1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /**************************** SBR decoder library ******************************
96
97 Author(s): Christian Griebel
98
99 Description: Dynamic range control (DRC) decoder tool for SBR
100
101 *******************************************************************************/
102
103 #include "sbrdec_drc.h"
104
105 /* DRC - Offset table for QMF interpolation. Shifted by one index position.
106 The table defines the (short) window borders rounded to the nearest QMF
107 timeslot. It has the size 16 because it is accessed with the
108 drcInterpolationScheme that is read from the bitstream with 4 bit. */
109 static const UCHAR winBorderToColMappingTab[2][16] = {
110 /*-1, 0, 1, 2, 3, 4, 5, 6, 7, 8 */
111 {0, 0, 4, 8, 12, 16, 20, 24, 28, 32, 32, 32, 32, 32, 32,
112 32}, /* 1024 framing */
113 {0, 0, 4, 8, 11, 15, 19, 23, 26, 30, 30, 30, 30, 30, 30,
114 30} /* 960 framing */
115 };
116
117 /*!
118 \brief Initialize DRC QMF factors
119
120 \hDrcData Handle to DRC channel data.
121
122 \return none
123 */
sbrDecoder_drcInitChannel(HANDLE_SBR_DRC_CHANNEL hDrcData)124 void sbrDecoder_drcInitChannel(HANDLE_SBR_DRC_CHANNEL hDrcData) {
125 int band;
126
127 if (hDrcData == NULL) {
128 return;
129 }
130
131 for (band = 0; band < (64); band++) {
132 hDrcData->prevFact_mag[band] = FL2FXCONST_DBL(0.5f);
133 }
134
135 for (band = 0; band < SBRDEC_MAX_DRC_BANDS; band++) {
136 hDrcData->currFact_mag[band] = FL2FXCONST_DBL(0.5f);
137 hDrcData->nextFact_mag[band] = FL2FXCONST_DBL(0.5f);
138 }
139
140 hDrcData->prevFact_exp = 1;
141 hDrcData->currFact_exp = 1;
142 hDrcData->nextFact_exp = 1;
143
144 hDrcData->numBandsCurr = 1;
145 hDrcData->numBandsNext = 1;
146
147 hDrcData->winSequenceCurr = 0;
148 hDrcData->winSequenceNext = 0;
149
150 hDrcData->drcInterpolationSchemeCurr = 0;
151 hDrcData->drcInterpolationSchemeNext = 0;
152
153 hDrcData->enable = 0;
154 }
155
156 /*!
157 \brief Swap DRC QMF scaling factors after they have been applied.
158
159 \hDrcData Handle to DRC channel data.
160
161 \return none
162 */
sbrDecoder_drcUpdateChannel(HANDLE_SBR_DRC_CHANNEL hDrcData)163 void sbrDecoder_drcUpdateChannel(HANDLE_SBR_DRC_CHANNEL hDrcData) {
164 if (hDrcData == NULL) {
165 return;
166 }
167 if (hDrcData->enable != 1) {
168 return;
169 }
170
171 /* swap previous data */
172 FDKmemcpy(hDrcData->currFact_mag, hDrcData->nextFact_mag,
173 SBRDEC_MAX_DRC_BANDS * sizeof(FIXP_DBL));
174
175 hDrcData->currFact_exp = hDrcData->nextFact_exp;
176
177 hDrcData->numBandsCurr = hDrcData->numBandsNext;
178
179 FDKmemcpy(hDrcData->bandTopCurr, hDrcData->bandTopNext,
180 SBRDEC_MAX_DRC_BANDS * sizeof(USHORT));
181
182 hDrcData->drcInterpolationSchemeCurr = hDrcData->drcInterpolationSchemeNext;
183
184 hDrcData->winSequenceCurr = hDrcData->winSequenceNext;
185 }
186
187 /*!
188 \brief Apply DRC factors slot based.
189
190 \hDrcData Handle to DRC channel data.
191 \qmfRealSlot Pointer to real valued QMF data of one time slot.
192 \qmfImagSlot Pointer to the imaginary QMF data of one time slot.
193 \col Number of the time slot.
194 \numQmfSubSamples Total number of time slots for one frame.
195 \scaleFactor Pointer to the out scale factor of the time slot.
196
197 \return None.
