• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-----------------------------------------------------------------------------
2  * MurmurHash3 was written by Austin Appleby, and is placed in the public
3  * domain.
4  *
5  * This implementation was written by Shane Day, and is also public domain.
6  *
7  * This is a portable ANSI C implementation of MurmurHash3_x86_32 (Murmur3A)
8  * with support for progressive processing.
9  */
10 
11 /*-----------------------------------------------------------------------------
12 
13 If you want to understand the MurmurHash algorithm you would be much better
14 off reading the original source. Just point your browser at:
15 http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
16 
17 
18 What this version provides?
19 
20 1. Progressive data feeding. Useful when the entire payload to be hashed
21 does not fit in memory or when the data is streamed through the application.
22 Also useful when hashing a number of strings with a common prefix. A partial
23 hash of a prefix string can be generated and reused for each suffix string.
24 
25 2. Portability. Plain old C so that it should compile on any old compiler.
26 Both CPU endian and access-alignment neutral, but avoiding inefficient code
27 when possible depending on CPU capabilities.
28 
29 3. Drop in. I personally like nice self contained public domain code, making it
30 easy to pilfer without loads of refactoring to work properly in the existing
31 application code & makefile structure and mucking around with licence files.
32 Just copy PMurHash.h and PMurHash.c and you're ready to go.
33 
34 
35 How does it work?
36 
37 We can only process entire 32 bit chunks of input, except for the very end
38 that may be shorter. So along with the partial hash we need to give back to
39 the caller a carry containing up to 3 bytes that we were unable to process.
40 This carry also needs to record the number of bytes the carry holds. I use
41 the low 2 bits as a count (0..3) and the carry bytes are shifted into the
42 high byte in stream order.
43 
44 To handle endianess I simply use a macro that reads a uint32_t and define
45 that macro to be a direct read on little endian machines, a read and swap
46 on big endian machines, or a byte-by-byte read if the endianess is unknown.
47 
48 -----------------------------------------------------------------------------*/
49 
50 #include "PMurHash.h"
51 #include <stdint.h>
52 
53 /* I used ugly type names in the header to avoid potential conflicts with
54  * application or system typedefs & defines. Since I'm not including any more
55  * headers below here I can rename these so that the code reads like C99 */
56 #undef uint32_t
57 #define uint32_t MH_UINT32
58 #undef uint8_t
59 #define uint8_t MH_UINT8
60 
61 /* MSVC warnings we choose to ignore */
62 #if defined(_MSC_VER)
63 #    pragma warning(disable : 4127) /* conditional expression is constant */
64 #endif
65 
66 /*-----------------------------------------------------------------------------
67  * Endianess, misalignment capabilities and util macros
68  *
69  * The following 3 macros are defined in this section. The other macros defined
70  * are only needed to help derive these 3.
71  *
72  * READ_UINT32(x)   Read a little endian unsigned 32-bit int
73  * UNALIGNED_SAFE   Defined if READ_UINT32 works on non-word boundaries
74  * ROTL32(x,r)      Rotate x left by r bits
75  */
76 
77 /* Convention is to define __BYTE_ORDER == to one of these values */
78 #if !defined(__BIG_ENDIAN)
79 #    define __BIG_ENDIAN 4321
80 #endif
81 #if !defined(__LITTLE_ENDIAN)
82 #    define __LITTLE_ENDIAN 1234
83 #endif
84 
85 /* I386 */
86 #if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(i386)
87 #    define __BYTE_ORDER __LITTLE_ENDIAN
88 #    define UNALIGNED_SAFE
89 #endif
90 
91 /* gcc 'may' define __LITTLE_ENDIAN__ or __BIG_ENDIAN__ to 1 (Note the trailing __),
92  * or even _LITTLE_ENDIAN or _BIG_ENDIAN (Note the single _ prefix) */
93 #if !defined(__BYTE_ORDER)
94 #    if defined(__LITTLE_ENDIAN__) && __LITTLE_ENDIAN__ == 1 || \
95         defined(_LITTLE_ENDIAN) && _LITTLE_ENDIAN == 1
96 #        define __BYTE_ORDER __LITTLE_ENDIAN
97 #    elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__ == 1 || defined(_BIG_ENDIAN) && _BIG_ENDIAN == 1
98 #        define __BYTE_ORDER __BIG_ENDIAN
99 #    endif
100 #endif
101 
