1 /*
2 * *****************************************************************************
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2018-2021 Gavin D. Howard and contributors.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * * Redistributions of source code must retain the above copyright notice, this
12 * list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above copyright notice,
15 * this list of conditions and the following disclaimer in the documentation
16 * and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 *
30 * *****************************************************************************
31 *
32 * Code for the number type.
33 *
34 */
35
36 #include <assert.h>
37 #include <ctype.h>
38 #include <stdbool.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <setjmp.h>
42 #include <limits.h>
43
44 #include <num.h>
45 #include <rand.h>
46 #include <vm.h>
47
48 static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale);
49
bc_num_neg(size_t n,bool neg)50 static inline ssize_t bc_num_neg(size_t n, bool neg) {
51 return (((ssize_t) n) ^ -((ssize_t) neg)) + neg;
52 }
53
bc_num_cmpZero(const BcNum * n)54 ssize_t bc_num_cmpZero(const BcNum *n) {
55 return bc_num_neg((n)->len != 0, BC_NUM_NEG(n));
56 }
57
bc_num_int(const BcNum * n)58 static inline size_t bc_num_int(const BcNum *n) {
59 return n->len ? n->len - BC_NUM_RDX_VAL(n) : 0;
60 }
61
bc_num_expand(BcNum * restrict n,size_t req)62 static void bc_num_expand(BcNum *restrict n, size_t req) {
63
64 assert(n != NULL);
65
66 req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
67
68 if (req > n->cap) {
69
70 BC_SIG_LOCK;
71
72 n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req));
73 n->cap = req;
74
75 BC_SIG_UNLOCK;
76 }
77 }
78
bc_num_setToZero(BcNum * restrict n,size_t scale)79 static void bc_num_setToZero(BcNum *restrict n, size_t scale) {
80 assert(n != NULL);
81 n->scale = scale;
82 n->len = n->rdx = 0;
83 }
84
bc_num_zero(BcNum * restrict n)85 void bc_num_zero(BcNum *restrict n) {
86 bc_num_setToZero(n, 0);
87 }
88
bc_num_one(BcNum * restrict n)89 void bc_num_one(BcNum *restrict n) {
90 bc_num_zero(n);
91 n->len = 1;
92 n->num[0] = 1;
93 }
94
bc_num_clean(BcNum * restrict n)95 static void bc_num_clean(BcNum *restrict n) {
96
97 while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) n->len -= 1;
98
99 if (BC_NUM_ZERO(n)) n->rdx = 0;
100 else {
101 size_t rdx = BC_NUM_RDX_VAL(n);
102 if (n->len < rdx) n->len = rdx;
103 }
104 }
105
bc_num_log10(size_t i)106 static size_t bc_num_log10(size_t i) {
107 size_t len;
108 for (len = 1; i; i /= BC_BASE, ++len);
109 assert(len - 1 <= BC_BASE_DIGS + 1);
110 return len - 1;
111 }
112
bc_num_zeroDigits(const BcDig * n)113 static inline size_t bc_num_zeroDigits(const BcDig *n) {
114 assert(*n >= 0);
115 assert(((size_t) *n) < BC_BASE_POW);
116 return BC_BASE_DIGS - bc_num_log10((size_t) *n);
117 }
118
bc_num_intDigits(const BcNum * n)119 static size_t bc_num_intDigits(const BcNum *n) {
120 size_t digits = bc_num_int(n) * BC_BASE_DIGS;
121 if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1);
122 return digits;
123 }
124
bc_num_nonzeroLen(const BcNum * restrict n)125 static size_t bc_num_nonzeroLen(const BcNum *restrict n) {
126 size_t i, len = n->len;
127 assert(len == BC_NUM_RDX_VAL(n));
128 for (i = len - 1; i < len && !n->num[i]; --i);
129 assert(i + 1 > 0);
130 return i + 1;
131 }
132
bc_num_addDigits(BcDig a,BcDig b,bool * carry)133 static BcDig bc_num_addDigits(BcDig a, BcDig b, bool *carry) {
134
135 assert(((BcBigDig) BC_BASE_POW) * 2 == ((BcDig) BC_BASE_POW) * 2);
136 assert(a < BC_BASE_POW);
137 assert(b < BC_BASE_POW);
138
139 a += b + *carry;
140 *carry = (a >= BC_BASE_POW);
141 if (*carry) a -= BC_BASE_POW;
142
143 assert(a >= 0);
144 assert(a < BC_BASE_POW);
145
146 return a;
147 }
148
bc_num_subDigits(BcDig a,BcDig b,bool * carry)149 static BcDig bc_num_subDigits(BcDig a, BcDig b, bool *carry) {
150
151 assert(a < BC_BASE_POW);
152 assert(b < BC_BASE_POW);
153
154 b += *carry;
155 *carry = (a < b);
156 if (*carry) a += BC_BASE_POW;
157
158 assert(a - b >= 0);
159 assert(a - b < BC_BASE_POW);
160
161 return a - b;
162 }
163
bc_num_addArrays(BcDig * restrict a,const BcDig * restrict b,size_t len)164 static void bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b,
165 size_t len)
166 {
167 size_t i;
168 bool carry = false;
169
