
determinant(ExprP<Matrix<double,Size,Size>> mat)4756 ExprP<double> determinant (ExprP<Matrix<double, Size, Size> > mat)
4757 {
4758 	return app<Determinant64bit<Size> >(mat);
4759 }
4760 
4761 template<>
4762 class Determinant<2> : public DeterminantBase<Signature<float, Matrix<float, 2, 2> > >
4763 {
4764 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4765 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
4766 	{
4767 		ExprP<Mat2>	mat	= args.a;
4768 
4769 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
4770 	}
4771 };
4772 
4773 template<>
4774 class Determinant<3> : public DeterminantBase<Signature<float, Matrix<float, 3, 3> > >
4775 {
4776 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4777 	ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const
4778 	{
4779 		ExprP<Mat3>	mat	= args.a;
4780 
4781 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
4782 				mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
4783 				mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
4784 	}
4785 };
4786 
4787 template<>
4788 class Determinant<4> : public DeterminantBase<Signature<float, Matrix<float, 4, 4> > >
4789 {
4790 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4791 	 ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
4792 	{
4793 		ExprP<Mat4>	mat	= args.a;
4794 		ExprP<Mat3>	minors[4];
4795 
4796 		for (int ndx = 0; ndx < 4; ++ndx)
4797 		{
4798 			ExprP<Vec4>		minorColumns[3];
4799 			ExprP<Vec3>		columns[3];
4800 
4801 			for (int col = 0; col < 3; ++col)
4802 				minorColumns[col] = mat[col < ndx ? col : col + 1];
4803 
4804 			for (int col = 0; col < 3; ++col)
4805 				columns[col] = vec3(minorColumns[0][col+1],
4806 									minorColumns[1][col+1],
4807 									minorColumns[2][col+1]);
4808 
4809 			minors[ndx] = bindExpression("minor", ctx,
4810 										 mat3(columns[0], columns[1], columns[2]));
4811 		}
4812 
4813 		return (mat[0][0] * determinant(minors[0]) -
4814 				mat[1][0] * determinant(minors[1]) +
4815 				mat[2][0] * determinant(minors[2]) -
4816 				mat[3][0] * determinant(minors[3]));
4817 	}
4818 };
4819 
4820 template<>
4821 class Determinant16bit<2> : public DeterminantBase<Signature<deFloat16, Matrix<deFloat16, 2, 2> > >
4822 {
4823 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4824 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
4825 	{
4826 		ExprP<Mat2_16b>	mat	= args.a;
4827 
4828 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
4829 	}
4830 };
4831 
4832 template<>
4833 class Determinant16bit<3> : public DeterminantBase<Signature<deFloat16, Matrix<deFloat16, 3, 3> > >
4834 {
4835 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4836 	ExprP<Ret> doExpand(ExpandContext&, const ArgExprs& args) const
4837 	{
4838 		ExprP<Mat3_16b>	mat = args.a;
4839 
4840 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
4841 			mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
4842 			mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
4843 	}
4844 };
4845 
4846 template<>
4847 class Determinant16bit<4> : public DeterminantBase<Signature<deFloat16, Matrix<deFloat16, 4, 4> > >
4848 {
4849 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4850 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args) const
4851 	{
4852 		ExprP<Mat4_16b>	mat = args.a;
4853 		ExprP<Mat3_16b>	minors[4];
4854 
4855 		for (int ndx = 0; ndx < 4; ++ndx)
4856 		{
4857 			ExprP<Vec4_16Bit>		minorColumns[3];
4858 			ExprP<Vec3_16Bit>		columns[3];
4859 
4860 			for (int col = 0; col < 3; ++col)
4861 				minorColumns[col] = mat[col < ndx ? col : col + 1];
4862 
4863 			for (int col = 0; col < 3; ++col)
4864 				columns[col] = vec3(minorColumns[0][col + 1],
4865 					minorColumns[1][col + 1],
4866 					minorColumns[2][col + 1]);
4867 
4868 			minors[ndx] = bindExpression("minor", ctx,
4869 				mat3(columns[0], columns[1], columns[2]));
4870 		}
4871 
4872 		return (mat[0][0] * determinant(minors[0]) -
4873 			mat[1][0] * determinant(minors[1]) +
4874 			mat[2][0] * determinant(minors[2]) -
4875 			mat[3][0] * determinant(minors[3]));
4876 	}
4877 };
4878 
4879 template<>
4880 class Determinant64bit<2> : public DeterminantBase<Signature<double, Matrix<double, 2, 2> > >
4881 {
4882 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4883 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
4884 	{
4885 		ExprP<Matrix2d>	mat	= args.a;
4886 
4887 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
4888 	}
4889 };
4890 
4891 template<>
4892 class Determinant64bit<3> : public DeterminantBase<Signature<double, Matrix<double, 3, 3> > >
4893 {
4894 protected:
doExpand(ExpandContext &,const ArgExprs & args) const4895 	ExprP<Ret> doExpand(ExpandContext&, const ArgExprs& args) const
4896 	{
4897 		ExprP<Matrix3d>	mat = args.a;
4898 
4899 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
4900 			mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
4901 			mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
4902 	}
4903 };
4904 
4905 template<>
4906 class Determinant64bit<4> : public DeterminantBase<Signature<double, Matrix<double, 4, 4> > >
4907 {
4908 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4909 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args) const
4910 	{
4911 		ExprP<Matrix4d>	mat = args.a;
4912 		ExprP<Matrix3d>	minors[4];
4913 
4914 		for (int ndx = 0; ndx < 4; ++ndx)
4915 		{
4916 			ExprP<Vec4_64Bit>		minorColumns[3];
4917 			ExprP<Vec3_64Bit>		columns[3];
4918 
4919 			for (int col = 0; col < 3; ++col)
4920 				minorColumns[col] = mat[col < ndx ? col : col + 1];
4921 
4922 			for (int col = 0; col < 3; ++col)
4923 				columns[col] = vec3(minorColumns[0][col + 1],
4924 					minorColumns[1][col + 1],
4925 					minorColumns[2][col + 1]);
4926 
4927 			minors[ndx] = bindExpression("minor", ctx,
4928 				mat3(columns[0], columns[1], columns[2]));
4929 		}
4930 
4931 		return (mat[0][0] * determinant(minors[0]) -
4932 			mat[1][0] * determinant(minors[1]) +
4933 			mat[2][0] * determinant(minors[2]) -
4934 			mat[3][0] * determinant(minors[3]));
4935 	}
4936 };
4937 
4938 template<int Size> class Inverse;
4939 
4940 template <int Size>
inverse(ExprP<Matrix<float,Size,Size>> mat)4941 ExprP<Matrix<float, Size, Size> > inverse (ExprP<Matrix<float, Size, Size> > mat)
4942 {
4943 	return app<Inverse<Size> >(mat);
4944 }
4945 
4946 template<int Size> class Inverse16bit;
4947 
4948 template <int Size>
inverse(ExprP<Matrix<deFloat16,Size,Size>> mat)4949 ExprP<Matrix<deFloat16, Size, Size> > inverse (ExprP<Matrix<deFloat16, Size, Size> > mat)
4950 {
4951 	return app<Inverse16bit<Size> >(mat);
4952 }
4953 
4954 template<int Size> class Inverse64bit;
4955 
4956 template <int Size>
inverse(ExprP<Matrix<double,Size,Size>> mat)4957 ExprP<Matrix<double, Size, Size> > inverse (ExprP<Matrix<double, Size, Size> > mat)
4958 {
4959 	return app<Inverse64bit<Size> >(mat);
4960 }
4961 
4962 template<>
4963 class Inverse<2> : public DerivedFunc<Signature<Mat2, Mat2> >
4964 {
4965 public:
getName(void) const4966 	string		getName	(void) const
4967 	{
4968 		return "inverse";
4969 	}
4970 
4971 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4972 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
4973 	{
4974 		ExprP<Mat2>		mat = args.a;
4975 		ExprP<float>	det	= bindExpression("det", ctx, determinant(mat));
4976 
4977 		return mat2(vec2(mat[1][1] / det, -mat[0][1] / det),
4978 					vec2(-mat[1][0] / det, mat[0][0] / det));
4979 	}
4980 };
4981 
4982 template<>
4983 class Inverse<3> : public DerivedFunc<Signature<Mat3, Mat3> >
4984 {
4985 public:
getName(void) const4986 	string		getName		(void) const
4987 	{
4988 		return "inverse";
4989 	}
4990 
4991 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const4992 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args)			const
4993 	{
4994 		ExprP<Mat3>		mat		= args.a;
4995 		ExprP<Mat2>		invA	= bindExpression("invA", ctx,
4996 												 inverse(mat2(vec2(mat[0][0], mat[0][1]),
4997 															  vec2(mat[1][0], mat[1][1]))));
4998 
4999 		ExprP<Vec2>		matB	= bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
5000 		ExprP<Vec2>		matC	= bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
5001 		ExprP<float>	matD	= bindExpression("matD", ctx, mat[2][2]);
5002 
5003 		ExprP<float>	schur	= bindExpression("schur", ctx,
5004 												 constant(1.0f) /
5005 												 (matD - dot(matC * invA, matB)));
5006 
5007 		ExprP<Vec2>		t1		= invA * matB;
5008 		ExprP<Vec2>		t2		= t1 * schur;
5009 		ExprP<Mat2>		t3		= outerProduct(t2, matC);
5010 		ExprP<Mat2>		t4		= t3 * invA;
5011 		ExprP<Mat2>		t5		= invA + t4;
5012 		ExprP<Mat2>		blockA	= bindExpression("blockA", ctx, t5);
5013 		ExprP<Vec2>		blockB	= bindExpression("blockB", ctx,
5014 												 (invA * matB) * -schur);
5015 		ExprP<Vec2>		blockC	= bindExpression("blockC", ctx,
5016 												 (matC * invA) * -schur);
5017 
5018 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
5019 					vec3(blockA[1][0], blockA[1][1], blockC[1]),
5020 					vec3(blockB[0], blockB[1], schur));
5021 	}
5022 };
5023 
5024 template<>
5025 class Inverse<4> : public DerivedFunc<Signature<Mat4, Mat4> >
5026 {
5027 public:
getName(void) const5028 	string		getName		(void) const { return "inverse"; }
5029 
5030 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5031 	ExprP<Ret>			doExpand			(ExpandContext&		ctx,
5032 											 const ArgExprs&	args)			const
5033 	{
5034 		ExprP<Mat4>	mat		= args.a;
5035 		ExprP<Mat2>	invA	= bindExpression("invA", ctx,
5036 											 inverse(mat2(vec2(mat[0][0], mat[0][1]),
5037 														  vec2(mat[1][0], mat[1][1]))));
5038 		ExprP<Mat2>	matB	= bindExpression("matB", ctx,
5039 											 mat2(vec2(mat[2][0], mat[2][1]),
5040 												  vec2(mat[3][0], mat[3][1])));
5041 		ExprP<Mat2>	matC	= bindExpression("matC", ctx,
5042 											 mat2(vec2(mat[0][2], mat[0][3]),
5043 												  vec2(mat[1][2], mat[1][3])));
5044 		ExprP<Mat2>	matD	= bindExpression("matD", ctx,
5045 											 mat2(vec2(mat[2][2], mat[2][3]),
5046 												  vec2(mat[3][2], mat[3][3])));
5047 		ExprP<Mat2>	schur	= bindExpression("schur", ctx,
5048 											 inverse(matD + -(matC * invA * matB)));
5049 		ExprP<Mat2>	blockA	= bindExpression("blockA", ctx,
5050 											 invA + (invA * matB * schur * matC * invA));
5051 		ExprP<Mat2>	blockB	= bindExpression("blockB", ctx,
5052 											 (-invA) * matB * schur);
5053 		ExprP<Mat2>	blockC	= bindExpression("blockC", ctx,
5054 											 (-schur) * matC * invA);
5055 
5056 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
5057 					vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
5058 					vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
5059 					vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
5060 	}
5061 };
5062 
5063 template<>
5064 class Inverse16bit<2> : public DerivedFunc<Signature<Mat2_16b, Mat2_16b> >
5065 {
5066 public:
getName(void) const5067 	string		getName	(void) const
5068 	{
5069 		return "inverse";
5070 	}
5071 
5072 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5073 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
5074 	{
5075 		ExprP<Mat2_16b>		mat = args.a;
5076 		ExprP<deFloat16>	det	= bindExpression("det", ctx, determinant(mat));
5077 
5078 		return mat2(vec2((mat[1][1] / det), (-mat[0][1] / det)),
5079 					vec2((-mat[1][0] / det), (mat[0][0] / det)));
5080 	}
5081 };
5082 
5083 template<>
5084 class Inverse16bit<3> : public DerivedFunc<Signature<Mat3_16b, Mat3_16b> >
5085 {
5086 public:
getName(void) const5087 	string		getName(void) const
5088 	{
5089 		return "inverse";
5090 	}
5091 
5092 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5093 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args)			const
5094 	{
5095 		ExprP<Mat3_16b>		mat = args.a;
5096 		ExprP<Mat2_16b>		invA = bindExpression("invA", ctx,
5097 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5098 				vec2(mat[1][0], mat[1][1]))));
5099 
5100 		ExprP<Vec2_16Bit>		matB = bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
5101 		ExprP<Vec2_16Bit>		matC = bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
5102 		ExprP<Mat3_16b::Scalar>	matD = bindExpression("matD", ctx, mat[2][2]);
5103 
5104 		ExprP<Mat3_16b::Scalar>	schur = bindExpression("schur", ctx,
5105 			constant((deFloat16)FLOAT16_1_0) /
5106 			(matD - dot(matC * invA, matB)));
5107 
5108 		ExprP<Vec2_16Bit>		t1 = invA * matB;
5109 		ExprP<Vec2_16Bit>		t2 = t1 * schur;
5110 		ExprP<Mat2_16b>		t3 = outerProduct(t2, matC);
5111 		ExprP<Mat2_16b>		t4 = t3 * invA;
5112 		ExprP<Mat2_16b>		t5 = invA + t4;
5113 		ExprP<Mat2_16b>		blockA = bindExpression("blockA", ctx, t5);
5114 		ExprP<Vec2_16Bit>		blockB = bindExpression("blockB", ctx,
5115 			(invA * matB) * -schur);
5116 		ExprP<Vec2_16Bit>		blockC = bindExpression("blockC", ctx,
5117 			(matC * invA) * -schur);
5118 
5119 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
5120 			vec3(blockA[1][0], blockA[1][1], blockC[1]),
5121 			vec3(blockB[0], blockB[1], schur));
5122 	}
5123 };
5124 
5125 template<>
5126 class Inverse16bit<4> : public DerivedFunc<Signature<Mat4_16b, Mat4_16b> >
5127 {
5128 public:
getName(void) const5129 	string		getName(void) const { return "inverse"; }
5130 
5131 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5132 	ExprP<Ret>			doExpand(ExpandContext&		ctx,