198 */
sbrDecoder_drcApplySlot(HANDLE_SBR_DRC_CHANNEL hDrcData,FIXP_DBL * qmfRealSlot,FIXP_DBL * qmfImagSlot,int col,int numQmfSubSamples,int maxShift)199 void sbrDecoder_drcApplySlot(HANDLE_SBR_DRC_CHANNEL hDrcData,
200 FIXP_DBL *qmfRealSlot, FIXP_DBL *qmfImagSlot,
201 int col, int numQmfSubSamples, int maxShift) {
202 const UCHAR *winBorderToColMap;
203
204 int band, bottomMdct, topMdct, bin, useLP;
205 int indx = numQmfSubSamples - (numQmfSubSamples >> 1) - 10; /* l_border */
206 int frameLenFlag = (numQmfSubSamples == 30) ? 1 : 0;
207 int frameSize = (frameLenFlag == 1) ? 960 : 1024;
208
209 const FIXP_DBL *fact_mag = NULL;
210 INT fact_exp = 0;
211 UINT numBands = 0;
212 USHORT *bandTop = NULL;
213 int shortDrc = 0;
214
215 FIXP_DBL alphaValue = FL2FXCONST_DBL(0.0f);
216
217 if (hDrcData == NULL) {
218 return;
219 }
220 if (hDrcData->enable != 1) {
221 return;
222 }
223
224 winBorderToColMap = winBorderToColMappingTab[frameLenFlag];
225
226 useLP = (qmfImagSlot == NULL) ? 1 : 0;
227
228 col += indx;
229 bottomMdct = 0;
230
231 /* get respective data and calc interpolation factor */
232 if (col < (numQmfSubSamples >> 1)) { /* first half of current frame */
233 if (hDrcData->winSequenceCurr != 2) { /* long window */
234 int j = col + (numQmfSubSamples >> 1);
235
236 if (j < winBorderToColMap[15]) {
237 if (hDrcData->drcInterpolationSchemeCurr == 0) {
238 INT k = (frameLenFlag) ? 0x4444445 : 0x4000000;
239
240 alphaValue = (FIXP_DBL)(j * k);
241 } else {
242 if (j >=
243 (int)winBorderToColMap[hDrcData->drcInterpolationSchemeCurr]) {
244 alphaValue = (FIXP_DBL)MAXVAL_DBL;
245 }
246 }
247 } else {
248 alphaValue = (FIXP_DBL)MAXVAL_DBL;
249 }
250 } else { /* short windows */
251 shortDrc = 1;
252 }
253
254 fact_mag = hDrcData->currFact_mag;
255 fact_exp = hDrcData->currFact_exp;
256 numBands = hDrcData->numBandsCurr;
257 bandTop = hDrcData->bandTopCurr;
258 } else if (col < numQmfSubSamples) { /* second half of current frame */
259 if (hDrcData->winSequenceNext != 2) { /* next: long window */
260 int j = col - (numQmfSubSamples >> 1);
261
262 if (j < winBorderToColMap[15]) {
263 if (hDrcData->drcInterpolationSchemeNext == 0) {
264 INT k = (frameLenFlag) ? 0x4444445 : 0x4000000;
265
266 alphaValue = (FIXP_DBL)(j * k);
267 } else {
268 if (j >=
269 (int)winBorderToColMap[hDrcData->drcInterpolationSchemeNext]) {
270 alphaValue = (FIXP_DBL)MAXVAL_DBL;
271 }
272 }
273 } else {
274 alphaValue = (FIXP_DBL)MAXVAL_DBL;
275 }
276
277 fact_mag = hDrcData->nextFact_mag;
278 fact_exp = hDrcData->nextFact_exp;
279 numBands = hDrcData->numBandsNext;
280 bandTop = hDrcData->bandTopNext;
281 } else { /* next: short windows */
282 if (hDrcData->winSequenceCurr != 2) { /* current: long window */
283 alphaValue = (FIXP_DBL)0;
284
285 fact_mag = hDrcData->nextFact_mag;
286 fact_exp = hDrcData->nextFact_exp;
287 numBands = hDrcData->numBandsNext;
288 bandTop = hDrcData->bandTopNext;
289 } else { /* current: short windows */
290 shortDrc = 1;
291
292 fact_mag = hDrcData->currFact_mag;
293 fact_exp = hDrcData->currFact_exp;
294 numBands = hDrcData->numBandsCurr;
295 bandTop = hDrcData->bandTopCurr;
296 }
297 }
298 } else { /* first half of next frame */
299 if (hDrcData->winSequenceNext != 2) { /* long window */
300 int j = col - (numQmfSubSamples >> 1);
301
302 if (j < winBorderToColMap[15]) {
303 if (hDrcData->drcInterpolationSchemeNext == 0) {
304 INT k = (frameLenFlag) ? 0x4444445 : 0x4000000;