170 for (i = 0; i < len; ++i) a[i] = bc_num_addDigits(a[i], b[i], &carry);
171
172 for (; carry; ++i) a[i] = bc_num_addDigits(a[i], 0, &carry);
173 }
174
bc_num_subArrays(BcDig * restrict a,const BcDig * restrict b,size_t len)175 static void bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b,
176 size_t len)
177 {
178 size_t i;
179 bool carry = false;
180
181 for (i = 0; i < len; ++i) a[i] = bc_num_subDigits(a[i], b[i], &carry);
182
183 for (; carry; ++i) a[i] = bc_num_subDigits(a[i], 0, &carry);
184 }
185
bc_num_mulArray(const BcNum * restrict a,BcBigDig b,BcNum * restrict c)186 static void bc_num_mulArray(const BcNum *restrict a, BcBigDig b,
187 BcNum *restrict c)
188 {
189 size_t i;
190 BcBigDig carry = 0;
191
192 assert(b <= BC_BASE_POW);
193
194 if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1);
195
196 memset(c->num, 0, BC_NUM_SIZE(c->cap));
197
198 for (i = 0; i < a->len; ++i) {
199 BcBigDig in = ((BcBigDig) a->num[i]) * b + carry;
200 c->num[i] = in % BC_BASE_POW;
201 carry = in / BC_BASE_POW;
202 }
203
204 assert(carry < BC_BASE_POW);
205 c->num[i] = (BcDig) carry;
206 c->len = a->len;
207 c->len += (carry != 0);
208
209 bc_num_clean(c);
210
211 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
212 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
213 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
214 }
215
bc_num_divArray(const BcNum * restrict a,BcBigDig b,BcNum * restrict c,BcBigDig * rem)216 static void bc_num_divArray(const BcNum *restrict a, BcBigDig b,
217 BcNum *restrict c, BcBigDig *rem)
218 {
219 size_t i;
220 BcBigDig carry = 0;
221
222 assert(c->cap >= a->len);
223
224 for (i = a->len - 1; i < a->len; --i) {
225 BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW;
226 assert(in / b < BC_BASE_POW);
227 c->num[i] = (BcDig) (in / b);
228 carry = in % b;
229 }
230
231 c->len = a->len;
232 bc_num_clean(c);
233 *rem = carry;
234
235 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
236 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
237 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
238 }
239
bc_num_compare(const BcDig * restrict a,const BcDig * restrict b,size_t len)240 static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b,
241 size_t len)
242 {
243 size_t i;
244 BcDig c = 0;
245 for (i = len - 1; i < len && !(c = a[i] - b[i]); --i);
246 return bc_num_neg(i + 1, c < 0);
247 }
248
bc_num_cmp(const BcNum * a,const BcNum * b)249 ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) {
250
251 size_t i, min, a_int, b_int, diff, ardx, brdx;
252 BcDig *max_num, *min_num;
253 bool a_max, neg = false;
254 ssize_t cmp;
255
256 assert(a != NULL && b != NULL);
257
258 if (a == b) return 0;
259 if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !BC_NUM_NEG(b));
260 if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a);
261 if (BC_NUM_NEG(a)) {
262 if (BC_NUM_NEG(b)) neg = true;
263 else return -1;
264 }
265 else if (BC_NUM_NEG(b)) return 1;
266
267 a_int = bc_num_int(a);
268 b_int = bc_num_int(b);
269 a_int -= b_int;
270
271 if (a_int) return neg ? -((ssize_t) a_int) : (ssize_t) a_int;
272
273 ardx = BC_NUM_RDX_VAL(a);
274 brdx = BC_NUM_RDX_VAL(b);
275 a_max = (ardx > brdx);
276
277 if (a_max) {
278 min = brdx;
279 diff = ardx - brdx;
280 max_num = a->num + diff;
281 min_num = b->num;
282 }
283 else {
284 min = ardx;
285 diff = brdx - ardx;
286 max_num = b->num + diff;
287 min_num = a->num;
288 }
289
290 cmp = bc_num_compare(max_num, min_num, b_int + min);
291
292 if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg);
293
294 for (max_num -= diff, i = diff - 1; i < diff; --i) {
295 if (max_num[i]) return bc_num_neg(1, !a_max == !neg);
296 }
297
298 return 0;
299 }
300
bc_num_truncate(BcNum * restrict n,size_t places)301 void bc_num_truncate(BcNum *restrict n, size_t places) {
302
303 size_t nrdx, places_rdx;
304
305 if (!places) return;
306
307 nrdx = BC_NUM_RDX_VAL(n);
308 places_rdx = nrdx ? nrdx - BC_NUM_RDX(n->scale - places) : 0;
309 assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len));
310
311 n->scale -= places;
312 BC_NUM_RDX_SET(n, nrdx - places_rdx);
313
314 if (BC_NUM_NONZERO(n)) {
315
316 size_t pow;
317
318 pow = n->scale % BC_BASE_DIGS;
319 pow = pow ? BC_BASE_DIGS - pow : 0;
320 pow = bc_num_pow10[pow];
321
322 n->len -= places_rdx;
323 memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len));
324
325 // Clear the lower part of the last digit.