5133 		const ArgExprs&	args)			const
5134 	{
5135 		ExprP<Mat4_16b>	mat = args.a;
5136 		ExprP<Mat2_16b>	invA = bindExpression("invA", ctx,
5137 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5138 				vec2(mat[1][0], mat[1][1]))));
5139 		ExprP<Mat2_16b>	matB = bindExpression("matB", ctx,
5140 			mat2(vec2(mat[2][0], mat[2][1]),
5141 				vec2(mat[3][0], mat[3][1])));
5142 		ExprP<Mat2_16b>	matC = bindExpression("matC", ctx,
5143 			mat2(vec2(mat[0][2], mat[0][3]),
5144 				vec2(mat[1][2], mat[1][3])));
5145 		ExprP<Mat2_16b>	matD = bindExpression("matD", ctx,
5146 			mat2(vec2(mat[2][2], mat[2][3]),
5147 				vec2(mat[3][2], mat[3][3])));
5148 		ExprP<Mat2_16b>	schur = bindExpression("schur", ctx,
5149 			inverse(matD + -(matC * invA * matB)));
5150 		ExprP<Mat2_16b>	blockA = bindExpression("blockA", ctx,
5151 			invA + (invA * matB * schur * matC * invA));
5152 		ExprP<Mat2_16b>	blockB = bindExpression("blockB", ctx,
5153 			(-invA) * matB * schur);
5154 		ExprP<Mat2_16b>	blockC = bindExpression("blockC", ctx,
5155 			(-schur) * matC * invA);
5156 
5157 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
5158 			vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
5159 			vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
5160 			vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
5161 	}
5162 };
5163 
5164 template<>
5165 class Inverse64bit<2> : public DerivedFunc<Signature<Matrix2d, Matrix2d> >
5166 {
5167 public:
getName(void) const5168 	string		getName	(void) const
5169 	{
5170 		return "inverse";
5171 	}
5172 
5173 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5174 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
5175 	{
5176 		ExprP<Matrix2d>		mat = args.a;
5177 		ExprP<double>		det	= bindExpression("det", ctx, determinant(mat));
5178 
5179 		return mat2(vec2((mat[1][1] / det), (-mat[0][1] / det)),
5180 					vec2((-mat[1][0] / det), (mat[0][0] / det)));
5181 	}
5182 };
5183 
5184 template<>
5185 class Inverse64bit<3> : public DerivedFunc<Signature<Matrix3d, Matrix3d> >
5186 {
5187 public:
getName(void) const5188 	string		getName(void) const
5189 	{
5190 		return "inverse";
5191 	}
5192 
5193 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5194 	ExprP<Ret>	doExpand(ExpandContext& ctx, const ArgExprs& args)			const
5195 	{
5196 		ExprP<Matrix3d>		mat = args.a;
5197 		ExprP<Matrix2d>		invA = bindExpression("invA", ctx,
5198 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5199 				vec2(mat[1][0], mat[1][1]))));
5200 
5201 		ExprP<Vec2_64Bit>		matB = bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
5202 		ExprP<Vec2_64Bit>		matC = bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
5203 		ExprP<Matrix3d::Scalar>	matD = bindExpression("matD", ctx, mat[2][2]);
5204 
5205 		ExprP<Matrix3d::Scalar>	schur = bindExpression("schur", ctx,
5206 			constant(1.0) /
5207 			(matD - dot(matC * invA, matB)));
5208 
5209 		ExprP<Vec2_64Bit>		t1 = invA * matB;
5210 		ExprP<Vec2_64Bit>		t2 = t1 * schur;
5211 		ExprP<Matrix2d>			t3 = outerProduct(t2, matC);
5212 		ExprP<Matrix2d>			t4 = t3 * invA;
5213 		ExprP<Matrix2d>			t5 = invA + t4;
5214 		ExprP<Matrix2d>			blockA = bindExpression("blockA", ctx, t5);
5215 		ExprP<Vec2_64Bit>		blockB = bindExpression("blockB", ctx,
5216 			(invA * matB) * -schur);
5217 		ExprP<Vec2_64Bit>		blockC = bindExpression("blockC", ctx,
5218 			(matC * invA) * -schur);
5219 
5220 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
5221 			vec3(blockA[1][0], blockA[1][1], blockC[1]),
5222 			vec3(blockB[0], blockB[1], schur));
5223 	}
5224 };
5225 
5226 template<>
5227 class Inverse64bit<4> : public DerivedFunc<Signature<Matrix4d, Matrix4d> >
5228 {
5229 public:
getName(void) const5230 	string		getName(void) const { return "inverse"; }
5231 
5232 protected:
doExpand(ExpandContext & ctx,const ArgExprs & args) const5233 	ExprP<Ret>			doExpand(ExpandContext&		ctx,
5234 		const ArgExprs&	args)			const
5235 	{
5236 		ExprP<Matrix4d>	mat = args.a;
5237 		ExprP<Matrix2d>	invA = bindExpression("invA", ctx,
5238 			inverse(mat2(vec2(mat[0][0], mat[0][1]),
5239 				vec2(mat[1][0], mat[1][1]))));
5240 		ExprP<Matrix2d>	matB = bindExpression("matB", ctx,
5241 			mat2(vec2(mat[2][0], mat[2][1]),
5242 				vec2(mat[3][0], mat[3][1])));
5243 		ExprP<Matrix2d>	matC = bindExpression("matC", ctx,
5244 			mat2(vec2(mat[0][2], mat[0][3]),
5245 				vec2(mat[1][2], mat[1][3])));
5246 		ExprP<Matrix2d>	matD = bindExpression("matD", ctx,
5247 			mat2(vec2(mat[2][2], mat[2][3]),
5248 				vec2(mat[3][2], mat[3][3])));
5249 		ExprP<Matrix2d>	schur = bindExpression("schur", ctx,
5250 			inverse(matD + -(matC * invA * matB)));
5251 		ExprP<Matrix2d>	blockA = bindExpression("blockA", ctx,
5252 			invA + (invA * matB * schur * matC * invA));
5253 		ExprP<Matrix2d>	blockB = bindExpression("blockB", ctx,
5254 			(-invA) * matB * schur);
5255 		ExprP<Matrix2d>	blockC = bindExpression("blockC", ctx,
5256 			(-schur) * matC * invA);
5257 
5258 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
5259 			vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
5260 			vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
5261 			vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
5262 	}
5263 };
5264 
5265 //Signature<float, float, float, float>
5266 //Signature<deFloat16, deFloat16, deFloat16, deFloat16>
5267 //Signature<double, double, double, double>
5268 template <class T>
5269 class Fma : public DerivedFunc<T>
5270 {
5271 public:
5272 	typedef typename	Fma::ArgExprs		ArgExprs;
5273 	typedef typename	Fma::Ret			Ret;
5274 
getName(void) const5275 	string			getName					(void) const
5276 	{
5277 		return "fma";
5278 	}
5279 
5280 protected:
doExpand(ExpandContext &,const ArgExprs & x) const5281 	ExprP<Ret>	doExpand				(ExpandContext&, const ArgExprs& x) const
5282 	{
5283 		return x.a * x.b + x.c;
5284 	}
5285 };
5286 
5287 } // Functions
5288 
5289 using namespace Functions;
5290 
5291 template <typename T>
operator [](int i) const5292 ExprP<typename T::Element> ContainerExprPBase<T>::operator[] (int i) const
5293 {
5294 	return Functions::getComponent(exprP<T>(*this), i);
5295 }
5296 
operator +(const ExprP<float> & arg0,const ExprP<float> & arg1)5297 ExprP<float> operator+ (const ExprP<float>& arg0, const ExprP<float>& arg1)
5298 {
5299 	return app<Add< Signature<float, float, float> > >(arg0, arg1);
5300 }
5301 
operator +(const ExprP<deFloat16> & arg0,const ExprP<deFloat16> & arg1)5302 ExprP<deFloat16> operator+ (const ExprP<deFloat16>& arg0, const ExprP<deFloat16>& arg1)
5303 {
5304 	return app<Add< Signature<deFloat16, deFloat16, deFloat16> > >(arg0, arg1);
5305 }
5306 
operator +(const ExprP<double> & arg0,const ExprP<double> & arg1)5307 ExprP<double> operator+ (const ExprP<double>& arg0, const ExprP<double>& arg1)
5308 {
5309 	return app<Add< Signature<double, double, double> > >(arg0, arg1);
5310 }
5311 
5312 template <typename T>
operator -(const ExprP<T> & arg0,const ExprP<T> & arg1)5313 ExprP<T> operator- (const ExprP<T>& arg0, const ExprP<T>& arg1)
5314 {
5315 	return app<Sub <Signature <T,T,T> > >(arg0, arg1);
5316 }
5317 
5318 template <typename T>
operator -(const ExprP<T> & arg0)5319 ExprP<T> operator- (const ExprP<T>& arg0)
5320 {
5321 	return app<Negate< Signature<T, T> > >(arg0);
5322 }
5323 
operator *(const ExprP<float> & arg0,const ExprP<float> & arg1)5324 ExprP<float> operator* (const ExprP<float>& arg0, const ExprP<float>& arg1)
5325 {
5326 	return app<Mul< Signature<float, float, float> > >(arg0, arg1);
5327 }
5328 
operator *(const ExprP<deFloat16> & arg0,const ExprP<deFloat16> & arg1)5329 ExprP<deFloat16> operator* (const ExprP<deFloat16>& arg0, const ExprP<deFloat16>& arg1)
5330 {
5331 	return app<Mul< Signature<deFloat16, deFloat16, deFloat16> > >(arg0, arg1);
5332 }
5333 
operator *(const ExprP<double> & arg0,const ExprP<double> & arg1)5334 ExprP<double> operator* (const ExprP<double>& arg0, const ExprP<double>& arg1)
5335 {
5336 	return app<Mul< Signature<double, double, double> > >(arg0, arg1);
5337 }
5338 
5339 template <typename T>
operator /(const ExprP<T> & arg0,const ExprP<T> & arg1)5340 ExprP<T> operator/ (const ExprP<T>& arg0, const ExprP<T>& arg1)
5341 {
5342 	return app<Div< Signature<T, T, T> > >(arg0, arg1);
5343 }
5344 
5345 
5346 template <typename Sig_, int Size>
5347 class GenFunc : public PrimitiveFunc<Signature<
5348 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
5349 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
5350 	typename ContainerOf<typename Sig_::Arg1, Size>::Container,
5351 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
5352 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
5353 {
5354 public:
5355 	typedef typename GenFunc::IArgs		IArgs;
5356 	typedef typename GenFunc::IRet		IRet;
5357 
GenFunc(const Func<Sig_> & scalarFunc)5358 				GenFunc					(const Func<Sig_>&	scalarFunc) : m_func (scalarFunc) {}
5359 
getSpirvCase(void) const5360 	SpirVCaseT	getSpirvCase			(void) const
5361 	{
5362 		return m_func.getSpirvCase();
5363 	}
5364 
getName(void) const5365 	string		getName					(void) const
5366 	{
5367 		return m_func.getName();
5368 	}
5369 
getOutParamIndex(void) const5370 	int			getOutParamIndex		(void) const
5371 	{
5372 		return m_func.getOutParamIndex();
5373 	}
5374 
getRequiredExtension(void) const5375 	string		getRequiredExtension	(void) const
5376 	{
5377 		return m_func.getRequiredExtension();
5378 	}
5379 
getInputRange(const bool is16bit) const5380 	Interval	getInputRange			(const bool is16bit) const
5381 	{
5382 		return m_func.getInputRange(is16bit);
5383 	}
5384 
5385 protected:
doPrint(ostream & os,const BaseArgExprs & args) const5386 	void		doPrint					(ostream& os, const BaseArgExprs& args) const
5387 	{
5388 		m_func.print(os, args);
5389 	}
5390 
doApply(const EvalContext & ctx,const IArgs & iargs) const5391 	IRet		doApply					(const EvalContext& ctx, const IArgs& iargs) const
5392 	{
5393 		IRet ret;
5394 
5395 		for (int ndx = 0; ndx < Size; ++ndx)
5396 		{
5397 			ret[ndx] =
5398 				m_func.apply(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
5399 		}
5400 
5401 		return ret;
5402 	}
5403 
doFail(const EvalContext & ctx,const IArgs & iargs) const5404 	IRet		doFail					(const EvalContext& ctx, const IArgs& iargs) const
5405 	{
5406 		IRet ret;
5407 
5408 		for (int ndx = 0; ndx < Size; ++ndx)
5409 		{
5410 			ret[ndx] =
5411 				m_func.fail(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
5412 		}
5413 
5414 		return ret;
5415 	}
5416 
doGetUsedFuncs(FuncSet & dst) const5417 	void		doGetUsedFuncs			(FuncSet& dst) const
5418 	{
5419 		m_func.getUsedFuncs(dst);
5420 	}
5421 
5422 	const Func<Sig_>&	m_func;
5423 };
5424 
5425 template <typename F, int Size>
5426 class VectorizedFunc : public GenFunc<typename F::Sig, Size>
5427 {
5428 public:
VectorizedFunc(void)5429 	VectorizedFunc	(void) : GenFunc<typename F::Sig, Size>(instance<F>()) {}
5430 };
5431 
5432 template <typename Sig_, int Size>
5433 class FixedGenFunc : public PrimitiveFunc <Signature<
5434 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
5435 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
5436 	typename Sig_::Arg1,
5437 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
5438 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
5439 {
5440 public:
5441 	typedef typename FixedGenFunc::IArgs		IArgs;
5442 	typedef typename FixedGenFunc::IRet			IRet;
5443 
getName(void) const5444 	string						getName			(void) const
5445 	{
5446 		return this->doGetScalarFunc().getName();
5447 	}
5448 
getSpirvCase(void) const5449 	SpirVCaseT					getSpirvCase	(void) const
5450 	{
5451 		return this->doGetScalarFunc().getSpirvCase();
5452 	}
5453 
5454 protected:
doPrint(ostream & os,const BaseArgExprs & args) const5455 	void						doPrint			(ostream& os, const BaseArgExprs& args) const
5456 	{
5457 		this->doGetScalarFunc().print(os, args);
5458 	}
5459 
doApply(const EvalContext & ctx,const IArgs & iargs) const5460 	IRet						doApply			(const EvalContext& ctx,
5461 												 const IArgs&		iargs) const
5462 	{
5463 		IRet				ret;
5464 		const Func<Sig_>&	func	= this->doGetScalarFunc();
5465 
5466 		for (int ndx = 0; ndx < Size; ++ndx)
5467 			ret[ndx] = func.apply(ctx, iargs.a[ndx], iargs.b, iargs.c[ndx], iargs.d[ndx]);
5468 
5469 		return ret;
5470 	}
5471 
5472 	virtual const Func<Sig_>&	doGetScalarFunc	(void) const = 0;
5473 };
5474 
5475 template <typename F, int Size>
5476 class FixedVecFunc : public FixedGenFunc<typename F::Sig, Size>
5477 {
5478 protected:
doGetScalarFunc(void) const5479 	const Func<typename F::Sig>& doGetScalarFunc	(void) const { return instance<F>(); }
5480 };
5481 
5482 template<typename Sig>
5483 struct GenFuncs
5484 {
GenFuncsvkt::shaderexecutor::GenFuncs5485 	GenFuncs (const Func<Sig>&			func_,
5486 			  const GenFunc<Sig, 2>&	func2_,
5487 			  const GenFunc<Sig, 3>&	func3_,
5488 			  const GenFunc<Sig, 4>&	func4_)
5489 		: func	(func_)
5490 		, func2	(func2_)
5491 		, func3	(func3_)
5492 		, func4	(func4_)
5493 	{}
5494 
5495 	const Func<Sig>&		func;
5496 	const GenFunc<Sig, 2>&	func2;
5497 	const GenFunc<Sig, 3>&	func3;
5498 	const GenFunc<Sig, 4>&	func4;
5499 };
5500 
5501 template<typename F>
makeVectorizedFuncs(void)5502 GenFuncs<typename F::Sig> makeVectorizedFuncs (void)
5503 {
5504 	return GenFuncs<typename F::Sig>(instance<F>(),
