• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x24(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x24(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 24 * sizeof(float); elements -= 24 * sizeof(float)) {
46     // Load 24 (3x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     input += 24;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
54     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
55     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
56 
57     // Compute reduced argument elements := round(x / log(2)).
58     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
59     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
60     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
61 
62     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
63     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
64     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
65     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
66     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
67 
68     // Subtract the large number back to get final elements := round(x / log(2)).
69     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
70     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
71     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
72 
73     // Compute reduced argument t := x - elements * log(2).
74     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
75     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
76     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
77     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
78 
79     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
80     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
81     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
82 
83     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
84     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
85     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
86     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
87 
88     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
89     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
90     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
91 
92     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
93     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
94     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
95 
96     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
97     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
98     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
99 
100     // Reconstruct the final f value:
101     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
102     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
103     //     = s + (t * s) * p
104     vt0 = _mm256_mul_ps(vt0, vs0);
105     vt1 = _mm256_mul_ps(vt1, vs1);
106     vt2 = _mm256_mul_ps(vt2, vs2);
107 
108     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
109     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
110     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
111 
112     // For inputs below zero cutoff, replace output with +0.0f.
113     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
115     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
116     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
117 
118     // Multiply by scale.
119     vf0 = _mm256_mul_ps(vf0, vscale);
120     vf1 = _mm256_mul_ps(vf1, vscale);
121     vf2 = _mm256_mul_ps(vf2, vscale);
122 
123     // Store 24 (3x8) outputs at a time.
124     _mm256_storeu_ps(output, vf0);
125     _mm256_storeu_ps(output + 8, vf1);
126     _mm256_storeu_ps(output + 16, vf2);
127     output += 24;
128   }
129   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
130     // Load 8 inputs at a time.
131     const __m256 vi = _mm256_loadu_ps(input);
132     input += 8;
133 
134     // Subtract maximum input x := i - i_max. This implies x <= 0.
135     const __m256 vx = _mm256_sub_ps(vi, vi_max);
136 
137     // Compute reduced argument elements := round(x / log(2)).
138     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
139 
140     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
141     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
142     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
143 
144     // Subtract the large number back to get final elements := round(x / log(2)).
145     vn = _mm256_sub_ps(vn, vmagic_bias);
146 
147     // Compute reduced argument t := x - elements * log(2).
148     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
149     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
150     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
151 
152     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
153     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
154     vp = _mm256_fmadd_ps(vp, vt, vc3);
155     vp = _mm256_fmadd_ps(vp, vt, vc2);
156     vp = _mm256_fmadd_ps(vp, vt, vc1);
157 
158     // Reconstruct the final f value:
159     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
160     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
161     //     = s + (t * s) * p
162     vt = _mm256_mul_ps(vt, vs);
163     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
164 
165     // For inputs below zero cutoff, replace output with +0.0f.
166     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
167     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
168 
169     // Multiply by scale.
170     vf = _mm256_mul_ps(vf, vscale);
171 
172     // Store 64 (8x8) outputs at a time.
173     _mm256_storeu_ps(output, vf);
174     output += 8;
175   }
176   if (elements != 0) {
177     assert(elements >= 1 * sizeof(float));
178     assert(elements <= 7 * sizeof(float));
179     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
180 
181     // Load up to 7 inputs at a time.
182     const __m256 vi = _mm256_maskload_ps(input, vmask);
183 
184     // Subtract maximum input x := i - i_max. This implies x <= 0.
185     const __m256 vx = _mm256_sub_ps(vi, vi_max);
186 
187     // Compute reduced argument elements := round(x / log(2)).
188     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
189 
190     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
191     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
192     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
193 
194     // Subtract the large number back to get final elements := round(x / log(2)).
195     vn = _mm256_sub_ps(vn, vmagic_bias);
196 
197     // Compute reduced argument t := x - elements * log(2).
198     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
199     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
200     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
201 
202     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
203     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
204     vp = _mm256_fmadd_ps(vp, vt, vc3);
205     vp = _mm256_fmadd_ps(vp, vt, vc2);
206     vp = _mm256_fmadd_ps(vp, vt, vc1);
207 
208     // Reconstruct the final f value:
209     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
210     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
211     //     = s + (t * s) * p
212     vt = _mm256_mul_ps(vt, vs);
213     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
214 
215     // For inputs below zero cutoff, replace output with +0.0f.
216     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
217     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
218 
219     // Multiply by scale.
220     vf = _mm256_mul_ps(vf, vscale);
221 
222     // Store up to 7 outputs at a time.
223     _mm256_maskstore_ps(output, vmask, vf);
224   }
225 }
226