326 if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow;
327
328 bc_num_clean(n);
329 }
330 }
331
bc_num_extend(BcNum * restrict n,size_t places)332 void bc_num_extend(BcNum *restrict n, size_t places) {
333
334 size_t nrdx, places_rdx;
335
336 if (!places) return;
337 if (BC_NUM_ZERO(n)) {
338 n->scale += places;
339 return;
340 }
341
342 nrdx = BC_NUM_RDX_VAL(n);
343 places_rdx = BC_NUM_RDX(places + n->scale) - nrdx;
344
345 if (places_rdx) {
346 bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
347 memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
348 memset(n->num, 0, BC_NUM_SIZE(places_rdx));
349 }
350
351 BC_NUM_RDX_SET(n, nrdx + places_rdx);
352 n->scale += places;
353 n->len += places_rdx;
354
355 assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale));
356 }
357
bc_num_retireMul(BcNum * restrict n,size_t scale,bool neg1,bool neg2)358 static void bc_num_retireMul(BcNum *restrict n, size_t scale,
359 bool neg1, bool neg2)
360 {
361 if (n->scale < scale) bc_num_extend(n, scale - n->scale);
362 else bc_num_truncate(n, n->scale - scale);
363
364 bc_num_clean(n);
365 if (BC_NUM_NONZERO(n)) n->rdx = BC_NUM_NEG_VAL(n, !neg1 != !neg2);
366 }
367
bc_num_split(const BcNum * restrict n,size_t idx,BcNum * restrict a,BcNum * restrict b)368 static void bc_num_split(const BcNum *restrict n, size_t idx,
369 BcNum *restrict a, BcNum *restrict b)
370 {
371 assert(BC_NUM_ZERO(a));
372 assert(BC_NUM_ZERO(b));
373
374 if (idx < n->len) {
375
376 b->len = n->len - idx;
377 a->len = idx;
378 a->scale = b->scale = 0;
379 BC_NUM_RDX_SET(a, 0);
380 BC_NUM_RDX_SET(b, 0);
381
382 assert(a->cap >= a->len);
383 assert(b->cap >= b->len);
384
385 memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len));
386 memcpy(a->num, n->num, BC_NUM_SIZE(idx));
387
388 bc_num_clean(b);
389 }
390 else bc_num_copy(a, n);
391
392 bc_num_clean(a);
393 }
394
bc_num_shiftZero(BcNum * restrict n)395 static size_t bc_num_shiftZero(BcNum *restrict n) {
396
397 size_t i;
398
399 assert(!BC_NUM_RDX_VAL(n) || BC_NUM_ZERO(n));
400
401 for (i = 0; i < n->len && !n->num[i]; ++i);
402
403 n->len -= i;
404 n->num += i;
405
406 return i;
407 }
408
bc_num_unshiftZero(BcNum * restrict n,size_t places_rdx)409 static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) {
410 n->len += places_rdx;
411 n->num -= places_rdx;
412 }
413
bc_num_shift(BcNum * restrict n,BcBigDig dig)414 static void bc_num_shift(BcNum *restrict n, BcBigDig dig) {
415
416 size_t i, len = n->len;
417 BcBigDig carry = 0, pow;
418 BcDig *ptr = n->num;
419
420 assert(dig < BC_BASE_DIGS);
421
422 pow = bc_num_pow10[dig];
423 dig = bc_num_pow10[BC_BASE_DIGS - dig];
424
425 for (i = len - 1; i < len; --i) {
426 BcBigDig in, temp;
427 in = ((BcBigDig) ptr[i]);
428 temp = carry * dig;
429 carry = in % pow;
430 ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp;
431 }
432
433 assert(!carry);
434 }
435
bc_num_shiftLeft(BcNum * restrict n,size_t places)436 static void bc_num_shiftLeft(BcNum *restrict n, size_t places) {
437
438 BcBigDig dig;
439 size_t places_rdx;
440 bool shift;
441
442 if (!places) return;
443 if (places > n->scale) {
444 size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len);
445 if (size > SIZE_MAX - 1) bc_vm_err(BC_ERR_MATH_OVERFLOW);
446 }
447 if (BC_NUM_ZERO(n)) {
448 if (n->scale >= places) n->scale -= places;
449 else n->scale = 0;
450 return;
451 }
452
453 dig = (BcBigDig) (places % BC_BASE_DIGS);
454 shift = (dig != 0);
455 places_rdx = BC_NUM_RDX(places);
456
457 if (n->scale) {
458
459 size_t nrdx = BC_NUM_RDX_VAL(n);
460
461 if (nrdx >= places_rdx) {
462
463 size_t mod = n->scale % BC_BASE_DIGS, revdig;
464
465 mod = mod ? mod : BC_BASE_DIGS;
466 revdig = dig ? BC_BASE_DIGS - dig : 0;