5505 									 instance<VectorizedFunc<F, 2> >(),
5506 									 instance<VectorizedFunc<F, 3> >(),
5507 									 instance<VectorizedFunc<F, 4> >());
5508 }
5509 
5510 template<typename T, int Size>
operator /(const ExprP<Vector<T,Size>> & arg0,const ExprP<T> & arg1)5511 ExprP<Vector<T, Size> > operator/(const ExprP<Vector<T, Size> >&	arg0,
5512 									  const ExprP<T>&					arg1)
5513 {
5514 	return app<FixedVecFunc<Div< Signature<T, T, T> >, Size> >(arg0, arg1);
5515 }
5516 
5517 template<typename T, int Size>
operator -(const ExprP<Vector<T,Size>> & arg0)5518 ExprP<Vector<T, Size> > operator-(const ExprP<Vector<T, Size> >& arg0)
5519 {
5520 	return app<VectorizedFunc<Negate< Signature<T, T> >, Size> >(arg0);
5521 }
5522 
5523 template<typename T, int Size>
operator -(const ExprP<Vector<T,Size>> & arg0,const ExprP<Vector<T,Size>> & arg1)5524 ExprP<Vector<T, Size> > operator-(const ExprP<Vector<T, Size> >& arg0,
5525 									  const ExprP<Vector<T, Size> >& arg1)
5526 {
5527 	return app<VectorizedFunc<Sub<Signature<T, T, T> >, Size> >(arg0, arg1);
5528 }
5529 
5530 template<int Size, typename T>
operator *(const ExprP<Vector<T,Size>> & arg0,const ExprP<T> & arg1)5531 ExprP<Vector<T, Size> > operator*(const ExprP<Vector<T, Size> >&	arg0,
5532 								  const ExprP<T>&					arg1)
5533 {
5534 	return app<FixedVecFunc<Mul< Signature<T, T, T> >, Size> >(arg0, arg1);
5535 }
5536 
5537 template<typename T, int Size>
operator *(const ExprP<Vector<T,Size>> & arg0,const ExprP<Vector<T,Size>> & arg1)5538 ExprP<Vector<T, Size> > operator*(const ExprP<Vector<T, Size> >& arg0,
5539 								  const ExprP<Vector<T, Size> >& arg1)
5540 {
5541 	return app<VectorizedFunc<Mul< Signature<T, T, T> >, Size> >(arg0, arg1);
5542 }
5543 
5544 template<int LeftRows, int Middle, int RightCols, typename T>
5545 ExprP<Matrix<T, LeftRows, RightCols> >
operator *(const ExprP<Matrix<T,LeftRows,Middle>> & left,const ExprP<Matrix<T,Middle,RightCols>> & right)5546 operator* (const ExprP<Matrix<T, LeftRows, Middle> >&	left,
5547 		   const ExprP<Matrix<T, Middle, RightCols> >&	right)
5548 {
5549 	return app<MatMul<T, LeftRows, Middle, RightCols> >(left, right);
5550 }
5551 
5552 template<int Rows, int Cols, typename T>
operator *(const ExprP<Vector<T,Cols>> & left,const ExprP<Matrix<T,Rows,Cols>> & right)5553 ExprP<Vector<T, Rows> > operator* (const ExprP<Vector<T, Cols> >&		left,
5554 								   const ExprP<Matrix<T, Rows, Cols> >&	right)
5555 {
5556 	return app<VecMatMul<T, Rows, Cols> >(left, right);
5557 }
5558 
5559 template<int Rows, int Cols, class T>
operator *(const ExprP<Matrix<T,Rows,Cols>> & left,const ExprP<Vector<T,Rows>> & right)5560 ExprP<Vector<T, Cols> > operator* (const ExprP<Matrix<T, Rows, Cols> >&	left,
5561 								   const ExprP<Vector<T, Rows> >&		right)
5562 {
5563 	return app<MatVecMul<Rows, Cols, T> >(left, right);
5564 }
5565 
5566 template<int Rows, int Cols, typename T>
operator *(const ExprP<Matrix<T,Rows,Cols>> & left,const ExprP<T> & right)5567 ExprP<Matrix<T, Rows, Cols> > operator* (const ExprP<Matrix<T, Rows, Cols> >&	left,
5568 										 const ExprP<T>&						right)
5569 {
5570 	return app<ScalarMatFunc<Mul< Signature<T, T, T> >, Rows, Cols> >(left, right);
5571 }
5572 
5573 template<int Rows, int Cols>
operator +(const ExprP<Matrix<float,Rows,Cols>> & left,const ExprP<Matrix<float,Rows,Cols>> & right)5574 ExprP<Matrix<float, Rows, Cols> > operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
5575 											 const ExprP<Matrix<float, Rows, Cols> >&	right)
5576 {
5577 	return app<CompMatFunc<Add< Signature<float, float, float> >,float, Rows, Cols> >(left, right);
5578 }
5579 
5580 template<int Rows, int Cols>
operator +(const ExprP<Matrix<deFloat16,Rows,Cols>> & left,const ExprP<Matrix<deFloat16,Rows,Cols>> & right)5581 ExprP<Matrix<deFloat16, Rows, Cols> > operator+ (const ExprP<Matrix<deFloat16, Rows, Cols> >&	left,
5582 												 const ExprP<Matrix<deFloat16, Rows, Cols> >&	right)
5583 {
5584 	return app<CompMatFunc<Add< Signature<deFloat16, deFloat16, deFloat16> >, deFloat16, Rows, Cols> >(left, right);
5585 }
5586 
5587 template<int Rows, int Cols>
operator +(const ExprP<Matrix<double,Rows,Cols>> & left,const ExprP<Matrix<double,Rows,Cols>> & right)5588 ExprP<Matrix<double, Rows, Cols> > operator+ (const ExprP<Matrix<double, Rows, Cols> >&	left,
5589 											  const ExprP<Matrix<double, Rows, Cols> >&	right)
5590 {
5591 	return app<CompMatFunc<Add< Signature<double, double, double> >, double, Rows, Cols> >(left, right);
5592 }
5593 
5594 template<typename T, int Rows, int Cols>
operator -(const ExprP<Matrix<T,Rows,Cols>> & mat)5595 ExprP<Matrix<T, Rows, Cols> > operator- (const ExprP<Matrix<T, Rows, Cols> >&	mat)
5596 {
5597 	return app<MatNeg<T, Rows, Cols> >(mat);
5598 }
5599 
5600 template <typename T>
5601 class Sampling
5602 {
5603 public:
genFixeds(const FloatFormat &,const Precision,vector<T> &,const Interval &) const5604 	virtual void	genFixeds			(const FloatFormat&, const Precision, vector<T>&, const Interval&)	const {}
genRandom(const FloatFormat &,const Precision,Random &,const Interval &) const5605 	virtual T		genRandom			(const FloatFormat&,const Precision, Random&, const Interval&)		const { return T(); }
removeNotInRange(vector<T> &,const Interval &,const Precision) const5606 	virtual void	removeNotInRange	(vector<T>&, const Interval&, const Precision)					const {};
5607 };
5608 
5609 template <>
5610 class DefaultSampling<Void> : public Sampling<Void>
5611 {
5612 public:
genFixeds(const FloatFormat &,const Precision,vector<Void> & dst,const Interval &) const5613 	void	genFixeds	(const FloatFormat&, const Precision, vector<Void>& dst, const Interval&) const { dst.push_back(Void()); }
5614 };
5615 
5616 template <>
5617 class DefaultSampling<bool> : public Sampling<bool>
5618 {
5619 public:
genFixeds(const FloatFormat &,const Precision,vector<bool> & dst,const Interval &) const5620 	void	genFixeds	(const FloatFormat&, const Precision, vector<bool>& dst, const Interval&) const
5621 	{
5622 		dst.push_back(true);
5623 		dst.push_back(false);
5624 	}
5625 };
5626 
5627 template <>
5628 class DefaultSampling<int> : public Sampling<int>
5629 {
5630 public:
genRandom(const FloatFormat &,const Precision prec,Random & rnd,const Interval &) const5631 	int		genRandom	(const FloatFormat&, const Precision prec, Random& rnd, const Interval&) const
5632 	{
5633 		const int	exp		= rnd.getInt(0, getNumBits(prec)-2);
5634 		const int	sign	= rnd.getBool() ? -1 : 1;
5635 
5636 		return sign * rnd.getInt(0, (deInt32)1 << exp);
5637 	}
5638 
genFixeds(const FloatFormat &,const Precision,vector<int> & dst,const Interval &) const5639 	void	genFixeds	(const FloatFormat&, const Precision, vector<int>& dst, const Interval&) const
5640 	{
5641 		dst.push_back(0);
5642 		dst.push_back(-1);
5643 		dst.push_back(1);
5644 	}
5645 
5646 private:
getNumBits(Precision prec)5647 	static inline int getNumBits (Precision prec)
5648 	{
5649 		switch (prec)
5650 		{
5651 			case glu::PRECISION_LAST:
5652 			case glu::PRECISION_MEDIUMP:	return 16;
5653 			case glu::PRECISION_HIGHP:		return 32;
5654 			default:
5655 				DE_ASSERT(false);
5656 				return 0;
5657 		}
5658 	}
5659 };
5660 
5661 template <>
5662 class DefaultSampling<float> : public Sampling<float>
5663 {
5664 public:
5665 	float	genRandom			(const FloatFormat& format, const Precision prec, Random& rnd, const Interval& inputRange)			const;
5666 	void	genFixeds			(const FloatFormat& format, const Precision prec, vector<float>& dst, const Interval& inputRange)	const;
5667 	void	removeNotInRange	(vector<float>& dst, const Interval& inputRange, const Precision prec)								const;
5668 };
5669 
5670 template <>
5671 class DefaultSampling<double> : public Sampling<double>
5672 {
5673 public:
5674 	double	genRandom			(const FloatFormat& format, const Precision prec, Random& rnd, const Interval& inputRange)			const;
5675 	void	genFixeds			(const FloatFormat& format, const Precision prec, vector<double>& dst, const Interval& inputRange)	const;
5676 	void	removeNotInRange	(vector<double>& dst, const Interval& inputRange, const Precision prec)								const;
5677 };
5678 
isDenorm16(deFloat16 v)5679 static bool isDenorm16(deFloat16 v)
5680 {
5681 	const deUint16 mantissa = 0x03FF;
5682 	const deUint16 exponent = 0x7C00;
5683 	return ((exponent & v) == 0 && (mantissa & v) != 0);
5684 }
5685 
5686 //! Generate a random double from a reasonable general-purpose distribution.
randomDouble(const FloatFormat & format,Random & rnd,const Interval & inputRange)5687 double randomDouble(const FloatFormat& format, Random& rnd, const Interval& inputRange)
5688 {
5689 	// No testing of subnormals. TODO: Could integrate float controls for some operations.
5690 	const int		minExp			= format.getMinExp();
5691 	const int		maxExp			= format.getMaxExp();
5692 	const bool		haveSubnormal	= false;
5693 	const double	midpoint		= inputRange.midpoint();
5694 
5695 	// Choose exponent so that the cumulative distribution is cubic.
5696 	// This makes the probability distribution quadratic, with the peak centered on zero.
5697 	const double	minRoot			= deCbrt(minExp - 0.5 - (haveSubnormal ? 1.0 : 0.0));
5698 	const double	maxRoot			= deCbrt(maxExp + 0.5);
5699 	const int		fractionBits	= format.getFractionBits();
5700 	const int		exp				= int(deRoundEven(dePow(rnd.getDouble(minRoot, maxRoot), 3.0)));
5701 
5702 	// Generate some occasional special numbers
5703 	switch (rnd.getInt(0, 64))
5704 	{
5705 		case 0:		return inputRange.contains(0)				? 0				: midpoint;
5706 		case 1:		return inputRange.contains(TCU_INFINITY)	? TCU_INFINITY	: midpoint;
5707 		case 2:		return inputRange.contains(-TCU_INFINITY)	? -TCU_INFINITY	: midpoint;
5708 		case 3:		return inputRange.contains(TCU_NAN)			? TCU_NAN		: midpoint;
5709 		default:	break;
5710 	}
5711 
5712 	DE_ASSERT(fractionBits < std::numeric_limits<double>::digits);
5713 
5714 	// Normal number
5715 	double base = deLdExp(1.0, exp);
5716 	double quantum = deLdExp(1.0, exp - fractionBits); // smallest representable difference in the binade
5717 	double significand = 0.0;
5718 	switch (rnd.getInt(0, 16))
5719 	{
5720 		case 0: // The highest number in this binade, significand is all bits one.
5721 			significand = base - quantum;
5722 			break;
5723 		case 1: // Significand is one.
5724 			significand = quantum;
5725 			break;
5726 		case 2: // Significand is zero.
5727 			significand = 0.0;
5728 			break;
5729 		default: // Random (evenly distributed) significand.
5730 		{
5731 			deUint64 intFraction = rnd.getUint64() & ((1 << fractionBits) - 1);
5732 			significand = double(intFraction) * quantum;
5733 		}
5734 	}
5735 
5736 	// Produce positive numbers more often than negative.
5737 	double value = (rnd.getInt(0, 3) == 0 ? -1.0 : 1.0) * (base + significand);
5738 	return inputRange.contains(value) ? value : midpoint;
5739 }
5740 
5741 //! Generate a random float from a reasonable general-purpose distribution.
genRandom(const FloatFormat & format,Precision prec,Random & rnd,const Interval & inputRange) const5742 float DefaultSampling<float>::genRandom (const FloatFormat&	format,
5743 										 Precision			prec,
5744 										 Random&			rnd,
5745 										 const Interval&	inputRange) const
5746 {
5747 	DE_UNREF(prec);
5748 	return (float)randomDouble(format, rnd, inputRange);
5749 }
5750 
5751 //! Generate a standard set of floats that should always be tested.
genFixeds(const FloatFormat & format,const Precision prec,vector<float> & dst,const Interval & inputRange) const5752 void DefaultSampling<float>::genFixeds (const FloatFormat& format, const Precision prec, vector<float>& dst, const Interval& inputRange) const
5753 {
5754 	const int			minExp			= format.getMinExp();
5755 	const int			maxExp			= format.getMaxExp();
5756 	const int			fractionBits	= format.getFractionBits();
5757 	const float			minQuantum		= deFloatLdExp(1.0f, minExp - fractionBits);
5758 	const float			minNormalized	= deFloatLdExp(1.0f, minExp);
5759 	const float			maxQuantum		= deFloatLdExp(1.0f, maxExp - fractionBits);
5760 
5761 	// NaN
5762 	dst.push_back(TCU_NAN);
5763 	// Zero
5764 	dst.push_back(0.0f);
5765 
5766 	for (int sign = -1; sign <= 1; sign += 2)
5767 	{
5768 		// Smallest normalized
5769 		dst.push_back((float)sign * minNormalized);
5770 
5771 		// Next smallest normalized
5772 		dst.push_back((float)sign * (minNormalized + minQuantum));
5773 
5774 		dst.push_back((float)sign * 0.5f);
5775 		dst.push_back((float)sign * 1.0f);
5776 		dst.push_back((float)sign * 2.0f);
5777 
5778 		// Largest number
5779 		dst.push_back((float)sign * (deFloatLdExp(1.0f, maxExp) +
5780 									(deFloatLdExp(1.0f, maxExp) - maxQuantum)));
5781 
5782 		dst.push_back((float)sign * TCU_INFINITY);
5783 	}
5784 	removeNotInRange(dst, inputRange, prec);
5785 }
5786 
removeNotInRange(vector<float> & dst,const Interval & inputRange,const Precision prec) const5787 void DefaultSampling<float>::removeNotInRange (vector<float>& dst, const Interval& inputRange, const Precision prec) const
5788 {
5789 	for (vector<float>::iterator it = dst.begin(); it < dst.end();)
5790 	{
5791 		// Remove out of range values. PRECISION_LAST means this is an FP16 test so remove any values that
5792 		// will be denorms when converted to FP16. (This is used in the precision_fp16_storage32b test group).