305
306 alphaValue = (FIXP_DBL)(j * k);
307 } else {
308 if (j >=
309 (int)winBorderToColMap[hDrcData->drcInterpolationSchemeNext]) {
310 alphaValue = (FIXP_DBL)MAXVAL_DBL;
311 }
312 }
313 } else {
314 alphaValue = (FIXP_DBL)MAXVAL_DBL;
315 }
316 } else { /* short windows */
317 shortDrc = 1;
318 }
319
320 fact_mag = hDrcData->nextFact_mag;
321 fact_exp = hDrcData->nextFact_exp;
322 numBands = hDrcData->numBandsNext;
323 bandTop = hDrcData->bandTopNext;
324
325 col -= numQmfSubSamples;
326 }
327
328 /* process bands */
329 for (band = 0; band < (int)numBands; band++) {
330 int bottomQmf, topQmf;
331
332 FIXP_DBL drcFact_mag = (FIXP_DBL)MAXVAL_DBL;
333
334 topMdct = (bandTop[band] + 1) << 2;
335
336 if (!shortDrc) { /* long window */
337 if (frameLenFlag) {
338 /* 960 framing */
339 bottomQmf = fMultIfloor((FIXP_DBL)0x4444445, bottomMdct);
340 topQmf = fMultIfloor((FIXP_DBL)0x4444445, topMdct);
341
342 topMdct = 30 * topQmf;
343 } else {
344 /* 1024 framing */
345 topMdct &= ~0x1f;
346
347 bottomQmf = bottomMdct >> 5;
348 topQmf = topMdct >> 5;
349 }
350
351 if (band == ((int)numBands - 1)) {
352 topQmf = (64);
353 }
354
355 for (bin = bottomQmf; bin < topQmf; bin++) {
356 FIXP_DBL drcFact1_mag = hDrcData->prevFact_mag[bin];
357 FIXP_DBL drcFact2_mag = fact_mag[band];
358
359 /* normalize scale factors */
360 if (hDrcData->prevFact_exp < maxShift) {
361 drcFact1_mag >>= maxShift - hDrcData->prevFact_exp;
362 }
363 if (fact_exp < maxShift) {
364 drcFact2_mag >>= maxShift - fact_exp;
365 }
366
367 /* interpolate */
368 if (alphaValue == (FIXP_DBL)0) {
369 drcFact_mag = drcFact1_mag;
370 } else if (alphaValue == (FIXP_DBL)MAXVAL_DBL) {
371 drcFact_mag = drcFact2_mag;
372 } else {
373 drcFact_mag =
374 fMult(alphaValue, drcFact2_mag) +
375 fMult(((FIXP_DBL)MAXVAL_DBL - alphaValue), drcFact1_mag);
376 }
377
378 /* apply scaling */
379 qmfRealSlot[bin] = fMult(qmfRealSlot[bin], drcFact_mag);
380 if (!useLP) {
381 qmfImagSlot[bin] = fMult(qmfImagSlot[bin], drcFact_mag);
382 }
383
384 /* save previous factors */
385 if (col == (numQmfSubSamples >> 1) - 1) {
386 hDrcData->prevFact_mag[bin] = fact_mag[band];
387 }
388 }
389 } else { /* short windows */
390 unsigned startWinIdx, stopWinIdx;
391 int startCol, stopCol;
392 FIXP_DBL invFrameSizeDiv8 =
393 (frameLenFlag) ? (FIXP_DBL)0x1111112 : (FIXP_DBL)0x1000000;
394
395 /* limit top at the frame borders */
396 if (topMdct < 0) {
397 topMdct = 0;
398 }
399 if (topMdct >= frameSize) {
400 topMdct = frameSize - 1;
401 }
402
403 if (frameLenFlag) {
404 /* 960 framing */
405 topMdct = fMultIfloor((FIXP_DBL)0x78000000,
406 fMultIfloor((FIXP_DBL)0x22222223, topMdct) << 2);
407
408 startWinIdx = fMultIfloor(invFrameSizeDiv8, bottomMdct) +
409 1; /* winBorderToColMap table has offset of 1 */
410 stopWinIdx = fMultIceil(invFrameSizeDiv8 - (FIXP_DBL)1, topMdct) + 1;
411 } else {
412 /* 1024 framing */
413 topMdct &= ~0x03;
414
415 startWinIdx = fMultIfloor(invFrameSizeDiv8, bottomMdct) + 1;
416 stopWinIdx = fMultIceil(invFrameSizeDiv8, topMdct) + 1;
417 }
418
419 /* startCol is truncated to the nearest corresponding start subsample in
420 the QMF of the short window bottom is present in:*/
421 startCol = (int)winBorderToColMap[startWinIdx];
422
423 /* stopCol is rounded upwards to the nearest corresponding stop subsample
424 in the QMF of the short window top is present in. */
425 stopCol = (int)winBorderToColMap[stopWinIdx];