467
468 if (mod + revdig > BC_BASE_DIGS) places_rdx = 1;
469 else places_rdx = 0;
470 }
471 else places_rdx -= nrdx;
472 }
473
474 if (places_rdx) {
475 bc_num_expand(n, bc_vm_growSize(n->len, places_rdx));
476 memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len));
477 memset(n->num, 0, BC_NUM_SIZE(places_rdx));
478 n->len += places_rdx;
479 }
480
481 if (places > n->scale) {
482 n->scale = 0;
483 BC_NUM_RDX_SET(n, 0);
484 }
485 else {
486 n->scale -= places;
487 BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
488 }
489
490 if (shift) bc_num_shift(n, BC_BASE_DIGS - dig);
491
492 bc_num_clean(n);
493 }
494
bc_num_shiftRight(BcNum * restrict n,size_t places)495 void bc_num_shiftRight(BcNum *restrict n, size_t places) {
496
497 BcBigDig dig;
498 size_t places_rdx, scale, scale_mod, int_len, expand;
499 bool shift;
500
501 if (!places) return;
502 if (BC_NUM_ZERO(n)) {
503 n->scale += places;
504 bc_num_expand(n, BC_NUM_RDX(n->scale));
505 return;
506 }
507
508 dig = (BcBigDig) (places % BC_BASE_DIGS);
509 shift = (dig != 0);
510 scale = n->scale;
511 scale_mod = scale % BC_BASE_DIGS;
512 scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS;
513 int_len = bc_num_int(n);
514 places_rdx = BC_NUM_RDX(places);
515
516 if (scale_mod + dig > BC_BASE_DIGS) {
517 expand = places_rdx - 1;
518 places_rdx = 1;
519 }
520 else {
521 expand = places_rdx;
522 places_rdx = 0;
523 }
524
525 if (expand > int_len) expand -= int_len;
526 else expand = 0;
527
528 bc_num_extend(n, places_rdx * BC_BASE_DIGS);
529 bc_num_expand(n, bc_vm_growSize(expand, n->len));
530 memset(n->num + n->len, 0, BC_NUM_SIZE(expand));
531 n->len += expand;
532 n->scale = 0;
533 BC_NUM_RDX_SET(n, 0);
534
535 if (shift) bc_num_shift(n, dig);
536
537 n->scale = scale + places;
538 BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
539
540 bc_num_clean(n);
541
542 assert(BC_NUM_RDX_VAL(n) <= n->len && n->len <= n->cap);
543 assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale));
544 }
545
bc_num_inv(BcNum * a,BcNum * b,size_t scale)546 static void bc_num_inv(BcNum *a, BcNum *b, size_t scale) {
547
548 BcNum one;
549 BcDig num[2];
550
551 assert(BC_NUM_NONZERO(a));
552
553 bc_num_setup(&one, num, sizeof(num) / sizeof(BcDig));
554 bc_num_one(&one);
555
556 bc_num_div(&one, a, b, scale);
557 }
558
559 #if BC_ENABLE_EXTRA_MATH
bc_num_intop(const BcNum * a,const BcNum * b,BcNum * restrict c,BcBigDig * v)560 static void bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c,
561 BcBigDig *v)
562 {
563 if (BC_ERR(BC_NUM_RDX_VAL(b))) bc_vm_err(BC_ERR_MATH_NON_INTEGER);
564 bc_num_copy(c, a);
565 bc_num_bigdig(b, v);
566 }
567 #endif // BC_ENABLE_EXTRA_MATH
568
bc_num_as(BcNum * a,BcNum * b,BcNum * restrict c,size_t sub)569 static void bc_num_as(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) {
570
571 BcDig *ptr_c, *ptr_l, *ptr_r;
572 size_t i, min_rdx, max_rdx, diff, a_int, b_int, min_len, max_len, max_int;
573 size_t len_l, len_r, ardx, brdx;
574 bool b_neg, do_sub, do_rev_sub, carry, c_neg;
575
576 // Because this function doesn't need to use scale (per the bc spec),
577 // I am hijacking it to say whether it's doing an add or a subtract.
578 // Convert substraction to addition of negative second operand.
579
580 if (BC_NUM_ZERO(b)) {
581 bc_num_copy(c, a);
582 return;
583 }
584 if (BC_NUM_ZERO(a)) {
585 bc_num_copy(c, b);
586 c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(b) != sub);
587 return;
588 }
589
590 // Invert sign of b if it is to be subtracted. This operation must
591 // preced the tests for any of the operands being zero.
592 b_neg = (BC_NUM_NEG(b) != sub);
593
594 // Actually add the numbers if their signs are equal, else subtract.