5793 		if ( !inputRange.contains(static_cast<double>(*it)) || (prec == glu::PRECISION_LAST && isDenorm16(deFloat32To16Round(*it, DE_ROUNDINGMODE_TO_ZERO))))
5794 			it = dst.erase(it);
5795 		else
5796 			++it;
5797 	}
5798 }
5799 
5800 //! Generate a random double from a reasonable general-purpose distribution.
genRandom(const FloatFormat & format,Precision prec,Random & rnd,const Interval & inputRange) const5801 double DefaultSampling<double>::genRandom (const FloatFormat&	format,
5802 										   Precision			prec,
5803 										   Random&				rnd,
5804 										   const Interval&		inputRange) const
5805 {
5806 	DE_UNREF(prec);
5807 	return randomDouble(format, rnd, inputRange);
5808 }
5809 
5810 //! Generate a standard set of floats that should always be tested.
genFixeds(const FloatFormat & format,const Precision prec,vector<double> & dst,const Interval & inputRange) const5811 void DefaultSampling<double>::genFixeds (const FloatFormat& format, const Precision prec, vector<double>& dst, const Interval& inputRange) const
5812 {
5813 	const int			minExp			= format.getMinExp();
5814 	const int			maxExp			= format.getMaxExp();
5815 	const int			fractionBits	= format.getFractionBits();
5816 	const double		minQuantum		= deLdExp(1.0, minExp - fractionBits);
5817 	const double		minNormalized	= deLdExp(1.0, minExp);
5818 	const double		maxQuantum		= deLdExp(1.0, maxExp - fractionBits);
5819 
5820 	// NaN
5821 	dst.push_back(TCU_NAN);
5822 	// Zero
5823 	dst.push_back(0.0);
5824 
5825 	for (int sign = -1; sign <= 1; sign += 2)
5826 	{
5827 		// Smallest normalized
5828 		dst.push_back((double)sign * minNormalized);
5829 
5830 		// Next smallest normalized
5831 		dst.push_back((double)sign * (minNormalized + minQuantum));
5832 
5833 		dst.push_back((double)sign * 0.5);
5834 		dst.push_back((double)sign * 1.0);
5835 		dst.push_back((double)sign * 2.0);
5836 
5837 		// Largest number
5838 		dst.push_back((double)sign * (deLdExp(1.0, maxExp) + (deLdExp(1.0, maxExp) - maxQuantum)));
5839 
5840 		dst.push_back((double)sign * TCU_INFINITY);
5841 	}
5842 	removeNotInRange(dst, inputRange, prec);
5843 }
5844 
removeNotInRange(vector<double> & dst,const Interval & inputRange,const Precision) const5845 void DefaultSampling<double>::removeNotInRange (vector<double>& dst, const Interval& inputRange, const Precision) const
5846 {
5847 	for (vector<double>::iterator it = dst.begin(); it < dst.end();)
5848 	{
5849 		if ( !inputRange.contains(*it) )
5850 			it = dst.erase(it);
5851 		else
5852 			++it;
5853 	}
5854 }
5855 
5856 template <>
5857 class DefaultSampling<deFloat16> : public Sampling<deFloat16>
5858 {
5859 public:
5860 	deFloat16	genRandom			(const FloatFormat& format, const Precision prec, Random& rnd, const Interval& inputRange) const;
5861 	void		genFixeds			(const FloatFormat& format, const Precision prec, vector<deFloat16>& dst, const Interval& inputRange) const;
5862 private:
5863 	void		removeNotInRange(vector<deFloat16>& dst, const Interval& inputRange, const Precision prec) const;
5864 };
5865 
5866 //! Generate a random float from a reasonable general-purpose distribution.
genRandom(const FloatFormat & format,const Precision prec,Random & rnd,const Interval & inputRange) const5867 deFloat16 DefaultSampling<deFloat16>::genRandom (const FloatFormat& format, const Precision prec,
5868 												Random& rnd, const Interval& inputRange) const
5869 {
5870 	DE_UNREF(prec);
5871 	return deFloat64To16Round(randomDouble(format, rnd, inputRange), DE_ROUNDINGMODE_TO_NEAREST_EVEN);
5872 }
5873 
5874 //! Generate a standard set of floats that should always be tested.
genFixeds(const FloatFormat & format,const Precision prec,vector<deFloat16> & dst,const Interval & inputRange) const5875 void DefaultSampling<deFloat16>::genFixeds (const FloatFormat& format, const Precision prec, vector<deFloat16>& dst, const Interval& inputRange) const
5876 {
5877 	dst.push_back(deUint16(0x3E00)); //1.5
5878 	dst.push_back(deUint16(0x3D00)); //1.25
5879 	dst.push_back(deUint16(0x3F00)); //1.75
5880 	// Zero
5881 	dst.push_back(deUint16(0x0000));
5882 	dst.push_back(deUint16(0x8000));
5883 	// Infinity
5884 	dst.push_back(deUint16(0x7c00));
5885 	dst.push_back(deUint16(0xfc00));
5886 	// SNaN
5887 	dst.push_back(deUint16(0x7c0f));
5888 	dst.push_back(deUint16(0xfc0f));
5889 	// QNaN
5890 	dst.push_back(deUint16(0x7cf0));
5891 	dst.push_back(deUint16(0xfcf0));
5892 	// Normalized
5893 	dst.push_back(deUint16(0x0401));
5894 	dst.push_back(deUint16(0x8401));
5895 	// Some normal number
5896 	dst.push_back(deUint16(0x14cb));
5897 	dst.push_back(deUint16(0x94cb));
5898 
5899 	const int			minExp			= format.getMinExp();
5900 	const int			maxExp			= format.getMaxExp();
5901 	const int			fractionBits	= format.getFractionBits();
5902 	const float			minQuantum		= deFloatLdExp(1.0f, minExp - fractionBits);
5903 	const float			minNormalized	= deFloatLdExp(1.0f, minExp);
5904 	const float			maxQuantum		= deFloatLdExp(1.0f, maxExp - fractionBits);
5905 
5906 	for (float sign = -1.0; sign <= 1.0f; sign += 2.0f)
5907 	{
5908 		// Smallest normalized
5909 		dst.push_back(deFloat32To16Round(sign * minNormalized, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5910 
5911 		// Next smallest normalized
5912 		dst.push_back(deFloat32To16Round(sign * (minNormalized + minQuantum), DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5913 
5914 		dst.push_back(deFloat32To16Round(sign * 0.5f, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5915 		dst.push_back(deFloat32To16Round(sign * 1.0f, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5916 		dst.push_back(deFloat32To16Round(sign * 2.0f, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5917 
5918 		// Largest number
5919 		dst.push_back(deFloat32To16Round(sign * (deFloatLdExp(1.0f, maxExp) +
5920 									(deFloatLdExp(1.0f, maxExp) - maxQuantum)), DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5921 
5922 		dst.push_back(deFloat32To16Round(sign * TCU_INFINITY, DE_ROUNDINGMODE_TO_NEAREST_EVEN));
5923 	}
5924 	removeNotInRange(dst, inputRange, prec);
5925 }
5926 
removeNotInRange(vector<deFloat16> & dst,const Interval & inputRange,const Precision) const5927 void DefaultSampling<deFloat16>::removeNotInRange(vector<deFloat16>& dst, const Interval& inputRange, const Precision) const
5928 {
5929 	for (vector<deFloat16>::iterator it = dst.begin(); it < dst.end();)
5930 	{
5931 		if (inputRange.contains(static_cast<double>(*it)))
5932 			++it;
5933 		else
5934 			it = dst.erase(it);
5935 	}
5936 }
5937 
5938 template <typename T, int Size>
5939 class DefaultSampling<Vector<T, Size> > : public Sampling<Vector<T, Size> >
5940 {
5941 public:
5942 	typedef Vector<T, Size>		Value;
5943 
genRandom(const FloatFormat & fmt,const Precision prec,Random & rnd,const Interval & inputRange) const5944 	Value	genRandom	(const FloatFormat& fmt, const Precision prec, Random& rnd, const Interval& inputRange) const
5945 	{
5946 		Value ret;
5947 
5948 		for (int ndx = 0; ndx < Size; ++ndx)
5949 			ret[ndx] = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd, inputRange);
5950 
5951 		return ret;
5952 	}
5953 
genFixeds(const FloatFormat & fmt,const Precision prec,vector<Value> & dst,const Interval & inputRange) const5954 	void	genFixeds	(const FloatFormat& fmt, const Precision prec, vector<Value>& dst, const Interval& inputRange) const
5955 	{
5956 		vector<T> scalars;
5957 
5958 		instance<DefaultSampling<T> >().genFixeds(fmt, prec, scalars, inputRange);
5959 
5960 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
5961 			dst.push_back(Value(scalars[scalarNdx]));
5962 	}
5963 };
5964 
5965 template <typename T, int Rows, int Columns>
5966 class DefaultSampling<Matrix<T, Rows, Columns> > : public Sampling<Matrix<T, Rows, Columns> >
5967 {
5968 public:
5969 	typedef Matrix<T, Rows, Columns>		Value;
5970 
genRandom(const FloatFormat & fmt,const Precision prec,Random & rnd,const Interval & inputRange) const5971 	Value	genRandom	(const FloatFormat& fmt, const Precision prec, Random& rnd, const Interval& inputRange) const
5972 	{
5973 		Value ret;
5974 
5975 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
5976 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
5977 				ret(rowNdx, colNdx) = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd, inputRange);
5978 
5979 		return ret;
5980 	}
5981 
genFixeds(const FloatFormat & fmt,const Precision prec,vector<Value> & dst,const Interval & inputRange) const5982 	void	genFixeds	(const FloatFormat& fmt, const Precision prec, vector<Value>& dst, const Interval& inputRange) const
5983 	{
5984 		vector<T> scalars;
5985 
5986 		instance<DefaultSampling<T> >().genFixeds(fmt, prec, scalars, inputRange);
5987 
5988 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
5989 			dst.push_back(Value(scalars[scalarNdx]));
5990 
5991 		if (Columns == Rows)
5992 		{
5993 			Value	mat	(T(0.0));
5994 			T		x	= T(1.0f);
5995 			mat[0][0] = x;
5996 			for (int ndx = 0; ndx < Columns; ++ndx)
5997 			{
5998 				mat[Columns-1-ndx][ndx] = x;
5999 				x = static_cast<T>(x * static_cast<T>(2.0f));
6000 			}
6001 			dst.push_back(mat);
6002 		}
6003 	}
6004 };
6005 
6006 struct CaseContext
6007 {
CaseContextvkt::shaderexecutor::CaseContext6008 					CaseContext		(const string&							name_,
6009 									 TestContext&							testContext_,
6010 									 const FloatFormat&						floatFormat_,
6011 									 const FloatFormat&						highpFormat_,
6012 									 const Precision						precision_,
6013 									 const ShaderType						shaderType_,
6014 									 const size_t							numRandoms_,
6015 									 const PrecisionTestFeatures	precisionTestFeatures_ = PRECISION_TEST_FEATURES_NONE,
6016 									 const bool						isPackFloat16b_ = false,
6017 									 const bool						isFloat64b_ = false)
6018 						: name						(name_)
6019 						, testContext				(testContext_)
6020 						, floatFormat				(floatFormat_)
6021 						, highpFormat				(highpFormat_)
6022 						, precision					(precision_)
6023 						, shaderType				(shaderType_)
6024 						, numRandoms				(numRandoms_)
6025 						, inputRange				(-TCU_INFINITY, TCU_INFINITY)
6026 						, precisionTestFeatures		(precisionTestFeatures_)
6027 						, isPackFloat16b			(isPackFloat16b_)
6028 						, isFloat64b				(isFloat64b_)
6029 					{}
6030 
6031 	string							name;
6032 	TestContext&					testContext;
6033 	FloatFormat						floatFormat;
6034 	FloatFormat						highpFormat;
6035 	Precision						precision;
6036 	ShaderType						shaderType;
6037 	size_t							numRandoms;
6038 	Interval						inputRange;
6039 	PrecisionTestFeatures	precisionTestFeatures;
6040 	bool							isPackFloat16b;
6041 	bool					isFloat64b;
6042 };
6043 
6044 template<typename In0_ = Void, typename In1_ = Void, typename In2_ = Void, typename In3_ = Void>
6045 struct InTypes
6046 {
6047 	typedef	In0_	In0;
6048 	typedef	In1_	In1;
6049 	typedef	In2_	In2;
6050 	typedef	In3_	In3;
6051 };
6052 
6053 template <typename In>
numInputs(void)6054 int numInputs (void)
6055 {
6056 	return (!isTypeValid<typename In::In0>() ? 0 :
6057 			!isTypeValid<typename In::In1>() ? 1 :
6058 			!isTypeValid<typename In::In2>() ? 2 :
6059 			!isTypeValid<typename In::In3>() ? 3 :
6060 			4);
6061 }
6062 
6063 template<typename Out0_, typename Out1_ = Void>
6064 struct OutTypes
6065 {
6066 	typedef	Out0_	Out0;
6067 	typedef	Out1_	Out1;
6068 };
6069 
6070 template <typename Out>
numOutputs(void)6071 int numOutputs (void)
6072 {
6073 	return (!isTypeValid<typename Out::Out0>() ? 0 :
6074 			!isTypeValid<typename Out::Out1>() ? 1 :
6075 			2);
6076 }
6077 
6078 template<typename In>
6079 struct Inputs
6080 {
6081 	vector<typename In::In0>	in0;
6082 	vector<typename In::In1>	in1;
6083 	vector<typename In::In2>	in2;
6084 	vector<typename In::In3>	in3;
6085 };
6086 
6087 template<typename Out>
6088 struct Outputs
6089 {
Outputsvkt::shaderexecutor::Outputs6090 	Outputs	(size_t size) : out0(size), out1(size) {}
6091 
6092 	vector<typename Out::Out0>	out0;
6093 	vector<typename Out::Out1>	out1;
6094 };
6095 
6096 template<typename In, typename Out>
6097 struct Variables
6098 {
6099 	VariableP<typename In::In0>		in0;
6100 	VariableP<typename In::In1>		in1;
6101 	VariableP<typename In::In2>		in2;
6102 	VariableP<typename In::In3>		in3;
6103 	VariableP<typename Out::Out0>	out0;
6104 	VariableP<typename Out::Out1>	out1;
6105 };
6106 
6107 template<typename In>
6108 struct Samplings
6109 {
Samplingsvkt::shaderexecutor::Samplings6110 	Samplings	(const Sampling<typename In::In0>&	in0_,
6111 				 const Sampling<typename In::In1>&	in1_,
6112 				 const Sampling<typename In::In2>&	in2_,
6113 				 const Sampling<typename In::In3>&	in3_)
6114 		: in0 (in0_), in1 (in1_), in2 (in2_), in3 (in3_) {}
6115 
6116 	const Sampling<typename In::In0>&	in0;
6117 	const Sampling<typename In::In1>&	in1;
6118 	const Sampling<typename In::In2>&	in2;
6119 	const Sampling<typename In::In3>&	in3;
6120 };
6121 
6122 template<typename In>
6123 struct DefaultSamplings : Samplings<In>
6124 {
DefaultSamplingsvkt::shaderexecutor::DefaultSamplings6125 	DefaultSamplings	(void)
6126 		: Samplings<In>(instance<DefaultSampling<typename In::In0> >(),
6127 						instance<DefaultSampling<typename In::In1> >(),
6128 						instance<DefaultSampling<typename In::In2> >(),
6129 						instance<DefaultSampling<typename In::In3> >()) {}
6130 };
6131 
6132 template <typename In, typename Out>
6133 class BuiltinPrecisionCaseTestInstance : public TestInstance
6134 {
6135 public:
BuiltinPrecisionCaseTestInstance(Context & context,const CaseContext caseCtx,const ShaderSpec & shaderSpec,const Variables<In,Out> variables,const Samplings<In> & samplings,const StatementP stmt,bool modularOp=false)6136 									BuiltinPrecisionCaseTestInstance	(Context&						context,
6137 																		 const CaseContext				caseCtx,
6138 																		 const ShaderSpec&				shaderSpec,
6139 																		 const Variables<In, Out>		variables,
6140 																		 const Samplings<In>&			samplings,
6141 																		 const StatementP				stmt,
6142 																		 bool							modularOp = false)
6143 										: TestInstance	(context)
6144 										, m_caseCtx		(caseCtx)
6145 										, m_variables	(variables)
6146 										, m_samplings	(samplings)
6147 										, m_stmt		(stmt)
6148 										, m_executor	(createExecutor(context, caseCtx.shaderType, shaderSpec))
6149 										, m_modularOp	(modularOp)
6150 									{
6151 									}
6152 	virtual tcu::TestStatus			iterate								(void);
6153 
6154 protected:
6155 	CaseContext						m_caseCtx;
6156 	Variables<In, Out>				m_variables;
6157 	const Samplings<In>&			m_samplings;
6158 	StatementP						m_stmt;
6159 	de::UniquePtr<ShaderExecutor>	m_executor;
6160 	bool							m_modularOp;
6161 };
6162 
6163 template<class In, class Out>
iterate(void)6164 tcu::TestStatus BuiltinPrecisionCaseTestInstance<In, Out>::iterate (void)
6165 {
6166 	typedef typename	In::In0		In0;
6167 	typedef typename	In::In1		In1;
6168 	typedef typename	In::In2		In2;
6169 	typedef typename	In::In3		In3;
6170 	typedef typename	Out::Out0	Out0;
6171 	typedef typename	Out::Out1	Out1;
6172 
6173 	areFeaturesSupported(m_context, m_caseCtx.precisionTestFeatures);
6174 	Inputs<In>			inputs		= generateInputs(m_samplings, m_caseCtx.floatFormat, m_caseCtx.precision, m_caseCtx.numRandoms, 0xdeadbeefu + m_caseCtx.testContext.getCommandLine().getBaseSeed(), m_caseCtx.inputRange);
6175 	const FloatFormat&	fmt			= m_caseCtx.floatFormat;
6176 	const int			inCount		= numInputs<In>();
6177 	const int			outCount	= numOutputs<Out>();
6178 	const size_t		numValues	= (inCount > 0) ? inputs.in0.size() : 1;
6179 	Outputs<Out>		outputs		(numValues);
6180 	const FloatFormat	highpFmt	= m_caseCtx.highpFormat;
6181 	const int			maxMsgs		= 100;
6182 	int					numErrors	= 0;
