/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | box_with_nms_limit_quant8_signed.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 2, 0.4, 0.5, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 117 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 123 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 2, 0.4, 0.5, 0.3).To(o1, o2, o3… 175 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split 206 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 212 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, o2, o… 264 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 294 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable [all …]
|
D | generate_proposals_quant8_signed.mod.py | 22 i3 = Input("anchors", "TENSOR_FLOAT32", "{2, 4}") # anchors variable 28 i1, i2, i3, i4, 4.0, 4.0, -1, -1, 0.30, 1.0, layout).To(o1, o2, o3) 33 i3: ("TENSOR_QUANT16_SYMM", 0.125, 0), 50 i3: [0, 1, 4, 3, 1, 0, 3, 4], # anchors 72 i3 = Input("anchors", "TENSOR_FLOAT32", "{4, 4}") # anchors variable 78 i1, i2, i3, i4, 10.0, 10.0, 32, 16, 0.20, 1.0, layout).To(o1, o2, o3) 83 i3: ("TENSOR_QUANT16_SYMM", 0.125, 0), 158 i3: [ # anchors
|
D | max_pool_quant8_signed.mod.py | 22 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 2, 2, 1}, 0.5f, -128") # output 0 variable 23 … model.Operation("MAX_POOL_2D", i1, pad0, pad0, pad0, pad0, cons1, cons1, cons1, cons1, act).To(i3) 27 output0 = {i3: # output 0 118 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 1, 2, 1}, 0.0625f, -128") # output 0 variable 119 model = model.Operation("MAX_POOL_2D", i1, pad_same, cons2, cons2, cons2, cons2, act_none).To(i3) 123 output0 = {i3: # output 0 191 i3 = Input("op1", ("TENSOR_FLOAT32", [bat, row, col, chn])) variable 193 Model().Operation("MAX_POOL_2D", i3, pad, pad, pad, pad, std, std, flt, flt, 3, layout).To(o3) 197 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.25, -128), 203 i3: [x % std + 1 for x in range(bat * row * col * chn)], [all …]
|
D | mul_quant8_signed.mod.py | 21 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 2}, 2.0, -128") variable 22 model = model.Operation("MUL", i1, i2, act).To(i3) 30 output0 = {i3: # output 0 42 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 2.0, -128") variable 43 model = model.Operation("MUL", i1, i2, act).To(i3) 51 output0 = {i3: # output 0
|
D | add_quant8_signed.mod.py | 21 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 1.0, 0") variable 22 model = model.Operation("ADD", i1, i2, act).To(i3) 30 output0 = {i3: # output 0 42 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 2}, 1.0, 0") variable 43 model = model.Operation("ADD", i1, i2, act).To(i3) 51 output0 = {i3: # output 0
|
D | depthwise_conv2d_quant8_signed.mod.py | 201 i3 = Input("op1", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 3, 3, 2}, 0.5f, 0") variable 207 Model("layout").Operation("DEPTHWISE_CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 2, 0, layout).To(o3) 211 i3: [1, 2] * 9, 214 }).AddNchw(i3, o3, layout) 443 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 2}") variable 447 Model("large").Operation("DEPTHWISE_CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 1, 0, layout).To(o3) 451 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -28), 457 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, 0), 465 i3: [10, 21, 10, 22, 10, 23, 10, 24], 467 }).AddNchw(i3, o3, layout).AddVariations(quant8_signed, includeDefault=False)
|
D | grouped_conv2d_quant8_signed.mod.py | 105 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 9}") # input 0 variable 109 Model("channel").Operation("GROUPED_CONV_2D", i3, w3, b3, 1, 1, 1, 3, 0, layout).To(o3) 113 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 120 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 127 i3: [1, 2, 3, 4, 55, 4, 3, 2, 1, 135 }).AddNchw(i3, o3, layout).AddVariations(quant8_signed, channelQuant8_signed, includeDefault=False)
|
D | roi_pooling_quant8_signed.mod.py | 116 i3 = Input("in", "TENSOR_FLOAT32", "{4, 4, 4, 1}") variable 119 Model().Operation("ROI_POOLING", i3, roi3, [2, 2, 2, 2, 2], 2, 2, 2.0, 1.0, layout).To(o3) 122 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.25, 0), 129 i3: [ 152 }).AddNchw(i3, o3, layout).AddVariations(quant8_signed, includeDefault=False)
|
D | depth_to_space_quant8_signed.mod.py | 107 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 8}") variable 109 Model().Operation("DEPTH_TO_SPACE", i3, 2, layout).To(o3) 113 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 1.0, 0), 119 i3: [10, 20, 11, 21, 14, 24, 15, 25, 127 }).AddNchw(i3, o3, layout).AddVariations(quant8_signed, includeDefault=False)
|
D | space_to_depth_quant8_signed.mod.py | 104 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 106 Model().Operation("SPACE_TO_DEPTH", i3, 2, layout).To(o3) 110 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 1.0, -128), 116 i3: [10, 20, 11, 21, 12, 22, 13, 23, 124 }).AddNchw(i3, o3, layout).AddVariations(quant8_signed, includeDefault=False)
|
