/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | categorical_test.py | 107 dist.logits.dtype, dist.log_prob(np.array( 291 "cat_log_prob": cat.log_prob(disc_event_tf), 295 "norm_log_prob": norm.log_prob(real_event_tf), 317 self.assertAllClose(dist.log_prob([0, 1]), np.log([0.2, 0.4])) 318 self.assertAllClose(dist.log_prob([0.0, 1.0]), np.log([0.2, 0.4])) 438 log_prob = dist.log_prob([0, 1]) 439 self.assertEqual(2, log_prob.get_shape().ndims) 440 self.assertAllEqual([1, 2], log_prob.get_shape()) 442 log_prob = dist.log_prob([[[1, 1], [1, 0]], [[1, 0], [0, 1]]]) 443 self.assertEqual(3, log_prob.get_shape().ndims) [all …]
|
D | bernoulli_test.py | 122 self.assertEqual(dist.probs.dtype, dist.log_prob(0).dtype) 123 self.assertEqual(dist.probs.dtype, dist.log_prob(0.5).dtype) 152 self.assertAllClose(self.evaluate(dist.log_prob(x)), np.log(expected_pmf)) 196 bernoulli.Bernoulli(probs=p, validate_args=False).log_prob(samps))) 203 self.assertAllClose(np.log(0.5), dist.log_prob(1).eval({p: 0.5})) 205 np.log([0.5, 0.5, 0.5]), dist.log_prob([1, 1, 1]).eval({ 209 np.log([0.5, 0.5, 0.5]), dist.log_prob(1).eval({ 218 self.assertEqual(2, len(dist.log_prob(1).eval({p: [[0.5], [0.5]]}).shape)) 221 self.assertEqual(2, len(self.evaluate(dist.log_prob([[1], [1]])).shape)) 224 self.assertEqual((), dist.log_prob(1).get_shape()) [all …]
|
D | dirichlet_test.py | 93 log_prob = self.evaluate(dist.log_prob(x)) 95 np.ones_like(log_prob, dtype=np.bool), np.isfinite(log_prob)) 99 log_prob = self.evaluate(dist.log_prob(x)) 101 np.ones_like(log_prob, dtype=np.bool), np.isfinite(log_prob)) 284 kl_sample = math_ops.reduce_mean(d1.log_prob(x) - d2.log_prob(x), 0)
|
D | gamma_test.py | 70 log_pdf = gamma.log_prob(x) 85 log_pdf = gamma.log_prob(0.) 96 log_pdf = gamma.log_prob(x) 116 log_pdf = gamma.log_prob(x) 383 kl_sample = math_ops.reduce_mean(g0.log_prob(x) - g1.log_prob(x), 0)
|
D | exponential_test.py | 56 log_pdf = exponential.log_prob(x) 72 log_pdf = exponential.log_prob(0.)
|
D | laplace_test.py | 68 log_pdf = laplace.log_prob(x) 87 log_pdf = laplace.log_prob(x) 108 log_pdf = laplace.log_prob(x)
|
D | student_t_test.py | 63 log_pdf = student.log_prob(t) 91 log_pdf = student.log_prob(t) 261 self.assertEqual(student.log_prob(2.).get_shape(), (3,)) 272 self.assertEqual(student.log_prob(arg).get_shape(), shape)
|
D | normal_test.py | 118 log_pdf = normal.log_prob(x) 152 log_pdf = normal.log_prob(x) 256 dist.log_survival_function, dist.log_prob, dist.prob
|
D | uniform_test.py | 82 log_pdf = uniform.log_prob(x)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | ctc_decoder_ops.cc | 61 Tensor** log_prob, OpOutputList* decoded_indices, in ValidateInputsGenerateOutputs() argument 101 "log_probability", TensorShape({batch_size, top_paths_}), log_prob); in ValidateInputsGenerateOutputs() 192 Tensor* log_prob = nullptr; in Compute() local 197 ctx, &inputs, &seq_len, &log_prob, &decoded_indices, in Compute() 219 auto log_prob_t = log_prob->matrix<T>(); in Compute() 290 Tensor* log_prob = nullptr; in Compute() local 295 ctx, &inputs, &seq_len, &log_prob, &decoded_indices, in Compute() 300 auto log_prob_t = log_prob->matrix<T>(); in Compute()
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | transformed_distribution.py | 442 log_prob = self.distribution.log_prob(x) 444 log_prob = math_ops.reduce_sum(log_prob, self._reduce_event_indices) 445 log_prob += math_ops.cast(ildj, log_prob.dtype) 447 log_prob.set_shape( 451 return log_prob
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.distributions.-distribution.pbtxt | 87 name: "log_prob" 88 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-multinomial.pbtxt | 100 name: "log_prob" 101 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-dirichlet.pbtxt | 96 name: "log_prob" 97 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-exponential.pbtxt | 97 name: "log_prob" 98 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-categorical.pbtxt | 100 name: "log_prob" 101 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-laplace.pbtxt | 96 name: "log_prob" 97 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-student-t.pbtxt | 100 name: "log_prob" 101 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-normal.pbtxt | 96 name: "log_prob" 97 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-dirichlet-multinomial.pbtxt | 100 name: "log_prob" 101 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-bernoulli.pbtxt | 96 name: "log_prob" 97 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-uniform.pbtxt | 96 name: "log_prob" 97 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-gamma.pbtxt | 96 name: "log_prob" 97 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
D | tensorflow.distributions.-beta.pbtxt | 100 name: "log_prob" 101 …pec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=None, defaults=[\'log_prob\'], "
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | special_math_test.py | 69 log_prob = math_ops.xlogy(a - 1., x) - math_ops.lgamma(a) - x 70 prob = math_ops.exp(log_prob)
|