6183 	Environment			env;		// Hoisted out of the inner loop for optimization.
6184 	ResultCollector		status;
6185 	TestLog&			testLog		= m_context.getTestContext().getLog();
6186 
6187 	// Module operations need exactly two inputs and have exactly one output.
6188 	if (m_modularOp)
6189 	{
6190 		DE_ASSERT(inCount == 2);
6191 		DE_ASSERT(outCount == 1);
6192 	}
6193 
6194 	const void*			inputArr[]	=
6195 	{
6196 		inputs.in0.data(), inputs.in1.data(), inputs.in2.data(), inputs.in3.data(),
6197 	};
6198 	void*				outputArr[]	=
6199 	{
6200 		outputs.out0.data(), outputs.out1.data(),
6201 	};
6202 
6203 	// Print out the statement and its definitions
6204 	testLog << TestLog::Message << "Statement: " << m_stmt << TestLog::EndMessage;
6205 	{
6206 		ostringstream	oss;
6207 		FuncSet			funcs;
6208 
6209 		m_stmt->getUsedFuncs(funcs);
6210 		for (FuncSet::const_iterator it = funcs.begin(); it != funcs.end(); ++it)
6211 		{
6212 			(*it)->printDefinition(oss);
6213 		}
6214 		if (!funcs.empty())
6215 			testLog << TestLog::Message << "Reference definitions:\n" << oss.str()
6216 				  << TestLog::EndMessage;
6217 	}
6218 	switch (inCount)
6219 	{
6220 		case 4:
6221 			DE_ASSERT(inputs.in3.size() == numValues);
6222 		// Fallthrough
6223 		case 3:
6224 			DE_ASSERT(inputs.in2.size() == numValues);
6225 		// Fallthrough
6226 		case 2:
6227 			DE_ASSERT(inputs.in1.size() == numValues);
6228 		// Fallthrough
6229 		case 1:
6230 			DE_ASSERT(inputs.in0.size() == numValues);
6231 		// Fallthrough
6232 		default:
6233 			break;
6234 	}
6235 
6236 	m_executor->execute(int(numValues), inputArr, outputArr);
6237 
6238 	// Initialize environment with dummy values so we don't need to bind in inner loop.
6239 	{
6240 		const typename Traits<In0>::IVal		in0;
6241 		const typename Traits<In1>::IVal		in1;
6242 		const typename Traits<In2>::IVal		in2;
6243 		const typename Traits<In3>::IVal		in3;
6244 		const typename Traits<Out0>::IVal		reference0;
6245 		const typename Traits<Out1>::IVal		reference1;
6246 
6247 		env.bind(*m_variables.in0, in0);
6248 		env.bind(*m_variables.in1, in1);
6249 		env.bind(*m_variables.in2, in2);
6250 		env.bind(*m_variables.in3, in3);
6251 		env.bind(*m_variables.out0, reference0);
6252 		env.bind(*m_variables.out1, reference1);
6253 	}
6254 
6255 	// For each input tuple, compute output reference interval and compare
6256 	// shader output to the reference.
6257 	for (size_t valueNdx = 0; valueNdx < numValues; valueNdx++)
6258 	{
6259 		bool						result			= true;
6260 		const bool					isInput16Bit	= m_executor->areInputs16Bit();
6261 		const bool					isInput64Bit	= m_executor->areInputs64Bit();
6262 
6263 		DE_ASSERT(!(isInput16Bit && isInput64Bit));
6264 
6265 		typename Traits<Out0>::IVal	reference0;
6266 		typename Traits<Out1>::IVal	reference1;
6267 
6268 		if (valueNdx % (size_t)TOUCH_WATCHDOG_VALUE_FREQUENCY == 0)
6269 			m_context.getTestContext().touchWatchdog();
6270 
6271 		env.lookup(*m_variables.in0) = convert<In0>(fmt, round(fmt, inputs.in0[valueNdx]));
6272 		env.lookup(*m_variables.in1) = convert<In1>(fmt, round(fmt, inputs.in1[valueNdx]));
6273 		env.lookup(*m_variables.in2) = convert<In2>(fmt, round(fmt, inputs.in2[valueNdx]));
6274 		env.lookup(*m_variables.in3) = convert<In3>(fmt, round(fmt, inputs.in3[valueNdx]));
6275 
6276 		{
6277 			EvalContext	ctx (fmt, m_caseCtx.precision, env, 0);
6278 			m_stmt->execute(ctx);
6279 
6280 			switch (outCount)
6281 			{
6282 				case 2:
6283 					reference1 = convert<Out1>(highpFmt, env.lookup(*m_variables.out1));
6284 					if (!status.check(contains(reference1, outputs.out1[valueNdx], m_caseCtx.isPackFloat16b), "Shader output 1 is outside acceptable range"))
6285 						result = false;
6286 				// Fallthrough
6287 				case 1:
6288 					{
6289 						// Pass b from mod(a, b) if we are in the modulo operation.
6290 						const tcu::Maybe<In1> modularDivisor = (m_modularOp ? tcu::just(inputs.in1[valueNdx]) : tcu::nothing<In1>());
6291 
6292 						reference0 = convert<Out0>(highpFmt, env.lookup(*m_variables.out0));
6293 						if (!status.check(contains(reference0, outputs.out0[valueNdx], m_caseCtx.isPackFloat16b, modularDivisor), "Shader output 0 is outside acceptable range"))
6294 						{
6295 							m_stmt->failed(ctx);
6296 							reference0 = convert<Out0>(highpFmt, env.lookup(*m_variables.out0));
6297 							if (!status.check(contains(reference0, outputs.out0[valueNdx], m_caseCtx.isPackFloat16b, modularDivisor), "Shader output 0 is outside acceptable range"))
6298 								result = false;
6299 						}
6300 					}
6301 				// Fallthrough
6302 				default: break;
6303 			}
6304 
6305 		}
6306 		if (!result)
6307 			++numErrors;
6308 
6309 		if ((!result && numErrors <= maxMsgs) || GLS_LOG_ALL_RESULTS)
6310 		{
6311 			MessageBuilder	builder	= testLog.message();
6312 
6313 			builder << (result ? "Passed" : "Failed") << " sample:\n";
6314 
6315 			if (inCount > 0)
6316 			{
6317 				builder << "\t" << m_variables.in0->getName() << " = "
6318 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in0[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in0[valueNdx]) : value32ToString(highpFmt, inputs.in0[valueNdx]))) << "\n";
6319 			}
6320 
6321 			if (inCount > 1)
6322 			{
6323 				builder << "\t" << m_variables.in1->getName() << " = "
6324 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in1[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in1[valueNdx]) : value32ToString(highpFmt, inputs.in1[valueNdx]))) << "\n";
6325 			}
6326 
6327 			if (inCount > 2)
6328 			{
6329 				builder << "\t" << m_variables.in2->getName() << " = "
6330 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in2[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in2[valueNdx]) : value32ToString(highpFmt, inputs.in2[valueNdx]))) << "\n";
6331 			}
6332 
6333 			if (inCount > 3)
6334 			{
6335 				builder << "\t" << m_variables.in3->getName() << " = "
6336 						<< (isInput64Bit ? value64ToString(highpFmt, inputs.in3[valueNdx]) : (isInput16Bit ? value16ToString(highpFmt, inputs.in3[valueNdx]) : value32ToString(highpFmt, inputs.in3[valueNdx]))) << "\n";
6337 			}
6338 
6339 			if (outCount > 0)
6340 			{
6341 				if (m_executor->spirvCase() == SPIRV_CASETYPE_COMPARE)
6342 				{
6343 					builder << "Output:\n"
6344 							<< comparisonMessage(outputs.out0[valueNdx])
6345 							<< "Expected result:\n"
6346 							<< comparisonMessageInterval<typename Out::Out0>(reference0) << "\n";
6347 				}
6348 				else
6349 				{
6350 					builder << "\t" << m_variables.out0->getName() << " = "
6351 						<< (m_executor->isOutput64Bit(0u) ? value64ToString(highpFmt, outputs.out0[valueNdx]) : (m_executor->isOutput16Bit(0u) || m_caseCtx.isPackFloat16b ? value16ToString(highpFmt, outputs.out0[valueNdx]) : value32ToString(highpFmt, outputs.out0[valueNdx]))) << "\n"
6352 						<< "\tExpected range: "
6353 						<< intervalToString<typename Out::Out0>(highpFmt, reference0) << "\n";
6354 				}
6355 			}
6356 
6357 			if (outCount > 1)
6358 			{
6359 				builder << "\t" << m_variables.out1->getName() << " = "
6360 						<< (m_executor->isOutput64Bit(1u) ? value64ToString(highpFmt, outputs.out1[valueNdx]) : (m_executor->isOutput16Bit(1u) || m_caseCtx.isPackFloat16b ? value16ToString(highpFmt, outputs.out1[valueNdx]) : value32ToString(highpFmt, outputs.out1[valueNdx]))) << "\n"
6361 						<< "\tExpected range: "
6362 						<< intervalToString<typename Out::Out1>(highpFmt, reference1) << "\n";
6363 			}
6364 
6365 			builder << TestLog::EndMessage;
6366 		}
6367 	}
6368 
6369 	if (numErrors > maxMsgs)
6370 	{
6371 		testLog << TestLog::Message << "(Skipped " << (numErrors - maxMsgs) << " messages.)"
6372 			  << TestLog::EndMessage;
6373 	}
6374 
6375 	if (numErrors == 0)
6376 	{
6377 		testLog << TestLog::Message << "All " << numValues << " inputs passed."
6378 			  << TestLog::EndMessage;
6379 	}
6380 	else
6381 	{
6382 		testLog << TestLog::Message << numErrors << "/" << numValues << " inputs failed."
6383 			  << TestLog::EndMessage;
6384 	}
6385 
6386 	if (numErrors)
6387 		return tcu::TestStatus::fail(de::toString(numErrors) + string(" test failed. Check log for the details"));
6388 	else
6389 		return tcu::TestStatus::pass("Pass");
6390 
6391 }
6392 
6393 class PrecisionCase : public TestCase
6394 {
6395 protected:
PrecisionCase(const CaseContext & context,const string & name,const Interval & inputRange,const string & extension="")6396 						PrecisionCase	(const CaseContext& context, const string& name, const Interval& inputRange, const string& extension = "")
6397 							: TestCase		(context.testContext, name.c_str(), name.c_str())
6398 							, m_ctx			(context)
6399 							, m_extension	(extension)
6400 							{
6401 								m_ctx.inputRange = inputRange;
6402 								m_spec.packFloat16Bit = context.isPackFloat16b;
6403 							}
6404 
initPrograms(vk::SourceCollections & programCollection) const6405 	virtual void		initPrograms	(vk::SourceCollections& programCollection) const
6406 	{
6407 		generateSources(m_ctx.shaderType, m_spec, programCollection);
6408 	}
6409 
getFormat(void) const6410 	const FloatFormat&	getFormat		(void) const			{ return m_ctx.floatFormat; }
6411 
6412 	template <typename In, typename Out>
6413 	void				testStatement	(const Variables<In, Out>& variables, const Statement& stmt, SpirVCaseT spirvCase);
6414 
6415 	template<typename T>
makeSymbol(const Variable<T> & variable)6416 	Symbol				makeSymbol		(const Variable<T>& variable)
6417 	{
6418 		return Symbol(variable.getName(), getVarTypeOf<T>(m_ctx.precision));
6419 	}
6420 
6421 	CaseContext			m_ctx;
6422 	const string		m_extension;
6423 	ShaderSpec			m_spec;
6424 };
6425 
6426 template <typename In, typename Out>
testStatement(const Variables<In,Out> & variables,const Statement & stmt,SpirVCaseT spirvCase)6427 void PrecisionCase::testStatement (const Variables<In, Out>& variables, const Statement& stmt, SpirVCaseT spirvCase)
6428 {
6429 	const int		inCount		= numInputs<In>();
6430 	const int		outCount	= numOutputs<Out>();
6431 	Environment		env;		// Hoisted out of the inner loop for optimization.
6432 
6433 	// Initialize ShaderSpec from precision, variables and statement.
