Home
last modified time | relevance | path

Searched refs:int_shape (Results 1 – 25 of 26) sorted by relevance

12

/external/tensorflow/tensorflow/python/keras/layers/
Dwrappers.py140 def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None): argument
160 if int_shape is None:
161 int_shape = K.int_shape(tensor)[start_idx:]
162 if isinstance(int_shape, tensor_shape.TensorShape):
163 int_shape = int_shape.as_list()
164 if not any(not s for s in int_shape):
165 return init_tuple + tuple(int_shape)
167 int_shape = list(int_shape)
168 for i, s in enumerate(int_shape):
170 int_shape[i] = shape[start_idx + i]
[all …]
Dlstm_test.py262 np.zeros(keras.backend.int_shape(layer.states[0])),
264 state_shapes = [keras.backend.int_shape(state) for state in layer.states]
271 np.ones(keras.backend.int_shape(layer.states[0])),
Drecurrent_v2.py434 input_shape = K.int_shape(inputs)
584 input_shape = K.int_shape(inputs)
1160 input_shape = K.int_shape(inputs)
1371 input_shape = K.int_shape(inputs)
Dlstm_v2_test.py210 np.zeros(keras.backend.int_shape(layer.states[0])),
212 state_shapes = [keras.backend.int_shape(state) for state in layer.states]
219 np.ones(keras.backend.int_shape(layer.states[0])),
Drecurrent.py683 lambda s: InputSpec(shape=K.int_shape(s)), initial_state)
688 InputSpec(shape=K.int_shape(constant)) for constant in constants
758 input_shape = K.int_shape(nest.flatten(inputs)[0])
760 input_shape = K.int_shape(inputs)
Dconvolutional_recurrent.py307 timesteps = K.int_shape(inputs)[1]
/external/tensorflow/tensorflow/compiler/xla/tests/
Doutfeed_in_nested_computation_test.cc32 Shape int_shape = ShapeUtil::MakeShape(xla::S32, {}); in XLA_TEST_F() local
34 ShapeUtil::MakeTupleShape({int_shape, state_tuple_array_shape}); in XLA_TEST_F()
38 XlaOp num_iter = Infeed(&b, int_shape); in XLA_TEST_F()
46 Outfeed(loop_counter, int_shape, ""); in XLA_TEST_F()
90 local_client_->TransferFromOutfeed(&int_shape)); in XLA_TEST_F()
111 local_client_->TransferFromOutfeed(&int_shape)); in XLA_TEST_F()
/external/tensorflow/tensorflow/python/keras/applications/
Dmobilenet_v2.py208 if backend.int_shape(input_tensor)[1] != input_shape[1]:
213 if backend.int_shape(input_tensor)[2] != input_shape[1]:
234 rows = backend.int_shape(input_tensor)[2]
235 cols = backend.int_shape(input_tensor)[3]
237 rows = backend.int_shape(input_tensor)[1]
238 cols = backend.int_shape(input_tensor)[2]
418 in_channels = backend.int_shape(inputs)[channel_axis]
Dmobilenet_v3.py187 if backend.int_shape(input_tensor)[1] != input_shape[1]:
192 if backend.int_shape(input_tensor)[2] != input_shape[1]:
211 rows = backend.int_shape(input_tensor)[2]
212 cols = backend.int_shape(input_tensor)[3]
215 rows = backend.int_shape(input_tensor)[1]
216 cols = backend.int_shape(input_tensor)[2]
279 last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6)
494 infilters = backend.int_shape(x)[channel_axis]
Dinception_resnet_v2.py362 backend.int_shape(x)[channel_axis],
370 output_shape=backend.int_shape(x)[1:],
Dnasnet.py553 ip_shape = backend.int_shape(ip)
556 p_shape = backend.int_shape(p)
Dimagenet_utils.py399 input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
Ddensenet.py90 int(backend.int_shape(x)[bn_axis] * reduction),
/external/tensorflow/tensorflow/python/keras/
Doptimizer_v1.py191 shapes = [K.int_shape(p) for p in params]
262 accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
335 shapes = [K.int_shape(p) for p in params]
415 shapes = [K.int_shape(p) for p in params]
501 ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
502 vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
504 vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
596 shapes = [K.int_shape(p) for p in params]
686 shapes = [K.int_shape(p) for p in params]
Dcallbacks_v1.py189 shape = K.int_shape(w_img)
193 shape = K.int_shape(w_img)
200 shape = K.int_shape(w_img)
209 shape = K.int_shape(w_img)
Dbackend.py1096 v._keras_shape = int_shape(value)
1435 def int_shape(x): function
1990 for i, s in zip(int_shape(x), array_ops.unstack(array_ops.shape(x))):
1997 for i, s in zip(int_shape(y), array_ops.unstack(array_ops.shape(y))):
2064 x_shape = int_shape(x)
2065 y_shape = int_shape(y)
3198 original_shape = int_shape(x)
5935 kernel_shape = int_shape(kernel)
6075 bias_shape = int_shape(bias)
Dcallbacks.py2481 shape = K.int_shape(w_img)
2487 shape = K.int_shape(w_img)
2494 shape = K.int_shape(w_img)
2497 shape = K.int_shape(w_img)
Dmetrics.py3380 K.int_shape(y_true)) == len(K.int_shape(y_pred))):
Dbackend_test.py220 self.assertEqual(backend.int_shape(x), (3, 4))
224 self.assertEqual(backend.int_shape(x), (None, 4))
/external/tensorflow/tensorflow/python/keras/engine/
Dnode.py244 input_shapes = nest.map_structure(backend.int_shape, self.input_tensors)
251 return nest.map_structure(backend.int_shape, self.output_tensors)
Dfunctional.py268 return nest.map_structure(backend.int_shape, self.input)
328 return nest.map_structure(backend.int_shape, self.output)
Dtraining_v1.py2668 self._feed_input_shapes.append(K.int_shape(v))
2932 return K.int_shape(self.output)
/external/tensorflow/tensorflow/python/keras/saving/
Dhdf5_format.py408 if K.int_shape(layer.weights[0]) != weights[0].shape:
787 if K.int_shape(symbolic_weights[i]) != weight_values[i].shape:
797 ' has shape {}'.format(K.int_shape(
/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.keras.backend.pbtxt240 name: "int_shape"
/external/tensorflow/tensorflow/tools/api/golden/v1/
Dtensorflow.keras.backend.pbtxt248 name: "int_shape"

12