D | conv2d_quant8_signed.mod.py | 123 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 6, 6, 1}") variable 127 Model().Operation("CONV_2D", i3, f3, b3, 1, 2, 2, 0, layout, 3, 3).To(o3) 131 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 139 i3: [0, 0, 0, 0, 0, 0, 146 }).AddNchw(i3, o3, layout).AddVariations(quant8_signed, includeDefault=False) 266 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 1, 1, 3}") variable 270 Model("channel").Operation("CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 0, layout).To(o3) 274 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 280 i3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 288 i3: [5., 5., 5.], [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | detection_postprocess.mod.py | 20 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable 26 Model("regular").Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, True, 3, 1… 45 i3: [ # six anchors in center-size encoding 71 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable 77 Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0… 96 i3: [ # six anchors in center-size encoding 122 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable 128 Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0… 147 i3: [ # six anchors in center-size encoding 173 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable [all …]
|
D | generate_proposals.mod.py | 23 i3 = Input("anchors", "TENSOR_FLOAT32", "{2, 4}") # anchors variable 29 i1, i2, i3, i4, 4.0, 4.0, -1, -1, 0.30, 1.0, layout).To(o1, o2, o3) 34 i3: ("TENSOR_QUANT16_SYMM", 0.125, 0), 51 i3: [0, 1, 4, 3, 1, 0, 3, 4], # anchors 72 i3 = Input("anchors", "TENSOR_FLOAT32", "{4, 4}") # anchors variable 78 i1, i2, i3, i4, 10.0, 10.0, 32, 16, 0.20, 1.0, layout).To(o1, o2, o3) 83 i3: ("TENSOR_QUANT16_SYMM", 0.125, 0), 158 i3: [ # anchors
|
D | box_with_nms_limit_hard.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 107 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 113 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 0, 0.4, 0.5, 0.3).To(o1, o2, o3… 165 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split
|
D | box_with_nms_limit_linear.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 1, 0.4, 1.0, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 114 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 120 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 8, 1, 0.4, 0.5, 0.3).To(o1, o2, o3… 172 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split
|
D | box_with_nms_limit_gaussian.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 2, 0.4, 0.5, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 116 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 122 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 2, 0.4, 0.5, 0.3).To(o1, o2, o3… 174 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split
|
D | add_v1_2.mod.py | 22 i3 = Output("op3", "TENSOR_FLOAT16", "{3}") variable 23 model = model.Operation("ADD", i1, i2, act).To(i3) 32 output0 = {i3: # output 0 44 i3 = Output("op3", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("ADD", i1, i2, act).To(i3) 53 output0 = {i3: # output 0
|
D | mul_v1_2.mod.py | 22 i3 = Output("op3", "TENSOR_FLOAT16", "{3}") variable 23 model = model.Operation("MUL", i1, i2, act).To(i3) 32 output0 = {i3: # output 0 44 i3 = Output("op3", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("MUL", i1, i2, act).To(i3) 53 output0 = {i3: # output 0
|
D | div_v1_2.mod.py | 22 i3 = Output("op3", "TENSOR_FLOAT16", "{3}") variable 23 model = model.Operation("DIV", i1, i2, act).To(i3) 32 output0 = {i3: # output 0 44 i3 = Output("op3", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("DIV", i1, i2, act).To(i3) 53 output0 = {i3: # output 0
|
D | grouped_conv2d.mod.py | 105 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 9}") # input 0 variable 109 Model("channel").Operation("GROUPED_CONV_2D", i3, w3, b3, 1, 1, 1, 3, 0, layout).To(o3) 113 i3: ("TENSOR_QUANT8_ASYMM", 0.5, 0), 120 i3: ("TENSOR_QUANT8_ASYMM", 0.5, 0), 127 i3: [1, 2, 3, 4, 55, 4, 3, 2, 1, 135 }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, channelQuant8, "float16")
|
D | depth_to_space_v1_2.mod.py | 56 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 8}") variable 58 Model().Operation("DEPTH_TO_SPACE", i3, 2, layout).To(o3) 62 i3: ("TENSOR_QUANT8_ASYMM", 1.0, 0), 68 i3: [10, 20, 11, 21, 14, 24, 15, 25, 76 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | space_to_depth_v1_2.mod.py | 56 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 58 Model().Operation("SPACE_TO_DEPTH", i3, 2, layout).To(o3) 62 i3: ("TENSOR_QUANT8_ASYMM", 1.0, 0), 68 i3: [10, 20, 11, 21, 12, 22, 13, 23, 76 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | roi_pooling.mod.py | 116 i3 = Input("in", "TENSOR_FLOAT32", "{4, 4, 4, 1}") variable 119 Model().Operation("ROI_POOLING", i3, roi3, [2, 2, 2, 2, 2], 2, 2, 2.0, 1.0, layout).To(o3) 122 i3: ("TENSOR_QUANT8_ASYMM", 0.25, 128), 129 i3: [ 152 }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, "float16")
|
D | space_to_batch_v1_2.mod.py | 57 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 5, 2, 1}") variable 60 Model().Operation("SPACE_TO_BATCH_ND", i3, [3, 2], pad3, layout).To(o3) 64 i3: ("TENSOR_QUANT8_ASYMM", 0.5, 128), 70 i3: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 73 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | depthwise_conv2d_v1_2.mod.py | 87 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 2}") variable 91 Model("large").Operation("DEPTHWISE_CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 1, 0, layout).To(o3) 95 i3: ("TENSOR_QUANT8_ASYMM", 0.5, 100), 101 i3: ("TENSOR_QUANT8_ASYMM", 0.5, 128), 109 i3: [10, 21, 10, 22, 10, 23, 10, 24], 111 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8, channelQuant8)
|