595 do_sub = (BC_NUM_NEG(a) != b_neg);
596
597 a_int = bc_num_int(a);
598 b_int = bc_num_int(b);
599 max_int = BC_MAX(a_int, b_int);
600
601 ardx = BC_NUM_RDX_VAL(a);
602 brdx = BC_NUM_RDX_VAL(b);
603 min_rdx = BC_MIN(ardx, brdx);
604 max_rdx = BC_MAX(ardx, brdx);
605 diff = max_rdx - min_rdx;
606
607 max_len = max_int + max_rdx;
608
609 if (do_sub) {
610
611 // Check whether b has to be subtracted from a or a from b.
612 if (a_int != b_int) do_rev_sub = (a_int < b_int);
613 else if (ardx > brdx)
614 do_rev_sub = (bc_num_compare(a->num + diff, b->num, b->len) < 0);
615 else
616 do_rev_sub = (bc_num_compare(a->num, b->num + diff, a->len) <= 0);
617 }
618 else {
619
620 // The result array of the addition might come out one element
621 // longer than the bigger of the operand arrays.
622 max_len += 1;
623 do_rev_sub = (a_int < b_int);
624 }
625
626 assert(max_len <= c->cap);
627
628 if (do_rev_sub) {
629 ptr_l = b->num;
630 ptr_r = a->num;
631 len_l = b->len;
632 len_r = a->len;
633 }
634 else {
635 ptr_l = a->num;
636 ptr_r = b->num;
637 len_l = a->len;
638 len_r = b->len;
639 }
640
641 ptr_c = c->num;
642 carry = false;
643
644 if (diff) {
645
646 // If the rdx values of the operands do not match, the result will
647 // have low end elements that are the positive or negative trailing
648 // elements of the operand with higher rdx value.
649 if ((ardx > brdx) != do_rev_sub) {
650
651 // !do_rev_sub && ardx > brdx || do_rev_sub && brdx > ardx
652 // The left operand has BcDig values that need to be copied,
653 // either from a or from b (in case of a reversed subtraction).
654 memcpy(ptr_c, ptr_l, BC_NUM_SIZE(diff));
655 ptr_l += diff;
656 len_l -= diff;
657 }
658 else {
659
660 // The right operand has BcDig values that need to be copied
661 // or subtracted from zero (in case of a subtraction).
662 if (do_sub) {
663
664 // do_sub (do_rev_sub && ardx > brdx ||
665 // !do_rev_sub && brdx > ardx)
666 for (i = 0; i < diff; i++)
667 ptr_c[i] = bc_num_subDigits(0, ptr_r[i], &carry);
668 }
669 else {
670
671 // !do_sub && brdx > ardx
672 memcpy(ptr_c, ptr_r, BC_NUM_SIZE(diff));
673 }
674
675 ptr_r += diff;
676 len_r -= diff;
677 }
678
679 ptr_c += diff;
680 }
681
682 min_len = BC_MIN(len_l, len_r);
683
684 // After dealing with possible low array elements that depend on only one
685 // operand, the actual add or subtract can be performed as if the rdx of
686 // both operands was the same.
687 // Inlining takes care of eliminating constant zero arguments to
688 // addDigit/subDigit (checked in disassembly of resulting bc binary
689 // compiled with gcc and clang).
690 if (do_sub) {
691 for (i = 0; i < min_len; ++i)
692 ptr_c[i] = bc_num_subDigits(ptr_l[i], ptr_r[i], &carry);
693 for (; i < len_l; ++i) ptr_c[i] = bc_num_subDigits(ptr_l[i], 0, &carry);
694 }
695 else {
696 for (i = 0; i < min_len; ++i)
697 ptr_c[i] = bc_num_addDigits(ptr_l[i], ptr_r[i], &carry);
698 for (; i < len_l; ++i) ptr_c[i] = bc_num_addDigits(ptr_l[i], 0, &carry);
699 ptr_c[i] = bc_num_addDigits(0, 0, &carry);
700 }
701
702 assert(carry == false);
703
704 // The result has the same sign as a, unless the operation was a
705 // reverse subtraction (b - a).
706 c_neg = BC_NUM_NEG(a) != (do_sub && do_rev_sub);
707 BC_NUM_RDX_SET_NEG(c, max_rdx, c_neg);
708 c->len = max_len;
709 c->scale = BC_MAX(a->scale, b->scale);
710
711 bc_num_clean(c);
712 }
713
bc_num_m_simp(const BcNum * a,const BcNum * b,BcNum * restrict c)714 static void bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c)
715 {
716 size_t i, alen = a->len, blen = b->len, clen;
717 BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c;
718 BcBigDig sum = 0, carry = 0;
719
720 assert(sizeof(sum) >= sizeof(BcDig) * 2);
721 assert(!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b));
722
723 clen = bc_vm_growSize(alen, blen);
724 bc_num_expand(c, bc_vm_growSize(clen, 1));
725
726 ptr_c = c->num;
727 memset(ptr_c, 0, BC_NUM_SIZE(c->cap));
728
729 for (i = 0; i < clen; ++i) {
730
731 ssize_t sidx = (ssize_t) (i - blen + 1);
732 size_t j = (size_t) BC_MAX(0, sidx), k = BC_MIN(i, blen - 1);
733
734 for (; j < alen && k < blen; ++j, --k) {
735
736 sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]);
737
738 if (sum >= ((BcBigDig) BC_BASE_POW) * BC_BASE_POW) {
739 carry += sum / BC_BASE_POW;
740 sum %= BC_BASE_POW;
741 }
742 }
743
744 if (sum >= BC_BASE_POW) {
745 carry += sum / BC_BASE_POW;
746 sum %= BC_BASE_POW;
747 }
748
749 ptr_c[i] = (BcDig) sum;
750 assert(ptr_c[i] < BC_BASE_POW);
751 sum = carry;
752 carry = 0;
753 }
754
755 // This should always be true because there should be no carry on the last
756 // digit; multiplication never goes above the sum of both lengths.