102 /* gcc (usually) defines xEL/EB macros for ARM and MIPS endianess */
103 #if !defined(__BYTE_ORDER)
104 #    if defined(__ARMEL__) || defined(__MIPSEL__)
105 #        define __BYTE_ORDER __LITTLE_ENDIAN
106 #    endif
107 #    if defined(__ARMEB__) || defined(__MIPSEB__)
108 #        define __BYTE_ORDER __BIG_ENDIAN
109 #    endif
110 #endif
111 
112 /* Now find best way we can to READ_UINT32 */
113 #if __BYTE_ORDER == __LITTLE_ENDIAN
114 /* CPU endian matches murmurhash algorithm, so read 32-bit word directly */
115 #    define READ_UINT32(ptr) (*((uint32_t *)(ptr)))
116 #elif __BYTE_ORDER == __BIG_ENDIAN
117 /* TODO: Add additional cases below where a compiler provided bswap32 is available */
118 #    if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
119 #        define READ_UINT32(ptr) (__builtin_bswap32(*((uint32_t *)(ptr))))
120 #    else
121 /* Without a known fast bswap32 we're just as well off doing this */
122 #        define READ_UINT32(ptr) (ptr[0] | ptr[1] << 8 | ptr[2] << 16 | ptr[3] << 24)
123 #        define UNALIGNED_SAFE
124 #    endif
125 #else
126 /* Unknown endianess so last resort is to read individual bytes */
127 #    define READ_UINT32(ptr) (ptr[0] | ptr[1] << 8 | ptr[2] << 16 | ptr[3] << 24)
128 
129 /* Since we're not doing word-reads we can skip the messing about with realignment */
130 #    define UNALIGNED_SAFE
131 #endif
132 
133 /* Find best way to ROTL32 */
134 #if defined(_MSC_VER)
135 #    include <stdlib.h> /* Microsoft put _rotl declaration in here */
136 #    define ROTL32(x, r) _rotl(x, r)
137 #else
138 /* gcc recognises this code and generates a rotate instruction for CPUs with one */
139 #    define ROTL32(x, r) (((uint32_t)x << r) | ((uint32_t)x >> (32 - r)))
140 #endif
141 
142 /*-----------------------------------------------------------------------------
143  * Core murmurhash algorithm macros */
144 
145 #define C1 (0xcc9e2d51)
146 #define C2 (0x1b873593)
147 
148 /* This is the main processing body of the algorithm. It operates
149  * on each full 32-bits of input. */
150 #define DOBLOCK(h1, k1)           \
151     do                            \
152     {                             \
153         k1 *= C1;                 \
154         k1 = ROTL32(k1, 15);      \
155         k1 *= C2;                 \
156                                   \
157         h1 ^= k1;                 \
158         h1 = ROTL32(h1, 13);      \
159         h1 = h1 * 5 + 0xe6546b64; \
160     } while (0)
161 
162 /* Append unaligned bytes to carry, forcing hash churn if we have 4 bytes */
163 /* cnt=bytes to process, h1=name of h1 var, c=carry, n=bytes in c, ptr/len=payload */
164 #define DOBYTES(cnt, h1, c, n, ptr, len) \
165     do                                   \
166     {                                    \
167         int _i = cnt;                    \
168         while (_i--)                     \
169         {                                \
170             c = c >> 8 | *ptr++ << 24;   \
171             n++;                         \
172             len--;                       \
173             if (n == 4)                  \
174             {                            \
175                 DOBLOCK(h1, c);          \
176                 n = 0;                   \
177             }                            \
178         }                                \
179     } while (0)
180 
181 /*---------------------------------------------------------------------------*/
182 
183 namespace angle
184 {
185 /* Main hashing function. Initialise carry to 0 and h1 to 0 or an initial seed
186  * if wanted. Both ph1 and pcarry are required arguments. */
PMurHash32_Process(uint32_t * ph1,uint32_t * pcarry,const void * key,int len)187 void PMurHash32_Process(uint32_t *ph1, uint32_t *pcarry, const void *key, int len)
188 {
189     uint32_t h1 = *ph1;
190     uint32_t c  = *pcarry;
191 
192     const uint8_t *ptr = (uint8_t *)key;
193     const uint8_t *end;
194 
195     /* Extract carry count from low 2 bits of c value */
196     int n = c & 3;
197 
198 #if defined(UNALIGNED_SAFE)
199     /* This CPU handles unaligned word access */
200 
201     /* Consume any carry bytes */
202     int i = (4 - n) & 3;
203     if (i && i <= len)
204     {
205         DOBYTES(i, h1, c, n, ptr, len);
206     }
207 
208     /* Process 32-bit chunks */
209     end = ptr + len / 4 * 4;
210     for (; ptr < end; ptr += 4)
211     {
