• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /******************* Library for basic calculation routines ********************
96 
97    Author(s):   M. Lohwasser
98 
99    Description: auto-correlation functions
100 
101 *******************************************************************************/
102 
103 #include "autocorr2nd.h"
104 
105 /*!
106  *
107  * \brief Calculate second order autocorrelation using 2 accumulators
108  *
109  */
110 #if !defined(FUNCTION_autoCorr2nd_real)
autoCorr2nd_real(ACORR_COEFS * ac,const FIXP_DBL * reBuffer,const int len)111 INT autoCorr2nd_real(
112     ACORR_COEFS *ac,          /*!< Pointer to autocorrelation coeffs */
113     const FIXP_DBL *reBuffer, /*!< Pointer to to real part of input samples */
114     const int len             /*!< Number input samples */
115 ) {
116   int j, autoCorrScaling, mScale;
117 
118   FIXP_DBL accu1, accu2, accu3, accu4, accu5;
119 
120   const FIXP_DBL *pReBuf;
121 
122   const FIXP_DBL *realBuf = reBuffer;
123 
124   const int len_scale = fMax(DFRACT_BITS - fNormz((FIXP_DBL)(len / 2)), 1);
125   /*
126     r11r,r22r
127     r01r,r12r
128     r02r
129   */
130   pReBuf = realBuf - 2;
131   accu5 =
132       ((fMultDiv2(pReBuf[0], pReBuf[2]) + fMultDiv2(pReBuf[1], pReBuf[3])) >>
133        len_scale);
134   pReBuf++;
135 
136   /* len must be even */
137   accu1 = fPow2Div2(pReBuf[0]) >> len_scale;
138   accu3 = fMultDiv2(pReBuf[0], pReBuf[1]) >> len_scale;
139   pReBuf++;
140 
141   for (j = (len - 2) >> 1; j != 0; j--, pReBuf += 2) {
142     accu1 += ((fPow2Div2(pReBuf[0]) + fPow2Div2(pReBuf[1])) >> len_scale);
143 
144     accu3 +=
145         ((fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pReBuf[1], pReBuf[2])) >>
146          len_scale);
147 
148     accu5 +=
149         ((fMultDiv2(pReBuf[0], pReBuf[2]) + fMultDiv2(pReBuf[1], pReBuf[3])) >>
150          len_scale);
151   }
152 
153   accu2 = (fPow2Div2(realBuf[-2]) >> len_scale);
154   accu2 += accu1;
155 
156   accu1 += (fPow2Div2(realBuf[len - 2]) >> len_scale);
157 
158   accu4 = (fMultDiv2(realBuf[-1], realBuf[-2]) >> len_scale);
159   accu4 += accu3;
160 
161   accu3 += (fMultDiv2(realBuf[len - 1], realBuf[len - 2]) >> len_scale);
162 
163   mScale = CntLeadingZeros(
164                (accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5))) -
165            1;
166   autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
167 
168   /* Scale to common scale factor */
169   ac->r11r = accu1 << mScale;
170   ac->r22r = accu2 << mScale;
171   ac->r01r = accu3 << mScale;
172   ac->r12r = accu4 << mScale;
173   ac->r02r = accu5 << mScale;
174 
175   ac->det = (fMultDiv2(ac->r11r, ac->r22r) - fMultDiv2(ac->r12r, ac->r12r));
176   mScale = CountLeadingBits(fAbs(ac->det));
177 
178   ac->det <<= mScale;
179   ac->det_scale = mScale - 1;
180 
181   return autoCorrScaling;
182 }
183 #endif
184 
185 #if !defined(FUNCTION_autoCorr2nd_cplx)
autoCorr2nd_cplx(ACORR_COEFS * ac,const FIXP_DBL * reBuffer,const FIXP_DBL * imBuffer,const int len)186 INT autoCorr2nd_cplx(
187     ACORR_COEFS *ac,          /*!< Pointer to autocorrelation coeffs */
188     const FIXP_DBL *reBuffer, /*!< Pointer to real part of input samples */
189     const FIXP_DBL *imBuffer, /*!< Pointer to imag part of input samples */
190     const int len /*!< Number of input samples (should be smaller than 128) */
191 ) {
192   int j, autoCorrScaling, mScale;
193 
194   FIXP_DBL accu0, accu1, accu2, accu3, accu4, accu5, accu6, accu7, accu8;
