• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2020 Google Inc. All rights reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15package android
16
17import (
18	"fmt"
19	"reflect"
20)
21
22// depSet is designed to be conceptually compatible with Bazel's depsets:
23// https://docs.bazel.build/versions/master/skylark/depsets.html
24
25type DepSetOrder int
26
27const (
28	PREORDER DepSetOrder = iota
29	POSTORDER
30	TOPOLOGICAL
31)
32
33func (o DepSetOrder) String() string {
34	switch o {
35	case PREORDER:
36		return "PREORDER"
37	case POSTORDER:
38		return "POSTORDER"
39	case TOPOLOGICAL:
40		return "TOPOLOGICAL"
41	default:
42		panic(fmt.Errorf("Invalid DepSetOrder %d", o))
43	}
44}
45
46// A depSet efficiently stores a slice of an arbitrary type from transitive dependencies without
47// copying. It is stored as a DAG of depSet nodes, each of which has some direct contents and a list
48// of dependency depSet nodes.
49//
50// A depSet has an order that will be used to walk the DAG when ToList() is called.  The order
51// can be POSTORDER, PREORDER, or TOPOLOGICAL.  POSTORDER and PREORDER orders return a postordered
52// or preordered left to right flattened list.  TOPOLOGICAL returns a list that guarantees that
53// elements of children are listed after all of their parents (unless there are duplicate direct
54// elements in the depSet or any of its transitive dependencies, in which case the ordering of the
55// duplicated element is not guaranteed).
56//
57// A depSet is created by newDepSet or newDepSetBuilder.Build from the slice for direct contents
58// and the *depSets of dependencies. A depSet is immutable once created.
59//
60// This object uses reflection to remain agnostic to the type it contains.  It should be replaced
61// with generics once those exist in Go.  Callers should generally use a thin wrapper around depSet
62// that provides type-safe methods like DepSet for Paths.
63type depSet struct {
64	preorder   bool
65	reverse    bool
66	order      DepSetOrder
67	direct     interface{}
68	transitive []*depSet
69}
70
71type depSetInterface interface {
72	embeddedDepSet() *depSet
73}
74
75func (d *depSet) embeddedDepSet() *depSet {
76	return d
77}
78
79var _ depSetInterface = (*depSet)(nil)
80
81// newDepSet returns an immutable depSet with the given order, direct and transitive contents.
82// direct must be a slice, but is not type-safe due to the lack of generics in Go.  It can be a
83// nil slice, but not a nil interface{}, i.e. []string(nil) but not nil.
84func newDepSet(order DepSetOrder, direct interface{}, transitive interface{}) *depSet {
85	var directCopy interface{}
86	transitiveDepSet := sliceToDepSets(transitive, order)
87
88	if order == TOPOLOGICAL {
89		directCopy = reverseSlice(direct)
90		reverseSliceInPlace(transitiveDepSet)
91	} else {
92		directCopy = copySlice(direct)
93	}
94
95	return &depSet{
96		preorder:   order == PREORDER,
97		reverse:    order == TOPOLOGICAL,
98		order:      order,
99		direct:     directCopy,
100		transitive: transitiveDepSet,
101	}
102}
103
104// depSetBuilder is used to create an immutable depSet.
105type depSetBuilder struct {
106	order      DepSetOrder
107	direct     reflect.Value
108	transitive []*depSet
109}
110
111// newDepSetBuilder returns a depSetBuilder to create an immutable depSet with the given order and
112// type, represented by a slice of type that will be in the depSet.
113func newDepSetBuilder(order DepSetOrder, typ interface{}) *depSetBuilder {
114	empty := reflect.Zero(reflect.TypeOf(typ))
115	return &depSetBuilder{
116		order:  order,
117		direct: empty,
118	}
119}
120
121// sliceToDepSets converts a slice of any type that implements depSetInterface (by having a depSet
122// embedded in it) into a []*depSet.
123func sliceToDepSets(in interface{}, order DepSetOrder) []*depSet {
124	slice := reflect.ValueOf(in)
125	length := slice.Len()
126	out := make([]*depSet, length)
127	for i := 0; i < length; i++ {
128		vi := slice.Index(i)
129		depSetIntf, ok := vi.Interface().(depSetInterface)
130		if !ok {
131			panic(fmt.Errorf("element %d is a %s, not a depSetInterface", i, vi.Type()))
132		}
133		depSet := depSetIntf.embeddedDepSet()
134		if depSet.order != order {
135			panic(fmt.Errorf("incompatible order, new depSet is %s but transitive depSet is %s",
136				order, depSet.order))
137		}
138		out[i] = depSet
139	}
140	return out
141}
142
143// DirectSlice adds direct contents to the depSet being built by a depSetBuilder. Newly added direct
144// contents are to the right of any existing direct contents.  The argument must be a slice, but
145// is not type-safe due to the lack of generics in Go.
