/external/tensorflow/tensorflow/lite/delegates/coreml/builders/ |
D | util_test.cc | 71 std::vector<int> base_shape = {2, 2, 3, 4}; in TEST_F() local 76 SetInputShapes({base_shape, shape}); in TEST_F() 83 std::vector<int> base_shape = {1, 2, 3, 4}; in TEST_F() local 86 SetInputShapes({base_shape, shape}); in TEST_F() 93 std::vector<int> base_shape = {2, 2, 3, 4}; in TEST_F() local 95 SetInputShapes({base_shape, {1}}); in TEST_F() 101 std::vector<int> base_shape = {2, 2, 3, 4}; in TEST_F() local 105 SetInputShapes({base_shape, shape}); in TEST_F()
|
/external/tensorflow/tensorflow/compiler/xla/service/spmd/ |
D | gather_scatter_handler.cc | 58 operand.base_shape(), operand.sharding(), partition_id, b); in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 67 replicated_indices.base_shape().element_type(), 0, b)); in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 69 replicated_indices.base_shape().element_type(), in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 70 operand.base_shape().dimensions(dim), b)); in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 75 replicated_indices.base_shape().element_type()) { in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 77 ShapeUtil::MakeShape(replicated_indices.base_shape().element_type(), in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 83 CreateR0WithType<int32>(replicated_indices.base_shape().element_type(), in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 91 if (index_vector_dim < replicated_indices.base_shape().rank()) { in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 112 replicated_indices.base_shape(), min_indices[0], {index_vector_dim})); in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() 114 replicated_indices.base_shape(), max_indices[0], {index_vector_dim})); in IndexBoundsForGatherScatterOperandPartitionedOnTrivialSliceDims() [all …]
|
D | convolution_handler.cc | 58 lhs.base_shape().dimensions(dnums.input_batch_dimension()); in PartitionConvolutionWithBatchGroupCount() 60 rhs.base_shape().dimensions(dnums.kernel_output_feature_dimension()); in PartitionConvolutionWithBatchGroupCount() 84 std::vector<int64> lhs_to_output_indices(lhs.base_shape().rank(), -1); in PartitionConvolutionWithBatchGroupCount() 149 lhs.base_shape().dimensions(dnums.input_feature_dimension()); in PartitionConvolutionWithFeatureGroupCount() 151 rhs.base_shape().dimensions(dnums.kernel_output_feature_dimension()); in PartitionConvolutionWithFeatureGroupCount() 270 if (ShapeSizeInBytes(lhs.base_shape()) < ShapeSizeInBytes(rhs.base_shape())) { in PartitionConvolutionWithSpatialDimensionHaloExchangeOnRHS() 332 CeilOfRatio(lhs.base_shape().dimensions(lhs_dimension), shard_count); in PartitionConvolutionWithSpatialDimensionHaloExchangeOnRHS() 334 CeilOfRatio(rhs.base_shape().dimensions(rhs_dimension), shard_count); in PartitionConvolutionWithSpatialDimensionHaloExchangeOnRHS() 375 int64 base = lhs.base_shape().dimensions(lhs_dimension); in PartitionConvolutionWithSpatialDimensionHaloExchangeOnRHS() 486 rhs_with_halo, rhs.base_shape(), left_halo_size_functions[dim], in PartitionConvolutionWithSpatialDimensionHaloExchangeOnRHS() [all …]
|
D | spmd_partitioner_util.cc | 276 Shape GetPaddedShapeForUnevenPartitioning(const Shape& base_shape, in GetPaddedShapeForUnevenPartitioning() argument 279 return base_shape; in GetPaddedShapeForUnevenPartitioning() 281 if (EvenlyPartitions(base_shape, sharding)) { in GetPaddedShapeForUnevenPartitioning() 282 return base_shape; in GetPaddedShapeForUnevenPartitioning() 284 auto shard_shape = MakePartitionedShape(base_shape, sharding); in GetPaddedShapeForUnevenPartitioning() 285 Shape padded_base_shape = base_shape; in GetPaddedShapeForUnevenPartitioning() 409 HloInstruction* hlo, const Shape& base_shape, in TileToPartialReplicateHaloExchange() argument 416 GetPaddedShapeForUnevenPartitioning(base_shape, src_sharding); in TileToPartialReplicateHaloExchange() 419 GetPaddedShapeForUnevenPartitioning(base_shape, dst_sharding); in TileToPartialReplicateHaloExchange() 503 HloInstruction* hlo, const Shape& base_shape, in PadFromPartialReplicateShape() argument [all …]
|
D | dot_handler.cc | 492 dims_mapping, lhs.base_shape().rank(), rhs.base_shape().rank(), in PartitionBaseCase() 1474 ShapeSizeInBytes(rhs.base_shape()), in PartitionBaseCase() 1475 ShapeSizeInBytes(lhs.base_shape()), in PartitionBaseCase() 1501 if (ShapeSizeInBytes(lhs.base_shape()) < in PartitionBaseCase() 1502 ShapeSizeInBytes(rhs.base_shape())) { in PartitionBaseCase() 1514 lhs_contracting_dims.reserve(lhs.base_shape().rank()); in PartitionBaseCase() 1594 ShapeUtil::ElementsIn(rhs.base_shape()) > in PartitionBaseCase() 1599 ShapeUtil::ElementsIn(lhs.base_shape()) > in PartitionBaseCase() 1624 lhs_contracting_dims.reserve(lhs.base_shape().rank()); in PartitionBaseCase() 1674 ? std::vector<int64>(lhs.base_shape().rank(), 1) in PartitionDotGroupOnBatch() [all …]