6434 	if (m_ctx.precision != glu::PRECISION_LAST)
6435 	{
6436 		ostringstream os;
6437 		os << "precision " << glu::getPrecisionName(m_ctx.precision) << " float;\n";
6438 		m_spec.globalDeclarations = os.str();
6439 	}
6440 
6441 	if (!m_extension.empty())
6442 		m_spec.globalDeclarations = "#extension " + m_extension + " : require\n";
6443 
6444 	m_spec.inputs.resize(inCount);
6445 
6446 	switch (inCount)
6447 	{
6448 		case 4:
6449 			m_spec.inputs[3] = makeSymbol(*variables.in3);
6450 		// Fallthrough
6451 		case 3:
6452 			m_spec.inputs[2] = makeSymbol(*variables.in2);
6453 		// Fallthrough
6454 		case 2:
6455 			m_spec.inputs[1] = makeSymbol(*variables.in1);
6456 		// Fallthrough
6457 		case 1:
6458 			m_spec.inputs[0] = makeSymbol(*variables.in0);
6459 		// Fallthrough
6460 		default:
6461 			break;
6462 	}
6463 
6464 	bool inputs16Bit = false;
6465 	for (vector<Symbol>::const_iterator symIter = m_spec.inputs.begin(); symIter != m_spec.inputs.end(); ++symIter)
6466 		inputs16Bit = inputs16Bit || glu::isDataTypeFloat16OrVec(symIter->varType.getBasicType());
6467 
6468 	if (inputs16Bit || m_spec.packFloat16Bit)
6469 		m_spec.globalDeclarations += "#extension GL_EXT_shader_explicit_arithmetic_types: require\n";
6470 
6471 	m_spec.outputs.resize(outCount);
6472 
6473 	switch (outCount)
6474 	{
6475 		case 2:
6476 			m_spec.outputs[1] = makeSymbol(*variables.out1);
6477 		// Fallthrough
6478 		case 1:
6479 			m_spec.outputs[0] = makeSymbol(*variables.out0);
6480 		// Fallthrough
6481 		default:
6482 			break;
6483 	}
6484 
6485 	m_spec.source = de::toString(stmt);
6486 	m_spec.spirvCase = spirvCase;
6487 }
6488 
6489 template <typename T>
6490 struct InputLess
6491 {
operator ()vkt::shaderexecutor::InputLess6492 	bool operator() (const T& val1, const T& val2) const
6493 	{
6494 		return val1 < val2;
6495 	}
6496 };
6497 
6498 template <typename T>
inputLess(const T & val1,const T & val2)6499 bool inputLess (const T& val1, const T& val2)
6500 {
6501 	return InputLess<T>()(val1, val2);
6502 }
6503 
6504 template <>
6505 struct InputLess<float>
6506 {
operator ()vkt::shaderexecutor::InputLess6507 	bool operator() (const float& val1, const float& val2) const
6508 	{
6509 		if (deIsNaN(val1))
6510 			return false;
6511 		if (deIsNaN(val2))
6512 			return true;
6513 		return val1 < val2;
6514 	}
6515 };
6516 
6517 template <typename T, int Size>
6518 struct InputLess<Vector<T, Size> >
6519 {
operator ()vkt::shaderexecutor::InputLess6520 	bool operator() (const Vector<T, Size>& vec1, const Vector<T, Size>& vec2) const
6521 	{
6522 		for (int ndx = 0; ndx < Size; ++ndx)
6523 		{
6524 			if (inputLess(vec1[ndx], vec2[ndx]))
6525 				return true;
6526 			if (inputLess(vec2[ndx], vec1[ndx]))
6527 				return false;
6528 		}
6529 
6530 		return false;
6531 	}
6532 };
6533 
6534 template <typename T, int Rows, int Cols>
6535 struct InputLess<Matrix<T, Rows, Cols> >
6536 {
operator ()vkt::shaderexecutor::InputLess6537 	bool operator() (const Matrix<T, Rows, Cols>& mat1,
6538 					 const Matrix<T, Rows, Cols>& mat2) const
6539 	{
6540 		for (int col = 0; col < Cols; ++col)
6541 		{
6542 			if (inputLess(mat1[col], mat2[col]))
6543 				return true;
6544 			if (inputLess(mat2[col], mat1[col]))
6545 				return false;
6546 		}
6547 
6548 		return false;
6549 	}
6550 };
6551 
6552 template <typename In>
6553 struct InTuple :
6554 	public Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
6555 {
InTuplevkt::shaderexecutor::InTuple6556 	InTuple	(const typename In::In0& in0,
6557 			 const typename In::In1& in1,
6558 			 const typename In::In2& in2,
6559 			 const typename In::In3& in3)
6560 		: Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
6561 		  (in0, in1, in2, in3) {}
6562 };
6563 
6564 template <typename In>
6565 struct InputLess<InTuple<In> >
6566 {
operator ()vkt::shaderexecutor::InputLess6567 	bool operator() (const InTuple<In>& in1, const InTuple<In>& in2) const
6568 	{
6569 		if (inputLess(in1.a, in2.a))
6570 			return true;
6571 		if (inputLess(in2.a, in1.a))
6572 			return false;
6573 		if (inputLess(in1.b, in2.b))
6574 			return true;
6575 		if (inputLess(in2.b, in1.b))
6576 			return false;
6577 		if (inputLess(in1.c, in2.c))
6578 			return true;
6579 		if (inputLess(in2.c, in1.c))
6580 			return false;
6581 		if (inputLess(in1.d, in2.d))
6582 			return true;
6583 		return false;
6584 	};
6585 };
6586 
6587 template<typename In>
generateInputs(const Samplings<In> & samplings,const FloatFormat & floatFormat,Precision intPrecision,size_t numSamples,deUint32 seed,const Interval & inputRange)6588 Inputs<In> generateInputs (const Samplings<In>&		samplings,
6589 						   const FloatFormat&		floatFormat,
6590 						   Precision				intPrecision,
6591 						   size_t					numSamples,
6592 						   deUint32					seed,
6593 						   const Interval&			inputRange)
6594 {
6595 	Random										rnd(seed);
6596 	Inputs<In>									ret;
6597 	Inputs<In>									fixedInputs;
6598 	set<InTuple<In>, InputLess<InTuple<In> > >	seenInputs;
6599 
6600 	samplings.in0.genFixeds(floatFormat, intPrecision, fixedInputs.in0, inputRange);
6601 	samplings.in1.genFixeds(floatFormat, intPrecision, fixedInputs.in1, inputRange);
6602 	samplings.in2.genFixeds(floatFormat, intPrecision, fixedInputs.in2, inputRange);
6603 	samplings.in3.genFixeds(floatFormat, intPrecision, fixedInputs.in3, inputRange);
6604 
6605 	for (size_t ndx0 = 0; ndx0 < fixedInputs.in0.size(); ++ndx0)
6606 	{
6607 		for (size_t ndx1 = 0; ndx1 < fixedInputs.in1.size(); ++ndx1)
6608 		{
6609 			for (size_t ndx2 = 0; ndx2 < fixedInputs.in2.size(); ++ndx2)
6610 			{
6611 				for (size_t ndx3 = 0; ndx3 < fixedInputs.in3.size(); ++ndx3)
6612 				{
6613 					const InTuple<In>	tuple	(fixedInputs.in0[ndx0],
6614 												 fixedInputs.in1[ndx1],
6615 												 fixedInputs.in2[ndx2],
6616 												 fixedInputs.in3[ndx3]);
6617 
6618 					seenInputs.insert(tuple);
6619 					ret.in0.push_back(tuple.a);
6620 					ret.in1.push_back(tuple.b);
6621 					ret.in2.push_back(tuple.c);
6622 					ret.in3.push_back(tuple.d);
6623 				}
6624 			}
6625 		}
6626 	}
6627 
6628 	for (size_t ndx = 0; ndx < numSamples; ++ndx)
6629 	{
6630 		const typename In::In0	in0		= samplings.in0.genRandom(floatFormat, intPrecision, rnd, inputRange);
6631 		const typename In::In1	in1		= samplings.in1.genRandom(floatFormat, intPrecision, rnd, inputRange);
6632 		const typename In::In2	in2		= samplings.in2.genRandom(floatFormat, intPrecision, rnd, inputRange);
6633 		const typename In::In3	in3		= samplings.in3.genRandom(floatFormat, intPrecision, rnd, inputRange);
6634 		const InTuple<In>		tuple	(in0, in1, in2, in3);
6635 
6636 		if (de::contains(seenInputs, tuple))
6637 			continue;
6638 
6639 		seenInputs.insert(tuple);
6640 		ret.in0.push_back(in0);
6641 		ret.in1.push_back(in1);
6642 		ret.in2.push_back(in2);
6643 		ret.in3.push_back(in3);
6644 	}
6645 
6646 	return ret;
6647 }
6648 
6649 class FuncCaseBase : public PrecisionCase
6650 {
6651 protected:
FuncCaseBase(const CaseContext & context,const string & name,const FuncBase & func)6652 				FuncCaseBase	(const CaseContext& context, const string& name, const FuncBase& func)
6653 									: PrecisionCase	(context, name, func.getInputRange(!context.isFloat64b && (context.precision == glu::PRECISION_LAST || context.isPackFloat16b)), func.getRequiredExtension())
6654 								{
6655 								}
6656 
6657 	StatementP	m_stmt;
6658 };
6659 
6660 template <typename Sig>
6661 class FuncCase : public FuncCaseBase
6662 {
6663 public:
6664 	typedef Func<Sig>						CaseFunc;
6665 	typedef typename Sig::Ret				Ret;
6666 	typedef typename Sig::Arg0				Arg0;
6667 	typedef typename Sig::Arg1				Arg1;
6668 	typedef typename Sig::Arg2				Arg2;
6669 	typedef typename Sig::Arg3				Arg3;
6670 	typedef InTypes<Arg0, Arg1, Arg2, Arg3>	In;
6671 	typedef OutTypes<Ret>					Out;
6672 
FuncCase(const CaseContext & context,const string & name,const CaseFunc & func,bool modularOp=false)6673 											FuncCase		(const CaseContext& context, const string& name, const CaseFunc& func, bool modularOp = false)
6674 												: FuncCaseBase	(context, name, func)
6675 												, m_func		(func)
6676 												, m_modularOp	(modularOp)
6677 												{
6678 													buildTest();
6679 												}
6680 
createInstance(Context & context) const6681 	virtual	TestInstance*					createInstance	(Context& context) const
6682 	{
6683 		return new BuiltinPrecisionCaseTestInstance<In, Out>(context, m_ctx, m_spec, m_variables, getSamplings(), m_stmt, m_modularOp);
6684 	}
6685 
6686 protected:
6687 	void									buildTest		(void);
getSamplings(void) const6688 	virtual const Samplings<In>&			getSamplings	(void) const
6689 	{
6690 		return instance<DefaultSamplings<In> >();
6691 	}
6692 
6693 private:
6694 	const CaseFunc&							m_func;
6695 	Variables<In, Out>						m_variables;
6696 	bool									m_modularOp;
6697 };
6698 
6699 template <typename Sig>
buildTest(void)6700 void FuncCase<Sig>::buildTest (void)
6701 {
6702 	m_variables.out0	= variable<Ret>("out0");
6703 	m_variables.out1	= variable<Void>("out1");
6704 	m_variables.in0		= variable<Arg0>("in0");
6705 	m_variables.in1		= variable<Arg1>("in1");
6706 	m_variables.in2		= variable<Arg2>("in2");
6707 	m_variables.in3		= variable<Arg3>("in3");
6708 
6709 	{
6710 		ExprP<Ret> expr	= applyVar(m_func, m_variables.in0, m_variables.in1, m_variables.in2, m_variables.in3);
6711 		m_stmt			= variableAssignment(m_variables.out0, expr);
6712 
6713 		this->testStatement(m_variables, *m_stmt, m_func.getSpirvCase());
6714 	}
6715 }
6716 
6717 template <typename Sig>
6718 class InOutFuncCase : public FuncCaseBase
6719 {
6720 public:
6721 	typedef Func<Sig>					CaseFunc;
6722 	typedef typename Sig::Ret			Ret;
6723 	typedef typename Sig::Arg0			Arg0;
6724 	typedef typename Sig::Arg1			Arg1;
6725 	typedef typename Sig::Arg2			Arg2;
6726 	typedef typename Sig::Arg3			Arg3;
6727 	typedef InTypes<Arg0, Arg2, Arg3>	In;
6728 	typedef OutTypes<Ret, Arg1>			Out;
6729 
InOutFuncCase(const CaseContext & context,const string & name,const CaseFunc & func,bool modularOp=false)6730 										InOutFuncCase	(const CaseContext& context, const string& name, const CaseFunc& func, bool modularOp = false)
6731 											: FuncCaseBase	(context, name, func)
6732 											, m_func		(func)
6733 											, m_modularOp	(modularOp)
6734 											{
6735 												buildTest();
6736 											}
createInstance(Context & context) const6737 	virtual TestInstance*				createInstance	(Context& context) const
6738 	{
6739 		return new BuiltinPrecisionCaseTestInstance<In, Out>(context, m_ctx, m_spec, m_variables, getSamplings(), m_stmt, m_modularOp);
6740 	}
6741 
6742 protected:
6743 	void								buildTest		(void);
getSamplings(void) const6744 	virtual const Samplings<In>&		getSamplings	(void) const
6745 	{
6746 		return instance<DefaultSamplings<In> >();
6747 	}
6748 
6749 private:
6750 	const CaseFunc&						m_func;
6751 	Variables<In, Out>					m_variables;
6752 	bool								m_modularOp;
6753 };
6754 
6755 template <typename Sig>
buildTest(void)6756 void InOutFuncCase<Sig>::buildTest (void)
6757 {
6758 	m_variables.out0	= variable<Ret>("out0");
6759 	m_variables.out1	= variable<Arg1>("out1");
6760 	m_variables.in0		= variable<Arg0>("in0");
6761 	m_variables.in1		= variable<Arg2>("in1");
6762 	m_variables.in2		= variable<Arg3>("in2");
6763 	m_variables.in3		= variable<Void>("in3");
6764 
6765 	{
6766 		ExprP<Ret> expr	= applyVar(m_func, m_variables.in0, m_variables.out1, m_variables.in1, m_variables.in2);
6767 		m_stmt			= variableAssignment(m_variables.out0, expr);
6768 
6769 		this->testStatement(m_variables, *m_stmt, m_func.getSpirvCase());
6770 	}
6771 }
6772 
6773 template <typename Sig>
createFuncCase(const CaseContext & context,const string & name,const Func<Sig> & func,bool modularOp=false)6774 PrecisionCase* createFuncCase (const CaseContext& context, const string& name, const Func<Sig>&	func, bool modularOp = false)
6775 {
6776 	switch (func.getOutParamIndex())
6777 	{
6778 		case -1:
6779 			return new FuncCase<Sig>(context, name, func, modularOp);