757 assert(!sum);
758
759 c->len = clen;
760 }
761
bc_num_shiftAddSub(BcNum * restrict n,const BcNum * restrict a,size_t shift,BcNumShiftAddOp op)762 static void bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a,
763 size_t shift, BcNumShiftAddOp op)
764 {
765 assert(n->len >= shift + a->len);
766 assert(!BC_NUM_RDX_VAL(n) && !BC_NUM_RDX_VAL(a));
767 op(n->num + shift, a->num, a->len);
768 }
769
bc_num_k(BcNum * a,BcNum * b,BcNum * restrict c)770 static void bc_num_k(BcNum *a, BcNum *b, BcNum *restrict c) {
771
772 size_t max, max2, total;
773 BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp;
774 BcDig *digs, *dig_ptr;
775 BcNumShiftAddOp op;
776 bool aone = BC_NUM_ONE(a);
777
778 assert(BC_NUM_ZERO(c));
779
780 if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return;
781 if (aone || BC_NUM_ONE(b)) {
782 bc_num_copy(c, aone ? b : a);
783 if ((aone && BC_NUM_NEG(a)) || BC_NUM_NEG(b)) BC_NUM_NEG_TGL(c);
784 return;
785 }
786 if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN) {
787 bc_num_m_simp(a, b, c);
788 return;
789 }
790
791 max = BC_MAX(a->len, b->len);
792 max = BC_MAX(max, BC_NUM_DEF_SIZE);
793 max2 = (max + 1) / 2;
794
795 total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max);
796
797 BC_SIG_LOCK;
798
799 digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total));
800
801 bc_num_setup(&l1, dig_ptr, max);
802 dig_ptr += max;
803 bc_num_setup(&h1, dig_ptr, max);
804 dig_ptr += max;
805 bc_num_setup(&l2, dig_ptr, max);
806 dig_ptr += max;
807 bc_num_setup(&h2, dig_ptr, max);
808 dig_ptr += max;
809 bc_num_setup(&m1, dig_ptr, max);
810 dig_ptr += max;
811 bc_num_setup(&m2, dig_ptr, max);
812 max = bc_vm_growSize(max, 1);
813 bc_num_init(&z0, max);
814 bc_num_init(&z1, max);
815 bc_num_init(&z2, max);
816 max = bc_vm_growSize(max, max) + 1;
817 bc_num_init(&temp, max);
818
819 BC_SETJMP_LOCKED(err);
820
821 BC_SIG_UNLOCK;
822
823 bc_num_split(a, max2, &l1, &h1);
824 bc_num_split(b, max2, &l2, &h2);
825
826 bc_num_expand(c, max);
827 c->len = max;
828 memset(c->num, 0, BC_NUM_SIZE(c->len));
829
830 bc_num_sub(&h1, &l1, &m1, 0);
831 bc_num_sub(&l2, &h2, &m2, 0);
832
833 if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) {
834
835 assert(BC_NUM_RDX_VALID_NP(h1));
836 assert(BC_NUM_RDX_VALID_NP(h2));
837
838 bc_num_m(&h1, &h2, &z2, 0);
839 bc_num_clean(&z2);
840
841 bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays);
842 bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays);
843 }
844
845 if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) {
846
847 assert(BC_NUM_RDX_VALID_NP(l1));
848 assert(BC_NUM_RDX_VALID_NP(l2));
849
850 bc_num_m(&l1, &l2, &z0, 0);
851 bc_num_clean(&z0);
852
853 bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays);
854 bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays);
855 }
856
857 if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) {
858
859 assert(BC_NUM_RDX_VALID_NP(m1));
860 assert(BC_NUM_RDX_VALID_NP(m1));
861
862 bc_num_m(&m1, &m2, &z1, 0);
863 bc_num_clean(&z1);
864
865 op = (BC_NUM_NEG_NP(m1) != BC_NUM_NEG_NP(m2)) ?