|
D | spmd_partitioner_util.h | 121 Shape GetPaddedShapeForUnevenPartitioning(const Shape& base_shape, 253 HloInstruction* hlo, const Shape& base_shape, 367 HloInstruction* hlo, const Shape& base_shape, 390 HloInstruction* hlo, const Shape& base_shape,
|
D | spmd_partitioner.h | 293 PartitionedHlo(HloInstruction* hlo, Shape base_shape, PartitioningState state) in PartitionedHlo() argument 294 : hlo_(hlo), base_shape_(base_shape), state_(std::move(state)) { in PartitionedHlo() 324 const Shape& base_shape() const { return base_shape_; } in base_shape() function
|
D | spmd_partitioner.cc | 464 return PartitionedHlo(partially_sharded, base_shape(), state_); in ReshardNoCache() 874 target_shape.set_dimensions(i, base_shape().dimensions(i)); in ReplicatePartial() 961 auto base_shape = MakePartitionedShape(base_shape_, target); in ReshardToPartialReplicateWithAllGather() local 966 auto partial_replicate_hlo = PartitionedHlo(halo_exchange_hlo, base_shape, in ReshardToPartialReplicateWithAllGather() 1597 operand.base_shape().dimensions(i)); in HandleSlice() 1862 value_gte, partitioned_topk.base_shape().tuple_shapes(0), in HandleCustomCall() 1889 index_gte, partitioned_topk.base_shape().tuple_shapes(1), in HandleCustomCall() 2021 input_major_dims_size *= operand.base_shape().dimensions(i); in HandleReshape() 2043 int64 input_dim_size = operand.base_shape().dimensions(input_sharded_dim); in HandleReshape() 2046 MakePartitionedShape(operand.base_shape(), operand.sharding()); in HandleReshape() [all …]
|
/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | test_manifest.txt | 65 concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=1,type=tf.float32 66 concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=1,type=tf.uint8 67 DISABLED_concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=1,type=tf.int32 68 DISABLED_concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=1,type=tf.int64 69 concat/concat_axis=0,base_shape=[3,4],num_tensors=1,type=tf.float32 70 concat/concat_axis=0,base_shape=[3,4],num_tensors=1,type=tf.uint8 71 DISABLED_concat/concat_axis=0,base_shape=[3,4],num_tensors=1,type=tf.int32 72 DISABLED_concat/concat_axis=0,base_shape=[3,4],num_tensors=1,type=tf.int64 73 concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=2,type=tf.float32 74 concat/concat_axis=0,base_shape=[1,3,4,3],num_tensors=2,type=tf.uint8 [all …]
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | mul_test.cc | 168 const std::vector<int> base_shape = {2, 3, 1, 2}; in TEST() local 186 {TensorType_FLOAT32, base_shape}, {TensorType_FLOAT32, test_shapes[i]}, in TEST() 202 {TensorType_FLOAT32, test_shapes[i]}, {TensorType_FLOAT32, base_shape}, in TEST() 424 const std::vector<int> base_shape = {2, 3, 1, 2}; in QuantizedWithMixedBroadcast() local 441 QuantizedMulOpModel model_fixture({tensor_type, base_shape, -3.f, 3.f}, in QuantizedWithMixedBroadcast() 459 {tensor_type, base_shape, -3.f, 3.f}, in QuantizedWithMixedBroadcast()
|
D | add_test.cc | 182 const std::vector<int> base_shape = {2, 3, 1, 2}; in TEST() local 200 {TensorType_FLOAT32, base_shape}, {TensorType_FLOAT32, test_shapes[i]}, in TEST() 215 {TensorType_FLOAT32, test_shapes[i]}, {TensorType_FLOAT32, base_shape}, in TEST() 471 const std::vector<int> base_shape = {2, 3, 1, 2}; in QuantizedWithMixedBroadcast() local 488 QuantizedAddOpModel model_fixture({tensor_type, base_shape, -3.f, 3.f}, in QuantizedWithMixedBroadcast() 506 {tensor_type, base_shape, -3.f, 3.f}, in QuantizedWithMixedBroadcast()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | shape_inference.cc | 161 StatusOr<Shape> InferWindowOutputShape(const Shape& base_shape, in InferWindowOutputShape() argument 165 if (window.dimensions_size() != base_shape.rank()) { in InferWindowOutputShape() 168 window.dimensions_size(), base_shape.rank()); in InferWindowOutputShape() 203 ShapeUtil::GetDimension(base_shape, i), dim.base_dilation()); in InferWindowOutputShape() 211 output_is_dynamic[i] = base_shape.is_dynamic_dimension(i); in InferWindowOutputShape() 1813 Shape base_shape = in InferConvolveShape() local 1817 InferWindowOutputShape(base_shape, window, lhs.element_type(), in InferConvolveShape()
|
D | hlo_evaluator_typed_visitor.h | 2840 const Shape& window_shape, const Window& window, const Shape& base_shape, 2843 const int64 rank = base_shape.rank(); 2872 if (base_index[i] < 0 || base_index[i] >= base_shape.dimensions(i)) {
|