6780 		case 1:
6781 			return new InOutFuncCase<Sig>(context, name, func, modularOp);
6782 		default:
6783 			DE_FATAL("Impossible");
6784 	}
6785 	return DE_NULL;
6786 }
6787 
6788 class CaseFactory
6789 {
6790 public:
~CaseFactory(void)6791 	virtual						~CaseFactory	(void) {}
6792 	virtual MovePtr<TestNode>	createCase		(const CaseContext& ctx) const = 0;
6793 	virtual string				getName			(void) const = 0;
6794 	virtual string				getDesc			(void) const = 0;
6795 };
6796 
6797 class FuncCaseFactory : public CaseFactory
6798 {
6799 public:
6800 	virtual const FuncBase&		getFunc			(void) const = 0;
getName(void) const6801 	string						getName			(void) const { return de::toLower(getFunc().getName()); }
getDesc(void) const6802 	string						getDesc			(void) const { return "Function '" + getFunc().getName() + "'";	}
6803 };
6804 
6805 template <typename Sig>
6806 class GenFuncCaseFactory : public CaseFactory
6807 {
6808 public:
GenFuncCaseFactory(const GenFuncs<Sig> & funcs,const string & name,bool modularOp=false)6809 						GenFuncCaseFactory	(const GenFuncs<Sig>& funcs, const string& name, bool modularOp = false)
6810 							: m_funcs			(funcs)
6811 							, m_name			(de::toLower(name))
6812 							, m_modularOp		(modularOp)
6813 							{
6814 							}
6815 
createCase(const CaseContext & ctx) const6816 	MovePtr<TestNode>	createCase			(const CaseContext& ctx) const
6817 	{
6818 		TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6819 
6820 		group->addChild(createFuncCase(ctx, "scalar",	m_funcs.func,	m_modularOp));
6821 		group->addChild(createFuncCase(ctx, "vec2",		m_funcs.func2,	m_modularOp));
6822 		group->addChild(createFuncCase(ctx, "vec3",		m_funcs.func3,	m_modularOp));
6823 		group->addChild(createFuncCase(ctx, "vec4",		m_funcs.func4,	m_modularOp));
6824 		return MovePtr<TestNode>(group);
6825 	}
6826 
getName(void) const6827 	string				getName				(void) const { return m_name; }
getDesc(void) const6828 	string				getDesc				(void) const { return "Function '" + m_funcs.func.getName() + "'"; }
6829 
6830 private:
6831 	const GenFuncs<Sig>	m_funcs;
6832 	string				m_name;
6833 	bool				m_modularOp;
6834 };
6835 
6836 template <template <int, class> class GenF, typename T>
6837 class TemplateFuncCaseFactory : public FuncCaseFactory
6838 {
6839 public:
createCase(const CaseContext & ctx) const6840 	MovePtr<TestNode>	createCase		(const CaseContext& ctx) const
6841 	{
6842 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6843 
6844 		group->addChild(createFuncCase(ctx, "scalar", instance<GenF<1, T> >()));
6845 		group->addChild(createFuncCase(ctx, "vec2", instance<GenF<2, T> >()));
6846 		group->addChild(createFuncCase(ctx, "vec3", instance<GenF<3, T> >()));
6847 		group->addChild(createFuncCase(ctx, "vec4", instance<GenF<4, T> >()));
6848 
6849 		return MovePtr<TestNode>(group);
6850 	}
6851 
getFunc(void) const6852 	const FuncBase&		getFunc			(void) const { return instance<GenF<1, T> >(); }
6853 };
6854 
6855 template <template <int> class GenF>
6856 class SquareMatrixFuncCaseFactory : public FuncCaseFactory
6857 {
6858 public:
createCase(const CaseContext & ctx) const6859 	MovePtr<TestNode>	createCase		(const CaseContext& ctx) const
6860 	{
6861 		TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6862 
6863 		group->addChild(createFuncCase(ctx, "mat2", instance<GenF<2> >()));
6864 #if 0
6865 		// disabled until we get reasonable results
6866 		group->addChild(createFuncCase(ctx, "mat3", instance<GenF<3> >()));
6867 		group->addChild(createFuncCase(ctx, "mat4", instance<GenF<4> >()));
6868 #endif
6869 
6870 		return MovePtr<TestNode>(group);
6871 	}
6872 
getFunc(void) const6873 	const FuncBase&		getFunc			(void) const { return instance<GenF<2> >(); }
6874 };
6875 
6876 template <template <int, int, class> class GenF, typename T>
6877 class MatrixFuncCaseFactory : public FuncCaseFactory
6878 {
6879 public:
createCase(const CaseContext & ctx) const6880 	MovePtr<TestNode>	createCase		(const CaseContext& ctx) const
6881 	{
6882 		TestCaseGroup*	const group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str());
6883 
6884 		this->addCase<2, 2>(ctx, group);
6885 		this->addCase<3, 2>(ctx, group);
6886 		this->addCase<4, 2>(ctx, group);
6887 		this->addCase<2, 3>(ctx, group);
6888 		this->addCase<3, 3>(ctx, group);
6889 		this->addCase<4, 3>(ctx, group);
6890 		this->addCase<2, 4>(ctx, group);
6891 		this->addCase<3, 4>(ctx, group);
6892 		this->addCase<4, 4>(ctx, group);
6893 
6894 		return MovePtr<TestNode>(group);
6895 	}
6896 
getFunc(void) const6897 	const FuncBase&		getFunc			(void) const { return instance<GenF<2,2, T> >(); }
6898 
6899 private:
6900 	template <int Rows, int Cols>
addCase(const CaseContext & ctx,TestCaseGroup * group) const6901 	void				addCase			(const CaseContext& ctx, TestCaseGroup* group) const
6902 	{
6903 		const char*	const name = dataTypeNameOf<Matrix<float, Rows, Cols> >();
6904 		group->addChild(createFuncCase(ctx, name, instance<GenF<Rows, Cols, T> >()));
6905 	}
6906 };
6907 
6908 template <typename Sig>
6909 class SimpleFuncCaseFactory : public CaseFactory
6910 {
6911 public:
SimpleFuncCaseFactory(const Func<Sig> & func)6912 						SimpleFuncCaseFactory	(const Func<Sig>& func) : m_func(func) {}
6913 
createCase(const CaseContext & ctx) const6914 	MovePtr<TestNode>	createCase				(const CaseContext& ctx) const	{ return MovePtr<TestNode>(createFuncCase(ctx, ctx.name.c_str(), m_func)); }
getName(void) const6915 	string				getName					(void) const					{ return de::toLower(m_func.getName()); }
getDesc(void) const6916 	string				getDesc					(void) const					{ return "Function '" + getName() + "'"; }
6917 
6918 private:
6919 	const Func<Sig>&	m_func;
6920 };
6921 
6922 template <typename F>
createSimpleFuncCaseFactory(void)6923 SharedPtr<SimpleFuncCaseFactory<typename F::Sig> > createSimpleFuncCaseFactory (void)
6924 {
6925 	return SharedPtr<SimpleFuncCaseFactory<typename F::Sig> >(new SimpleFuncCaseFactory<typename F::Sig>(instance<F>()));
6926 }
6927 
6928 class CaseFactories
6929 {
6930 public:
~CaseFactories(void)6931 	virtual											~CaseFactories	(void) {}
6932 	virtual const std::vector<const CaseFactory*>	getFactories	(void) const = 0;
6933 };
6934 
6935 class BuiltinFuncs : public CaseFactories
6936 {
6937 public:
getFactories(void) const6938 	const vector<const CaseFactory*>		getFactories	(void) const
6939 	{
6940 		vector<const CaseFactory*> ret;
6941 
6942 		for (size_t ndx = 0; ndx < m_factories.size(); ++ndx)
6943 			ret.push_back(m_factories[ndx].get());
6944 
6945 		return ret;
6946 	}
6947 
addFactory(SharedPtr<const CaseFactory> fact)6948 	void									addFactory		(SharedPtr<const CaseFactory> fact) { m_factories.push_back(fact); }
6949 
6950 private:
6951 	vector<SharedPtr<const CaseFactory> >	m_factories;
6952 };
6953 
6954 template <typename F>
addScalarFactory(BuiltinFuncs & funcs,string name="",bool modularOp=false)6955 void addScalarFactory (BuiltinFuncs& funcs, string name = "", bool modularOp = false)
6956 {
6957 	if (name.empty())
6958 		name = instance<F>().getName();
6959 
6960 	funcs.addFactory(SharedPtr<const CaseFactory>(new GenFuncCaseFactory<typename F::Sig>(makeVectorizedFuncs<F>(), name, modularOp)));
6961 }
6962 
createBuiltinCases()6963 MovePtr<const CaseFactories> createBuiltinCases ()
6964 {
6965 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
6966 
6967 	// Tests for ES3 builtins
6968 	addScalarFactory<Comparison< Signature<int, float, float> > >(*funcs);
6969 	addScalarFactory<Add< Signature<float, float, float> > >(*funcs);
6970 	addScalarFactory<Sub< Signature<float, float, float> > >(*funcs);
6971 	addScalarFactory<Mul< Signature<float, float, float> > >(*funcs);
6972 	addScalarFactory<Div< Signature<float, float, float> > >(*funcs);
6973 
6974 	addScalarFactory<Radians>(*funcs);
6975 	addScalarFactory<Degrees>(*funcs);
6976 	addScalarFactory<Sin<Signature<float, float> > >(*funcs);
6977 	addScalarFactory<Cos<Signature<float, float> > >(*funcs);
6978 	addScalarFactory<Tan>(*funcs);
6979 
6980 	addScalarFactory<ASin>(*funcs);
6981 	addScalarFactory<ACos>(*funcs);
6982 	addScalarFactory<ATan2< Signature<float, float, float> > >(*funcs, "atan2");
6983 	addScalarFactory<ATan<Signature<float, float> > >(*funcs);
6984 	addScalarFactory<Sinh>(*funcs);
6985 	addScalarFactory<Cosh>(*funcs);
6986 	addScalarFactory<Tanh>(*funcs);
6987 	addScalarFactory<ASinh>(*funcs);
6988 	addScalarFactory<ACosh>(*funcs);
6989 	addScalarFactory<ATanh>(*funcs);
6990 
6991 	addScalarFactory<Pow>(*funcs);
6992 	addScalarFactory<Exp<Signature<float, float> > >(*funcs);
6993 	addScalarFactory<Log< Signature<float, float> > >(*funcs);
6994 	addScalarFactory<Exp2<Signature<float, float> > >(*funcs);
6995 	addScalarFactory<Log2< Signature<float, float> > >(*funcs);
6996 	addScalarFactory<Sqrt32Bit>(*funcs);
6997 	addScalarFactory<InverseSqrt< Signature<float, float> > >(*funcs);
6998 
6999 	addScalarFactory<Abs< Signature<float, float> > >(*funcs);
7000 	addScalarFactory<Sign< Signature<float, float> > >(*funcs);
7001 	addScalarFactory<Floor32Bit>(*funcs);
7002 	addScalarFactory<Trunc32Bit>(*funcs);
7003 	addScalarFactory<Round< Signature<float, float> > >(*funcs);
7004 	addScalarFactory<RoundEven< Signature<float, float> > >(*funcs);
7005 	addScalarFactory<Ceil< Signature<float, float> > >(*funcs);
7006 	addScalarFactory<Fract>(*funcs);
7007 
7008 	addScalarFactory<Mod32Bit>(*funcs, "mod", true);
7009 	addScalarFactory<FRem32Bit>(*funcs);
7010 
7011 	addScalarFactory<Modf32Bit>(*funcs);
7012 	addScalarFactory<ModfStruct32Bit>(*funcs);
7013 	addScalarFactory<Min< Signature<float, float, float> > >(*funcs);
7014 	addScalarFactory<Max< Signature<float, float, float> > >(*funcs);
7015 	addScalarFactory<Clamp< Signature<float, float, float, float> > >(*funcs);
7016 	addScalarFactory<Mix>(*funcs);
7017 	addScalarFactory<Step< Signature<float, float, float> > >(*funcs);
7018 	addScalarFactory<SmoothStep< Signature<float, float, float, float> > >(*funcs);
7019 
7020 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length, float>()));
7021 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance, float>()));
7022 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot, float>()));
7023 	funcs->addFactory(createSimpleFuncCaseFactory<Cross>());
7024 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize, float>()));
7025 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward, float>()));
7026 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect, float>()));
7027 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract, float>()));
7028 
7029 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult, float>()));
7030 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct, float>()));
7031 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose, float>()));
7032 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant>()));
7033 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse>()));
7034 
7035 	addScalarFactory<Frexp32Bit>(*funcs);
7036 	addScalarFactory<FrexpStruct32Bit>(*funcs);
7037 	addScalarFactory<LdExp <Signature<float, float, int> > >(*funcs);
7038 	addScalarFactory<Fma  <Signature<float, float, float, float> > >(*funcs);
7039 
7040 	return MovePtr<const CaseFactories>(funcs.release());
7041 }
7042 
createBuiltinDoubleCases()7043 MovePtr<const CaseFactories> createBuiltinDoubleCases ()
7044 {
7045 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
7046 
7047 	// Tests for ES3 builtins
7048 	addScalarFactory<Comparison<Signature<int, double, double>>>(*funcs);
7049 	addScalarFactory<Add<Signature<double, double, double>>>(*funcs);
7050 	addScalarFactory<Sub<Signature<double, double, double>>>(*funcs);
7051 	addScalarFactory<Mul<Signature<double, double, double>>>(*funcs);
7052 	addScalarFactory<Div<Signature<double, double, double>>>(*funcs);
7053 
7054 	// Radians, degrees, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, atan2, pow, exp, log, exp2 and log2
7055 	// only work with 16-bit and 32-bit floating point types according to the spec.