866 bc_num_subArrays : bc_num_addArrays;
867 bc_num_shiftAddSub(c, &z1, max2, op);
868 }
869
870 err:
871 BC_SIG_MAYLOCK;
872 free(digs);
873 bc_num_free(&temp);
874 bc_num_free(&z2);
875 bc_num_free(&z1);
876 bc_num_free(&z0);
877 BC_LONGJMP_CONT;
878 }
879
bc_num_m(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)880 static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
881
882 BcNum cpa, cpb;
883 size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale;
884
885 assert(BC_NUM_RDX_VALID(a));
886 assert(BC_NUM_RDX_VALID(b));
887
888 bc_num_zero(c);
889 ascale = a->scale;
890 bscale = b->scale;
891 scale = BC_MAX(scale, ascale);
892 scale = BC_MAX(scale, bscale);
893
894 rscale = ascale + bscale;
895 scale = BC_MIN(rscale, scale);
896
897 if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx) {
898
899 BcNum *operand;
900 BcBigDig dig;
901
902 if (a->len == 1) {
903 dig = (BcBigDig) a->num[0];
904 operand = b;
905 }
906 else {
907 dig = (BcBigDig) b->num[0];
908 operand = a;
909 }
910
911 bc_num_mulArray(operand, dig, c);
912
913 if (BC_NUM_NONZERO(c))
914 c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(a) != BC_NUM_NEG(b));
915
916 return;
917 }
918
919 assert(BC_NUM_RDX_VALID(a));
920 assert(BC_NUM_RDX_VALID(b));
921
922 BC_SIG_LOCK;
923
924 bc_num_init(&cpa, a->len + BC_NUM_RDX_VAL(a));
925 bc_num_init(&cpb, b->len + BC_NUM_RDX_VAL(b));
926
927 BC_SETJMP_LOCKED(err);
928
929 BC_SIG_UNLOCK;
930
931 bc_num_copy(&cpa, a);
932 bc_num_copy(&cpb, b);
933
934 assert(BC_NUM_RDX_VALID_NP(cpa));
935 assert(BC_NUM_RDX_VALID_NP(cpb));
936
937 BC_NUM_NEG_CLR_NP(cpa);
938 BC_NUM_NEG_CLR_NP(cpb);
939
940 assert(BC_NUM_RDX_VALID_NP(cpa));
941 assert(BC_NUM_RDX_VALID_NP(cpb));
942
943 ardx = BC_NUM_RDX_VAL_NP(cpa) * BC_BASE_DIGS;
944 bc_num_shiftLeft(&cpa, ardx);
945
946 brdx = BC_NUM_RDX_VAL_NP(cpb) * BC_BASE_DIGS;
947 bc_num_shiftLeft(&cpb, brdx);
948
949 // We need to reset the jump here because azero and bzero are used in the
950 // cleanup, and local variables are not guaranteed to be the same after a
951 // jump.
952 BC_SIG_LOCK;
953
954 BC_UNSETJMP;
955
956 azero = bc_num_shiftZero(&cpa);
957 bzero = bc_num_shiftZero(&cpb);
958
959 BC_SETJMP_LOCKED(err);
960
961 BC_SIG_UNLOCK;
962
963 bc_num_clean(&cpa);
964 bc_num_clean(&cpb);
965
966 bc_num_k(&cpa, &cpb, c);
967
968 zero = bc_vm_growSize(azero, bzero);
969 len = bc_vm_growSize(c->len, zero);
970
971 bc_num_expand(c, len);
972 bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS);
973 bc_num_shiftRight(c, ardx + brdx);
974
975 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
976
977 err:
978 BC_SIG_MAYLOCK;
979 bc_num_unshiftZero(&cpb, bzero);
980 bc_num_free(&cpb);
981 bc_num_unshiftZero(&cpa, azero);
982 bc_num_free(&cpa);
983 BC_LONGJMP_CONT;
984 }
985
bc_num_nonZeroDig(BcDig * restrict a,size_t len)986 static bool bc_num_nonZeroDig(BcDig *restrict a, size_t len) {
987 size_t i;
988 bool nonzero = false;
989 for (i = len - 1; !nonzero && i < len; --i) nonzero = (a[i] != 0);
990 return nonzero;
991 }
992
bc_num_divCmp(const BcDig * a,const BcNum * b,size_t len)993 static ssize_t bc_num_divCmp(const BcDig *a, const BcNum *b, size_t len) {
994
995 ssize_t cmp;
996
997 if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1);
998 else if (b->len <= len) {
999 if (a[len]) cmp = 1;
1000 else cmp = bc_num_compare(a, b->num, len);
1001 }
1002 else cmp = -1;
1003
1004 return cmp;
1005 }
1006
bc_num_divExtend(BcNum * restrict a,BcNum * restrict b,BcBigDig divisor)1007 static void bc_num_divExtend(BcNum *restrict a, BcNum *restrict b,
1008 BcBigDig divisor)
1009 {
1010 size_t pow;
1011
1012 assert(divisor < BC_BASE_POW);
1013
1014 pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor);
1015
1016 bc_num_shiftLeft(a, pow);