146func (b *depSetBuilder) DirectSlice(direct interface{}) *depSetBuilder {
147	b.direct = reflect.AppendSlice(b.direct, reflect.ValueOf(direct))
148	return b
149}
150
151// Direct adds direct contents to the depSet being built by a depSetBuilder. Newly added direct
152// contents are to the right of any existing direct contents.  The argument must be the same type
153// as the element of the slice passed to newDepSetBuilder, but is not type-safe due to the lack of
154// generics in Go.
155func (b *depSetBuilder) Direct(direct interface{}) *depSetBuilder {
156	b.direct = reflect.Append(b.direct, reflect.ValueOf(direct))
157	return b
158}
159
160// Transitive adds transitive contents to the DepSet being built by a DepSetBuilder. Newly added
161// transitive contents are to the right of any existing transitive contents.  The argument can
162// be any slice of type that has depSet embedded in it.
163func (b *depSetBuilder) Transitive(transitive interface{}) *depSetBuilder {
164	depSets := sliceToDepSets(transitive, b.order)
165	b.transitive = append(b.transitive, depSets...)
166	return b
167}
168
169// Returns the depSet being built by this depSetBuilder.  The depSetBuilder retains its contents
170// for creating more depSets.
171func (b *depSetBuilder) Build() *depSet {
172	return newDepSet(b.order, b.direct.Interface(), b.transitive)
173}
174
175// walk calls the visit method in depth-first order on a DepSet, preordered if d.preorder is set,
176// otherwise postordered.
177func (d *depSet) walk(visit func(interface{})) {
178	visited := make(map[*depSet]bool)
179
180	var dfs func(d *depSet)
181	dfs = func(d *depSet) {
182		visited[d] = true
183		if d.preorder {
184			visit(d.direct)
185		}
186		for _, dep := range d.transitive {
187			if !visited[dep] {
188				dfs(dep)
189			}
190		}
191
192		if !d.preorder {
193			visit(d.direct)
194		}
195	}
196
197	dfs(d)
198}
199
200// ToList returns the depSet flattened to a list.  The order in the list is based on the order
201// of the depSet.  POSTORDER and PREORDER orders return a postordered or preordered left to right
202// flattened list.  TOPOLOGICAL returns a list that guarantees that elements of children are listed
203// after all of their parents (unless there are duplicate direct elements in the DepSet or any of
204// its transitive dependencies, in which case the ordering of the duplicated element is not
205// guaranteed).
206//
207// This method uses a reflection-based implementation to find the unique elements in slice, which
208// is around 3x slower than a concrete implementation.  Type-safe wrappers around depSet can
209// provide their own implementation of ToList that calls depSet.toList with a method that
210// uses a concrete implementation.
211func (d *depSet) ToList() interface{} {
212	return d.toList(firstUnique)
213}
214
215// toList returns the depSet flattened to a list.  The order in the list is based on the order
216// of the depSet.  POSTORDER and PREORDER orders return a postordered or preordered left to right
217// flattened list.  TOPOLOGICAL returns a list that guarantees that elements of children are listed
218// after all of their parents (unless there are duplicate direct elements in the DepSet or any of
219// its transitive dependencies, in which case the ordering of the duplicated element is not
220// guaranteed).  The firstUniqueFunc is used to remove duplicates from the list.
221func (d *depSet) toList(firstUniqueFunc func(interface{}) interface{}) interface{} {
222	if d == nil {
223		return nil
224	}
225	slice := reflect.Zero(reflect.TypeOf(d.direct))
226	d.walk(func(paths interface{}) {
227		slice = reflect.AppendSlice(slice, reflect.ValueOf(paths))
228	})
229	list := slice.Interface()
230	list = firstUniqueFunc(list)
231	if d.reverse {
232		reverseSliceInPlace(list)
233	}
234	return list
235}
236
237// firstUnique returns all unique elements of a slice, keeping the first copy of each.  It
238// modifies the slice contents in place, and returns a subslice of the original slice.  The
239// argument must be a slice, but is not type-safe due to the lack of reflection in Go.