195 
196   const FIXP_DBL *pReBuf, *pImBuf;
197 
198   const FIXP_DBL *realBuf = reBuffer;
199   const FIXP_DBL *imagBuf = imBuffer;
200 
201   const int len_scale = fMax(DFRACT_BITS - fNormz((FIXP_DBL)len), 1);
202   /*
203     r00r,
204     r11r,r22r
205     r01r,r12r
206     r01i,r12i
207     r02r,r02i
208   */
209   accu1 = accu3 = accu5 = accu7 = accu8 = FL2FXCONST_DBL(0.0f);
210 
211   pReBuf = realBuf - 2, pImBuf = imagBuf - 2;
212   accu7 +=
213       ((fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >>
214        len_scale);
215   accu8 +=
216       ((fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >>
217        len_scale);
218 
219   pReBuf = realBuf - 1, pImBuf = imagBuf - 1;
220   for (j = (len - 1); j != 0; j--, pReBuf++, pImBuf++) {
221     accu1 += ((fPow2Div2(pReBuf[0]) + fPow2Div2(pImBuf[0])) >> len_scale);
222     accu3 +=
223         ((fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pImBuf[0], pImBuf[1])) >>
224          len_scale);
225     accu5 +=
226         ((fMultDiv2(pImBuf[1], pReBuf[0]) - fMultDiv2(pReBuf[1], pImBuf[0])) >>
227          len_scale);
228     accu7 +=
229         ((fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >>
230          len_scale);
231     accu8 +=
232         ((fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >>
233          len_scale);
234   }
235 
236   accu2 = ((fPow2Div2(realBuf[-2]) + fPow2Div2(imagBuf[-2])) >> len_scale);
237   accu2 += accu1;
238 
239   accu1 += ((fPow2Div2(realBuf[len - 2]) + fPow2Div2(imagBuf[len - 2])) >>
240             len_scale);
241   accu0 = ((fPow2Div2(realBuf[len - 1]) + fPow2Div2(imagBuf[len - 1])) >>
242            len_scale) -
243           ((fPow2Div2(realBuf[-1]) + fPow2Div2(imagBuf[-1])) >> len_scale);
244   accu0 += accu1;
245 
246   accu4 = ((fMultDiv2(realBuf[-1], realBuf[-2]) +
247             fMultDiv2(imagBuf[-1], imagBuf[-2])) >>
248            len_scale);
249   accu4 += accu3;
250 
251   accu3 += ((fMultDiv2(realBuf[len - 1], realBuf[len - 2]) +
252              fMultDiv2(imagBuf[len - 1], imagBuf[len - 2])) >>
253             len_scale);
254 
255   accu6 = ((fMultDiv2(imagBuf[-1], realBuf[-2]) -
256             fMultDiv2(realBuf[-1], imagBuf[-2])) >>
257            len_scale);
258   accu6 += accu5;
259 
260   accu5 += ((fMultDiv2(imagBuf[len - 1], realBuf[len - 2]) -
261              fMultDiv2(realBuf[len - 1], imagBuf[len - 2])) >>
262             len_scale);
263 
264   mScale =
265       CntLeadingZeros((accu0 | accu1 | accu2 | fAbs(accu3) | fAbs(accu4) |
266                        fAbs(accu5) | fAbs(accu6) | fAbs(accu7) | fAbs(accu8))) -
267       1;
268   autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
269 
270   /* Scale to common scale factor */
271   ac->r00r = (FIXP_DBL)accu0 << mScale;
272   ac->r11r = (FIXP_DBL)accu1 << mScale;
273   ac->r22r = (FIXP_DBL)accu2 << mScale;
274   ac->r01r = (FIXP_DBL)accu3 << mScale;
275   ac->r12r = (FIXP_DBL)accu4 << mScale;
276   ac->r01i = (FIXP_DBL)accu5 << mScale;
277   ac->r12i = (FIXP_DBL)accu6 << mScale;
278   ac->r02r = (FIXP_DBL)accu7 << mScale;
279   ac->r02i = (FIXP_DBL)accu8 << mScale;
280 
281   ac->det =
282       (fMultDiv2(ac->r11r, ac->r22r) >> 1) -
283       ((fMultDiv2(ac->r12r, ac->r12r) + fMultDiv2(ac->r12i, ac->r12i)) >> 1);
284   mScale = CntLeadingZeros(fAbs(ac->det)) - 1;
285 
286   ac->det <<= mScale;
287   ac->det_scale = mScale - 2;
288 
289   return autoCorrScaling;
290 }
291 
292 #endif /* FUNCTION_autoCorr2nd_cplx */
293