426
427 bottomQmf = fMultIfloor(invFrameSizeDiv8,
428 ((bottomMdct % (numQmfSubSamples << 2)) << 5));
429 topQmf = fMultIfloor(invFrameSizeDiv8,
430 ((topMdct % (numQmfSubSamples << 2)) << 5));
431
432 /* extend last band */
433 if (band == ((int)numBands - 1)) {
434 topQmf = (64);
435 stopCol = numQmfSubSamples;
436 stopWinIdx = 10;
437 }
438
439 if (topQmf == 0) {
440 if (frameLenFlag) {
441 FIXP_DBL rem = fMult(invFrameSizeDiv8,
442 (FIXP_DBL)(topMdct << (DFRACT_BITS - 12)));
443 if ((LONG)rem & (LONG)0x1F) {
444 stopWinIdx -= 1;
445 stopCol = (int)winBorderToColMap[stopWinIdx];
446 }
447 }
448 topQmf = (64);
449 }
450
451 /* save previous factors */
452 if (stopCol == numQmfSubSamples) {
453 int tmpBottom = bottomQmf;
454
455 if ((int)winBorderToColMap[8] > startCol) {
456 tmpBottom = 0; /* band starts in previous short window */
457 }
458
459 for (bin = tmpBottom; bin < topQmf; bin++) {
460 hDrcData->prevFact_mag[bin] = fact_mag[band];
461 }
462 }
463
464 /* apply */
465 if ((col >= startCol) && (col < stopCol)) {
466 if (col >= (int)winBorderToColMap[startWinIdx + 1]) {
467 bottomQmf = 0; /* band starts in previous short window */
468 }
469 if (col < (int)winBorderToColMap[stopWinIdx - 1]) {
470 topQmf = (64); /* band ends in next short window */
471 }
472
473 drcFact_mag = fact_mag[band];
474
475 /* normalize scale factor */
476 if (fact_exp < maxShift) {
477 drcFact_mag >>= maxShift - fact_exp;
478 }
479
480 /* apply scaling */
481 for (bin = bottomQmf; bin < topQmf; bin++) {
482 qmfRealSlot[bin] = fMult(qmfRealSlot[bin], drcFact_mag);
483 if (!useLP) {
484 qmfImagSlot[bin] = fMult(qmfImagSlot[bin], drcFact_mag);
485 }
486 }
487 }
488 }
489
490 bottomMdct = topMdct;
491 } /* end of bands loop */
492
493 if (col == (numQmfSubSamples >> 1) - 1) {
494 hDrcData->prevFact_exp = fact_exp;
495 }
496 }
497
498 /*!
499 \brief Apply DRC factors frame based.
500
501 \hDrcData Handle to DRC channel data.
502 \qmfRealSlot Pointer to real valued QMF data of the whole frame.
503 \qmfImagSlot Pointer to the imaginary QMF data of the whole frame.
504 \numQmfSubSamples Total number of time slots for one frame.
505 \scaleFactor Pointer to the out scale factor of the frame.
506
507 \return None.
508 */
sbrDecoder_drcApply(HANDLE_SBR_DRC_CHANNEL hDrcData,FIXP_DBL ** QmfBufferReal,FIXP_DBL ** QmfBufferImag,int numQmfSubSamples,int * scaleFactor)509 void sbrDecoder_drcApply(HANDLE_SBR_DRC_CHANNEL hDrcData,
510 FIXP_DBL **QmfBufferReal, FIXP_DBL **QmfBufferImag,
511 int numQmfSubSamples, int *scaleFactor) {
512 int col;
513 int maxShift = 0;
514
515 if (hDrcData == NULL) {
516 return;
517 }
518 if (hDrcData->enable == 0) {
519 return; /* Avoid changing the scaleFactor even though the processing is
520 disabled. */
521 }
522
523 /* get max scale factor */
524 if (hDrcData->prevFact_exp > maxShift) {
525 maxShift = hDrcData->prevFact_exp;
526 }
527 if (hDrcData->currFact_exp > maxShift) {
528 maxShift = hDrcData->currFact_exp;
529 }
530 if (hDrcData->nextFact_exp > maxShift) {
531 maxShift = hDrcData->nextFact_exp;
532 }
533
534 for (col = 0; col < numQmfSubSamples; col++) {
535 FIXP_DBL *qmfSlotReal = QmfBufferReal[col];
536 FIXP_DBL *qmfSlotImag = (QmfBufferImag == NULL) ? NULL : QmfBufferImag[col];
537
538 sbrDecoder_drcApplySlot(hDrcData, qmfSlotReal, qmfSlotImag, col,
539 numQmfSubSamples, maxShift);
540 }
541
542 *scaleFactor += maxShift;
543 }
544