240//
241// Performance of the reflection-based firstUnique is up to 3x slower than a concrete type
242// version such as FirstUniqueStrings.
243func firstUnique(slice interface{}) interface{} {
244	// 4 was chosen based on Benchmark_firstUnique results.
245	if reflect.ValueOf(slice).Len() > 4 {
246		return firstUniqueMap(slice)
247	}
248	return firstUniqueList(slice)
249}
250
251// firstUniqueList is an implementation of firstUnique using an O(N^2) list comparison to look for
252// duplicates.
253func firstUniqueList(in interface{}) interface{} {
254	writeIndex := 0
255	slice := reflect.ValueOf(in)
256	length := slice.Len()
257outer:
258	for readIndex := 0; readIndex < length; readIndex++ {
259		readValue := slice.Index(readIndex)
260		for compareIndex := 0; compareIndex < writeIndex; compareIndex++ {
261			compareValue := slice.Index(compareIndex)
262			// These two Interface() calls seem to cause an allocation and significantly
263			// slow down this list-based implementation.  The map implementation below doesn't
264			// have this issue because reflect.Value.MapIndex takes a Value and appears to be
265			// able to do the map lookup without an allocation.
266			if readValue.Interface() == compareValue.Interface() {
267				// The value at readIndex already exists somewhere in the output region
268				// of the slice before writeIndex, skip it.
269				continue outer
270			}
271		}
272		if readIndex != writeIndex {
273			writeValue := slice.Index(writeIndex)
274			writeValue.Set(readValue)
275		}
276		writeIndex++
277	}
278	return slice.Slice(0, writeIndex).Interface()
279}
280
281var trueValue = reflect.ValueOf(true)
282
283// firstUniqueList is an implementation of firstUnique using an O(N) hash set lookup to look for
284// duplicates.
285func firstUniqueMap(in interface{}) interface{} {
286	writeIndex := 0
287	slice := reflect.ValueOf(in)
288	length := slice.Len()
289	seen := reflect.MakeMapWithSize(reflect.MapOf(slice.Type().Elem(), trueValue.Type()), slice.Len())
290	for readIndex := 0; readIndex < length; readIndex++ {
291		readValue := slice.Index(readIndex)
292		if seen.MapIndex(readValue).IsValid() {
293			continue
294		}
295		seen.SetMapIndex(readValue, trueValue)
296		if readIndex != writeIndex {
297			writeValue := slice.Index(writeIndex)
298			writeValue.Set(readValue)
299		}
300		writeIndex++
301	}
302	return slice.Slice(0, writeIndex).Interface()
303}
304
305// reverseSliceInPlace reverses the elements of a slice in place.  The argument must be a slice, but
306// is not type-safe due to the lack of reflection in Go.
307func reverseSliceInPlace(in interface{}) {
308	swapper := reflect.Swapper(in)
309	slice := reflect.ValueOf(in)
310	length := slice.Len()
311	for i, j := 0, length-1; i < j; i, j = i+1, j-1 {
312		swapper(i, j)
313	}
314}
315
316// reverseSlice returns a copy of a slice in reverse order.  The argument must be a slice, but is
317// not type-safe due to the lack of reflection in Go.
318func reverseSlice(in interface{}) interface{} {
319	slice := reflect.ValueOf(in)
320	if !slice.IsValid() || slice.IsNil() {
321		return in
322	}
323	if slice.Kind() != reflect.Slice {
324		panic(fmt.Errorf("%t is not a slice", in))
325	}
326	length := slice.Len()
327	if length == 0 {
328		return in
329	}
330	out := reflect.MakeSlice(slice.Type(), length, length)
331	for i := 0; i < length; i++ {
332		out.Index(i).Set(slice.Index(length - 1 - i))
333	}
334	return out.Interface()
335}
336
337// copySlice returns a copy of a slice.  The argument must be a slice, but is not type-safe due to
338// the lack of reflection in Go.
339func copySlice(in interface{}) interface{} {
340	slice := reflect.ValueOf(in)
341	if !slice.IsValid() || slice.IsNil() {
342		return in
343	}
344	length := slice.Len()
345	if length == 0 {
346		return in
347	}
348	out := reflect.MakeSlice(slice.Type(), length, length)
349	reflect.Copy(out, slice)
350	return out.Interface()
351}
352