/external/tensorflow/tensorflow/compiler/mlir/tensorflow/transforms/ |
D | decompose_resource_ops.td | 224 // alpha <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t) 225 // m_t <- beta1 * m_{t-1} + (1 - beta1) * g_t 232 $beta1, $beta2, $epsilon, $grad, BoolAttr:$_, 244 (TF_MulOp $beta1, (CreateTFReadVariableOp $src_op, $grad, $m_resource)), 245 (TF_MulOp (TF_SubOp $one, $beta1), $grad) 269 // alpha <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t) 270 // m_t <- beta1 * m_{t-1} + (1 - beta1) * g_t 272 // variable <- variable - (alpha * (m_t * beta1 + (1 - beta1) * g_t) / 278 $beta1, $beta2, $epsilon, $grad, BoolAttr:$_, 290 (TF_MulOp $beta1, (CreateTFReadVariableOp $src_op, $grad, $m_resource)), [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_ApplyAdaMax.pbtxt | 35 name: "beta1" 74 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 76 variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
|
D | api_def_ResourceApplyAdaMax.pbtxt | 35 name: "beta1" 68 m_t <- beta1 * m_{t-1} + (1 - beta1) * g 70 variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
|
D | api_def_ResourceApplyAddSign.pbtxt | 55 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
D | api_def_ResourceApplyPowerSign.pbtxt | 55 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
D | api_def_ApplyAddSign.pbtxt | 61 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
D | api_def_ApplyPowerSign.pbtxt | 61 m_t <- beta1 * m_{t-1} + (1 - beta1) * g
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | nadam_test.py | 41 def update_m_cache(m_cache, t, beta1=0.9): argument 42 mu_t = beta1 * (1 - 0.5 * 0.96**(0.004 * (t + 1))) 54 beta1=0.9, argument 58 mu_t = beta1 * (1 - 0.5 * 0.96**(0.004 * (t + 1))) 59 mu_t_1 = beta1 * (1 - 0.5 * 0.96**(0.004 * (t + 2))) 62 m_t = beta1 * m + (1 - beta1) * g_t
|
D | adamax_test.py | 42 beta1=0.9, argument 45 m_t = beta1 * m + (1 - beta1) * g_t 47 param_t = param - (alpha / (1 - beta1**(t + 1))) * (m_t / (v_t + epsilon)) 58 beta1=0.9, argument 62 m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t 65 (alpha / (1 - beta1**(t + 1))) * (m_t_slice / (v_t_slice + epsilon)))
|
D | adam_test.py | 44 beta1=0.9, argument 47 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 49 m_t = beta1 * m + (1 - beta1) * g_t 63 beta1=0.9, argument 66 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 68 m_t = beta1 * m + (1 - beta1) * g_t 84 beta1=0.9, argument 89 lr_t = lr * np.sqrt(1 - beta2**(t + 1)) / (1 - beta1**(t + 1)) 90 m_t_slice = beta1 * m[indices] + (1 - beta1) * g_t 220 beta1 = lambda: 0.9 function [all …]
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | ApplyAdam.pbtxt | 31 name: "beta1" 111 name: "beta1" 198 name: "beta1" 287 name: "beta1" 377 name: "beta1"
|
D | ResourceApplyAdam.pbtxt | 28 name: "beta1" 101 name: "beta1" 181 name: "beta1" 263 name: "beta1" 346 name: "beta1"
|
D | ResourceApplyAdaMax.pbtxt | 24 name: "beta1"
|
D | ResourceApplyAdamWithAmsgrad.pbtxt | 32 name: "beta1"
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
D | ApplyAdam.pbtxt | 31 name: "beta1" 111 name: "beta1" 198 name: "beta1" 287 name: "beta1" 377 name: "beta1"
|
D | ResourceApplyAdam.pbtxt | 28 name: "beta1" 101 name: "beta1" 181 name: "beta1" 263 name: "beta1" 346 name: "beta1"
|
D | ResourceApplyAdaMax.pbtxt | 24 name: "beta1"
|
D | ApplyAdaMax.pbtxt | 27 name: "beta1"
|
D | ResourceApplyAdamWithAmsgrad.pbtxt | 32 name: "beta1"
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | adam_test.py | 40 beta1=0.9, argument 43 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 45 m_t = beta1 * m + (1 - beta1) * g_t
|
/external/tensorflow/tensorflow/python/training/ |
D | adam.py | 43 beta1=0.9, argument 106 self._beta1 = beta1 143 beta1 = self._call_if_callable(self._beta1) 148 self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
|
D | adam_test.py | 44 beta1=0.9, argument 47 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 49 m_t = beta1 * m + (1 - beta1) * g_t 184 beta1 = lambda: 0.9 function 189 beta1 = beta1()
|
D | training_ops_test.py | 425 beta1 = np.array(0.9, dtype=var.dtype) 427 beta1_power = beta1**t 431 beta1_t = constant_op.constant(beta1, self._toType(var.dtype), []) 440 new_var, _, _ = self._adamUpdateNumpy(var, grad, t, m, v, lr, beta1, 449 def _adamUpdateNumpy(self, param, g_t, t, m, v, alpha, beta1, beta2, epsilon): argument 450 alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t) 452 m_t = beta1 * m + (1 - beta1) * g_t
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_embedding.py | 559 beta1: float = 0.9, 610 if beta1 < 0. or beta1 >= 1.: 611 raise ValueError('beta1 must be between 0. and 1; got {}.'.format(beta1)) 620 self.beta1 = beta1 760 beta1: float = 0.9, 814 if beta1 < 0. or beta1 >= 1.: 815 raise ValueError('beta1 must be between 0. and 1; got {}.'.format(beta1)) 827 self.beta1 = beta1 2174 table_descriptor.optimization_parameters.adam.beta1 = ( 2175 self._optimization_parameters.beta1) [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.tpu.experimental.-adam-parameters.pbtxt | 8 …argspec: "args=[\'self\', \'learning_rate\', \'beta1\', \'beta2\', \'epsilon\', \'lazy_adam\', \'s…
|