7056 #if 0
7057 	addScalarFactory<Radians64>(*funcs);
7058 	addScalarFactory<Degrees64>(*funcs);
7059 	addScalarFactory<Sin<Signature<double, double>>>(*funcs);
7060 	addScalarFactory<Cos<Signature<double, double>>>(*funcs);
7061 	addScalarFactory<Tan64Bit>(*funcs);
7062 	addScalarFactory<ASin64Bit>(*funcs);
7063 	addScalarFactory<ACos64Bit>(*funcs);
7064 	addScalarFactory<ATan2<Signature<double, double, double>>>(*funcs, "atan2");
7065 	addScalarFactory<ATan<Signature<double, double>>>(*funcs);
7066 	addScalarFactory<Sinh64Bit>(*funcs);
7067 	addScalarFactory<Cosh64Bit>(*funcs);
7068 	addScalarFactory<Tanh64Bit>(*funcs);
7069 	addScalarFactory<ASinh64Bit>(*funcs);
7070 	addScalarFactory<ACosh64Bit>(*funcs);
7071 	addScalarFactory<ATanh64Bit>(*funcs);
7072 
7073 	addScalarFactory<Pow64>(*funcs);
7074 	addScalarFactory<Exp<Signature<double, double>>>(*funcs);
7075 	addScalarFactory<Log<Signature<double, double>>>(*funcs);
7076 	addScalarFactory<Exp2<Signature<double, double>>>(*funcs);
7077 	addScalarFactory<Log2<Signature<double, double>>>(*funcs);
7078 #endif
7079 	addScalarFactory<Sqrt64Bit>(*funcs);
7080 	addScalarFactory<InverseSqrt<Signature<double, double>>>(*funcs);
7081 
7082 	addScalarFactory<Abs<Signature<double, double>>>(*funcs);
7083 	addScalarFactory<Sign<Signature<double, double>>>(*funcs);
7084 	addScalarFactory<Floor64Bit>(*funcs);
7085 	addScalarFactory<Trunc64Bit>(*funcs);
7086 	addScalarFactory<Round<Signature<double, double>>>(*funcs);
7087 	addScalarFactory<RoundEven<Signature<double, double>>>(*funcs);
7088 	addScalarFactory<Ceil<Signature<double, double>>>(*funcs);
7089 	addScalarFactory<Fract64Bit>(*funcs);
7090 
7091 	addScalarFactory<Mod64Bit>(*funcs, "mod", true);
7092 	addScalarFactory<FRem64Bit>(*funcs);
7093 
7094 	addScalarFactory<Modf64Bit>(*funcs);
7095 	addScalarFactory<ModfStruct64Bit>(*funcs);
7096 	addScalarFactory<Min<Signature<double, double, double>>>(*funcs);
7097 	addScalarFactory<Max<Signature<double, double, double>>>(*funcs);
7098 	addScalarFactory<Clamp<Signature<double, double, double, double>>>(*funcs);
7099 	addScalarFactory<Mix64Bit>(*funcs);
7100 	addScalarFactory<Step<Signature<double, double, double>>>(*funcs);
7101 	addScalarFactory<SmoothStep<Signature<double, double, double, double>>>(*funcs);
7102 
7103 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length, double>()));
7104 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance, double>()));
7105 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot, double>()));
7106 	funcs->addFactory(createSimpleFuncCaseFactory<Cross64Bit>());
7107 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize, double>()));
7108 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward, double>()));
7109 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect, double>()));
7110 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract, double>()));
7111 
7112 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult, double>()));
7113 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct, double>()));
7114 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose, double>()));
7115 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant64bit>()));
7116 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse64bit>()));
7117 
7118 	addScalarFactory<Frexp64Bit>(*funcs);
7119 	addScalarFactory<FrexpStruct64Bit>(*funcs);
7120 	addScalarFactory<LdExp<Signature<double, double, int>>>(*funcs);
7121 	addScalarFactory<Fma<Signature<double, double, double, double>>>(*funcs);
7122 
7123 	return MovePtr<const CaseFactories>(funcs.release());
7124 }
7125 
createBuiltinCases16Bit(void)7126 MovePtr<const CaseFactories> createBuiltinCases16Bit(void)
7127 {
7128 	MovePtr<BuiltinFuncs>	funcs(new BuiltinFuncs());
7129 
7130 	addScalarFactory<Comparison< Signature<int, deFloat16, deFloat16> > >(*funcs);
7131 	addScalarFactory<Add< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7132 	addScalarFactory<Sub< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7133 	addScalarFactory<Mul< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7134 	addScalarFactory<Div< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7135 
7136 	addScalarFactory<Radians16>(*funcs);
7137 	addScalarFactory<Degrees16>(*funcs);
7138 
7139 	addScalarFactory<Sin<Signature<deFloat16, deFloat16> > >(*funcs);
7140 	addScalarFactory<Cos<Signature<deFloat16, deFloat16> > >(*funcs);
7141 	addScalarFactory<Tan16Bit>(*funcs);
7142 	addScalarFactory<ASin16Bit>(*funcs);
7143 	addScalarFactory<ACos16Bit>(*funcs);
7144 	addScalarFactory<ATan2< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs, "atan2");
7145 	addScalarFactory<ATan<Signature<deFloat16, deFloat16> > >(*funcs);
7146 
7147 	addScalarFactory<Sinh16Bit>(*funcs);
7148 	addScalarFactory<Cosh16Bit>(*funcs);
7149 	addScalarFactory<Tanh16Bit>(*funcs);
7150 	addScalarFactory<ASinh16Bit>(*funcs);
7151 	addScalarFactory<ACosh16Bit>(*funcs);
7152 	addScalarFactory<ATanh16Bit>(*funcs);
7153 
7154 	addScalarFactory<Pow16>(*funcs);
7155 	addScalarFactory<Exp< Signature<deFloat16, deFloat16> > >(*funcs);
7156 	addScalarFactory<Log< Signature<deFloat16, deFloat16> > >(*funcs);
7157 	addScalarFactory<Exp2< Signature<deFloat16, deFloat16> > >(*funcs);
7158 	addScalarFactory<Log2< Signature<deFloat16, deFloat16> > >(*funcs);
7159 	addScalarFactory<Sqrt16Bit>(*funcs);
7160 	addScalarFactory<InverseSqrt16Bit>(*funcs);
7161 
7162 	addScalarFactory<Abs< Signature<deFloat16, deFloat16> > >(*funcs);
7163 	addScalarFactory<Sign< Signature<deFloat16, deFloat16> > >(*funcs);
7164 	addScalarFactory<Floor16Bit>(*funcs);
7165 	addScalarFactory<Trunc16Bit>(*funcs);
7166 	addScalarFactory<Round< Signature<deFloat16, deFloat16> > >(*funcs);
7167 	addScalarFactory<RoundEven< Signature<deFloat16, deFloat16> > >(*funcs);
7168 	addScalarFactory<Ceil< Signature<deFloat16, deFloat16> > >(*funcs);
7169 	addScalarFactory<Fract16Bit>(*funcs);
7170 
7171 	addScalarFactory<Mod16Bit>(*funcs, "mod", true);
7172 	addScalarFactory<FRem16Bit>(*funcs);
7173 
7174 	addScalarFactory<Modf16Bit>(*funcs);
7175 	addScalarFactory<ModfStruct16Bit>(*funcs);
7176 	addScalarFactory<Min< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7177 	addScalarFactory<Max< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7178 	addScalarFactory<Clamp< Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(*funcs);
7179 	addScalarFactory<Mix16Bit>(*funcs);
7180 	addScalarFactory<Step< Signature<deFloat16, deFloat16, deFloat16> > >(*funcs);
7181 	addScalarFactory<SmoothStep< Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(*funcs);
7182 
7183 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length, deFloat16>()));
7184 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance, deFloat16>()));
7185 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot, deFloat16>()));
7186 	funcs->addFactory(createSimpleFuncCaseFactory<Cross16Bit>());
7187 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize, deFloat16>()));
7188 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward, deFloat16>()));
7189 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect, deFloat16>()));
7190 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract, deFloat16>()));
7191 
7192 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct, deFloat16>()));
7193 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose, deFloat16>()));
7194 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant16bit>()));
7195 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse16bit>()));
7196 
7197 	addScalarFactory<Frexp16Bit>(*funcs);
7198 	addScalarFactory<FrexpStruct16Bit>(*funcs);
7199 	addScalarFactory<LdExp <Signature<deFloat16, deFloat16, int> > >(*funcs);
7200 	addScalarFactory<Fma <Signature<deFloat16, deFloat16, deFloat16, deFloat16> > >(*funcs);
7201 
7202 	return MovePtr<const CaseFactories>(funcs.release());
7203 }
7204 
createFuncGroup(TestContext & ctx,const CaseFactory & factory,int numRandoms)7205 TestCaseGroup* createFuncGroup (TestContext& ctx, const CaseFactory& factory, int numRandoms)
7206 {
7207 	TestCaseGroup* const	group	= new TestCaseGroup(ctx, factory.getName().c_str(), factory.getDesc().c_str());
7208 	const FloatFormat		highp		(-126, 127, 23, true,
7209 										 tcu::MAYBE,	// subnormals
7210 										 tcu::YES,		// infinities
7211 										 tcu::MAYBE);	// NaN
7212 	const FloatFormat       mediump		(-14, 13, 10, false, tcu::MAYBE);
7213 
7214 	for (int precNdx = glu::PRECISION_MEDIUMP; precNdx < glu::PRECISION_LAST; ++precNdx)
7215 	{
7216 		const Precision		precision	= Precision(precNdx);
7217 		const string		precName	(glu::getPrecisionName(precision));
7218 		const FloatFormat&	fmt			= precNdx == glu::PRECISION_MEDIUMP ? mediump : highp;
7219 
7220 		const CaseContext	caseCtx		(precName, ctx, fmt, highp, precision, glu::SHADERTYPE_COMPUTE, numRandoms);
7221 
7222 		group->addChild(factory.createCase(caseCtx).release());
7223 	}
7224 
7225 	return group;
7226 }
7227 
createFuncGroupDouble(TestContext & ctx,const CaseFactory & factory,int numRandoms)7228 TestCaseGroup* createFuncGroupDouble (TestContext& ctx, const CaseFactory& factory, int numRandoms)
7229 {
7230 	TestCaseGroup* const	group		= new TestCaseGroup(ctx, factory.getName().c_str(), factory.getDesc().c_str());
7231 	const Precision			precision	= Precision(glu::PRECISION_LAST);
7232 	const FloatFormat		highp		(-1022, 1023, 52, true,
7233 										 tcu::MAYBE,	// subnormals
7234 										 tcu::YES,		// infinities
7235 										 tcu::MAYBE);	// NaN
7236 
7237 	PrecisionTestFeatures precisionTestFeatures = PRECISION_TEST_FEATURES_64BIT_SHADER_FLOAT;
7238 
7239 	const CaseContext caseCtx("compute", ctx, highp, highp, precision, glu::SHADERTYPE_COMPUTE, numRandoms, precisionTestFeatures, false, true);
7240 	group->addChild(factory.createCase(caseCtx).release());
7241 
7242 	return group;
7243 }
7244 
createFuncGroup16Bit(TestContext & ctx,const CaseFactory & factory,int numRandoms,bool storage32)7245 TestCaseGroup* createFuncGroup16Bit(TestContext& ctx, const CaseFactory& factory, int numRandoms, bool storage32)
7246 {
7247 	TestCaseGroup* const	group = new TestCaseGroup(ctx, factory.getName().c_str(), factory.getDesc().c_str());
7248 	const Precision			precision = Precision(glu::PRECISION_LAST);
7249 	const FloatFormat		float16	(-14, 15, 10, true, tcu::MAYBE);
7250 
7251 	PrecisionTestFeatures precisionTestFeatures = PRECISION_TEST_FEATURES_16BIT_SHADER_FLOAT;
7252 	if (!storage32)
7253 		precisionTestFeatures |= PRECISION_TEST_FEATURES_16BIT_UNIFORM_AND_STORAGE_BUFFER_ACCESS;
7254 
7255 	const CaseContext caseCtx("compute", ctx, float16, float16, precision, glu::SHADERTYPE_COMPUTE, numRandoms, precisionTestFeatures, storage32);
7256 	group->addChild(factory.createCase(caseCtx).release());
7257 
7258 	return group;
7259 }
7260 
7261 const int defRandoms	= 16384;
7262 
addBuiltinPrecisionTests(TestContext & ctx,TestCaseGroup & dstGroup,const bool test16Bit=false,const bool storage32Bit=false)7263 void addBuiltinPrecisionTests (TestContext&				ctx,
7264 								TestCaseGroup&			dstGroup,
7265 								const bool				test16Bit = false,
7266 								const bool				storage32Bit = false)
7267 {
7268 	const int userRandoms	= ctx.getCommandLine().getTestIterationCount();
7269 	const int numRandoms	= userRandoms > 0 ? userRandoms : defRandoms;
7270 
7271 	MovePtr<const CaseFactories> cases = (test16Bit && !storage32Bit)	? createBuiltinCases16Bit()
7272 																		: createBuiltinCases();
7273 	for (size_t ndx = 0; ndx < cases->getFactories().size(); ++ndx)
7274 	{
7275 		if (!test16Bit)
7276 			dstGroup.addChild(createFuncGroup(ctx, *cases->getFactories()[ndx], numRandoms));
7277 		else
7278 			dstGroup.addChild(createFuncGroup16Bit(ctx, *cases->getFactories()[ndx], numRandoms, storage32Bit));
7279 	}
7280 }
7281 
addBuiltinPrecisionDoubleTests(TestContext & ctx,TestCaseGroup & dstGroup)7282 void addBuiltinPrecisionDoubleTests (TestContext&		ctx,
7283 									 TestCaseGroup&		dstGroup)
7284 {
7285 	const int userRandoms	= ctx.getCommandLine().getTestIterationCount();
7286 	const int numRandoms	= userRandoms > 0 ? userRandoms : defRandoms;
7287 
7288 	MovePtr<const CaseFactories> cases = createBuiltinDoubleCases();
7289 	for (size_t ndx = 0; ndx < cases->getFactories().size(); ++ndx)
7290 	{
7291 		dstGroup.addChild(createFuncGroupDouble(ctx, *cases->getFactories()[ndx], numRandoms));
7292 	}
7293 }
7294 
BuiltinPrecisionTests(tcu::TestContext & testCtx)7295 BuiltinPrecisionTests::BuiltinPrecisionTests (tcu::TestContext& testCtx)
7296 	: tcu::TestCaseGroup(testCtx, "precision", "Builtin precision tests")
7297 {
7298 }
7299 
~BuiltinPrecisionTests(void)7300 BuiltinPrecisionTests::~BuiltinPrecisionTests (void)
7301 {
7302 }
7303 
init(void)7304 void BuiltinPrecisionTests::init (void)
7305 {
7306 	addBuiltinPrecisionTests(m_testCtx, *this);
7307 }
7308 
BuiltinPrecisionDoubleTests(tcu::TestContext & testCtx)7309 BuiltinPrecisionDoubleTests::BuiltinPrecisionDoubleTests (tcu::TestContext& testCtx)
7310 	: tcu::TestCaseGroup(testCtx, "precision_double", "Builtin precision tests")
7311 {
7312 }
7313 
~BuiltinPrecisionDoubleTests(void)7314 BuiltinPrecisionDoubleTests::~BuiltinPrecisionDoubleTests (void)
7315 {
7316 }
7317 
init(void)7318 void BuiltinPrecisionDoubleTests::init (void)
7319 {
7320 	addBuiltinPrecisionDoubleTests(m_testCtx, *this);
7321 }
7322 
BuiltinPrecision16BitTests(tcu::TestContext & testCtx)7323 BuiltinPrecision16BitTests::BuiltinPrecision16BitTests (tcu::TestContext& testCtx)
7324 	: tcu::TestCaseGroup(testCtx, "precision_fp16_storage16b", "Builtin precision tests")
7325 {
7326 }
7327 
~BuiltinPrecision16BitTests(void)7328 BuiltinPrecision16BitTests::~BuiltinPrecision16BitTests (void)
7329 {
7330 }
7331 
init(void)7332 void BuiltinPrecision16BitTests::init (void)
7333 {
7334 	addBuiltinPrecisionTests(m_testCtx, *this, true);
7335 }
7336 
BuiltinPrecision16Storage32BitTests(tcu::TestContext & testCtx)7337 BuiltinPrecision16Storage32BitTests::BuiltinPrecision16Storage32BitTests(tcu::TestContext& testCtx)
7338 	: tcu::TestCaseGroup(testCtx, "precision_fp16_storage32b", "Builtin precision tests")
7339 {
7340 }
7341 
~BuiltinPrecision16Storage32BitTests(void)7342 BuiltinPrecision16Storage32BitTests::~BuiltinPrecision16Storage32BitTests(void)
7343 {
7344 }
7345 
init(void)7346 void BuiltinPrecision16Storage32BitTests::init(void)
7347 {
7348 	addBuiltinPrecisionTests(m_testCtx, *this, true, true);
7349 }
7350 
7351 } // shaderexecutor
7352 } // vkt
7353