212         uint32_t k1 = READ_UINT32(ptr);
213         DOBLOCK(h1, k1);
214     }
215 
216 #else  /*UNALIGNED_SAFE*/
217     /* This CPU does not handle unaligned word access */
218 
219     /* Consume enough so that the next data byte is word aligned */
220     int i = -(intptr_t)ptr & 3;
221     if (i && i <= len)
222     {
223         DOBYTES(i, h1, c, n, ptr, len);
224     }
225 
226     /* We're now aligned. Process in aligned blocks. Specialise for each possible carry count */
227     end = ptr + len / 4 * 4;
228     switch (n)
229     {           /* how many bytes in c */
230         case 0: /* c=[----]  w=[3210]  b=[3210]=w            c'=[----] */
231             for (; ptr < end; ptr += 4)
232             {
233                 uint32_t k1 = READ_UINT32(ptr);
234                 DOBLOCK(h1, k1);
235             }
236             break;
237         case 1: /* c=[0---]  w=[4321]  b=[3210]=c>>24|w<<8   c'=[4---] */
238             for (; ptr < end; ptr += 4)
239             {
240                 uint32_t k1 = c >> 24;
241                 c           = READ_UINT32(ptr);
242                 k1 |= c << 8;
243                 DOBLOCK(h1, k1);
244             }
245             break;
246         case 2: /* c=[10--]  w=[5432]  b=[3210]=c>>16|w<<16  c'=[54--] */
247             for (; ptr < end; ptr += 4)
248             {
249                 uint32_t k1 = c >> 16;
250                 c           = READ_UINT32(ptr);
251                 k1 |= c << 16;
252                 DOBLOCK(h1, k1);
253             }
254             break;
255         case 3: /* c=[210-]  w=[6543]  b=[3210]=c>>8|w<<24   c'=[654-] */
256             for (; ptr < end; ptr += 4)
257             {
258                 uint32_t k1 = c >> 8;
259                 c           = READ_UINT32(ptr);
260                 k1 |= c << 24;
261                 DOBLOCK(h1, k1);
262             }
263     }
264 #endif /*UNALIGNED_SAFE*/
265 
266     /* Advance over whole 32-bit chunks, possibly leaving 1..3 bytes */
267     len -= len / 4 * 4;
268 
269     /* Append any remaining bytes into carry */
270     DOBYTES(len, h1, c, n, ptr, len);
271 
272     /* Copy out new running hash and carry */
273     *ph1    = h1;
274     *pcarry = (c & ~0xff) | n;
275 }
276 
277 /*---------------------------------------------------------------------------*/
278 
279 /* Finalize a hash. To match the original Murmur3A the total_length must be provided */
PMurHash32_Result(uint32_t h,uint32_t carry,uint32_t total_length)280 uint32_t PMurHash32_Result(uint32_t h, uint32_t carry, uint32_t total_length)
281 {
282     uint32_t k1;
283     int n = carry & 3;
284     if (n)
285     {
286         k1 = carry >> (4 - n) * 8;
287         k1 *= C1;
288         k1 = ROTL32(k1, 15);
289         k1 *= C2;
290         h ^= k1;
291     }
292     h ^= total_length;
293 
294     /* fmix */
295     h ^= h >> 16;
296     h *= 0x85ebca6b;
297     h ^= h >> 13;
298     h *= 0xc2b2ae35;
299     h ^= h >> 16;
300 
301     return h;
302 }
303 
304 /*---------------------------------------------------------------------------*/
305 
306 /* Murmur3A compatable all-at-once */
PMurHash32(uint32_t seed,const void * key,int len)307 uint32_t PMurHash32(uint32_t seed, const void *key, int len)
308 {
309     uint32_t h1 = seed, carry = 0;
310     PMurHash32_Process(&h1, &carry, key, len);
311     return PMurHash32_Result(h1, carry, len);
312 }
313 
314 /*---------------------------------------------------------------------------*/
315 
316 /* Provide an API suitable for smhasher */
PMurHash32_test(const void * key,int len,uint32_t seed,void * out)317 void PMurHash32_test(const void *key, int len, uint32_t seed, void *out)
318 {
319     uint32_t h1 = seed, carry = 0;
320     const uint8_t *ptr = (uint8_t *)key;
321     const uint8_t *end = ptr + len;
322 
323 #if 0 /* Exercise the progressive processing */
324   while(ptr < end) {
325     //const uint8_t *mid = ptr + rand()%(end-ptr)+1;
326     const uint8_t *mid = ptr + (rand()&0xF);
327     mid = mid<end?mid:end;
328     PMurHash32_Process(&h1, &carry, ptr, mid-ptr);
329     ptr = mid;
330   }
331 #else
332     PMurHash32_Process(&h1, &carry, ptr, (int)(end - ptr));
333 #endif
334     h1               = PMurHash32_Result(h1, carry, len);
335     *(uint32_t *)out = h1;
336 }
337 }  // namespace angle
338 
339 /*---------------------------------------------------------------------------*/
340