1017 bc_num_shiftLeft(b, pow);
1018 }
1019
bc_num_d_long(BcNum * restrict a,BcNum * restrict b,BcNum * restrict c,size_t scale)1020 static void bc_num_d_long(BcNum *restrict a, BcNum *restrict b,
1021 BcNum *restrict c, size_t scale)
1022 {
1023 BcBigDig divisor;
1024 size_t len, end, i, rdx;
1025 BcNum cpb;
1026 bool nonzero = false;
1027
1028 assert(b->len < a->len);
1029 len = b->len;
1030 end = a->len - len;
1031 assert(len >= 1);
1032
1033 bc_num_expand(c, a->len);
1034 memset(c->num, 0, c->cap * sizeof(BcDig));
1035
1036 BC_NUM_RDX_SET(c, BC_NUM_RDX_VAL(a));
1037 c->scale = a->scale;
1038 c->len = a->len;
1039
1040 divisor = (BcBigDig) b->num[len - 1];
1041
1042 if (len > 1 && bc_num_nonZeroDig(b->num, len - 1)) {
1043
1044 nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1));
1045
1046 if (!nonzero) {
1047
1048 bc_num_divExtend(a, b, divisor);
1049
1050 len = BC_MAX(a->len, b->len);
1051 bc_num_expand(a, len + 1);
1052
1053 if (len + 1 > a->len) a->len = len + 1;
1054
1055 len = b->len;
1056 end = a->len - len;
1057 divisor = (BcBigDig) b->num[len - 1];
1058
1059 nonzero = bc_num_nonZeroDig(b->num, len - 1);
1060 }
1061 }
1062
1063 divisor += nonzero;
1064
1065 bc_num_expand(c, a->len);
1066 memset(c->num, 0, BC_NUM_SIZE(c->cap));
1067
1068 assert(c->scale >= scale);
1069 rdx = BC_NUM_RDX_VAL(c) - BC_NUM_RDX(scale);
1070
1071 BC_SIG_LOCK;
1072
1073 bc_num_init(&cpb, len + 1);
1074
1075 BC_SETJMP_LOCKED(err);
1076
1077 BC_SIG_UNLOCK;
1078
1079 i = end - 1;
1080
1081 for (; i < end && i >= rdx && BC_NUM_NONZERO(a); --i) {
1082
1083 ssize_t cmp;
1084 BcDig *n;
1085 BcBigDig result;
1086
1087 n = a->num + i;
1088 assert(n >= a->num);
1089 result = 0;
1090
1091 cmp = bc_num_divCmp(n, b, len);
1092
1093 while (cmp >= 0) {
1094
1095 BcBigDig n1, dividend, q;
1096
1097 n1 = (BcBigDig) n[len];
1098 dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1];
1099 q = (dividend / divisor);
1100
1101 if (q <= 1) {
1102 q = 1;
1103 bc_num_subArrays(n, b->num, len);
1104 }
1105 else {
1106
1107 assert(q <= BC_BASE_POW);
1108
1109 bc_num_mulArray(b, (BcBigDig) q, &cpb);
1110 bc_num_subArrays(n, cpb.num, cpb.len);
1111 }
1112
1113 result += q;
1114 assert(result <= BC_BASE_POW);
1115
1116 if (nonzero) cmp = bc_num_divCmp(n, b, len);
1117 else cmp = -1;
1118 }
1119
1120 assert(result < BC_BASE_POW);
1121
1122 c->num[i] = (BcDig) result;
1123 }
1124
1125 err:
1126 BC_SIG_MAYLOCK;
1127 bc_num_free(&cpb);
1128 BC_LONGJMP_CONT;
1129 }
1130
bc_num_d(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)1131 static void bc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
1132
1133 size_t len, cpardx;
1134 BcNum cpa, cpb;
1135
1136 if (BC_NUM_ZERO(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
1137 if (BC_NUM_ZERO(a)) {
1138 bc_num_setToZero(c, scale);
1139 return;
1140 }
1141 if (BC_NUM_ONE(b)) {
1142 bc_num_copy(c, a);
1143 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1144 return;
1145 }
1146 if (!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale) {
1147 BcBigDig rem;
1148 bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem);
1149 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1150 return;
1151 }
1152
1153 len = bc_num_divReq(a, b, scale);
1154
1155 BC_SIG_LOCK;
1156
1157 bc_num_init(&cpa, len);
1158 bc_num_copy(&cpa, a);
1159 bc_num_createCopy(&cpb, b);
1160
1161 BC_SETJMP_LOCKED(err);
1162
1163 BC_SIG_UNLOCK;
1164
1165 len = b->len;
1166
1167 if (len > cpa.len) {
1168 bc_num_expand(&cpa, bc_vm_growSize(len, 2));
1169 bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS);
1170 }
1171
1172 cpardx = BC_NUM_RDX_VAL_NP(cpa);
1173 cpa.scale = cpardx * BC_BASE_DIGS;
1174
1175 bc_num_extend(&cpa, b->scale);
1176 cpardx = BC_NUM_RDX_VAL_NP(cpa) - BC_NUM_RDX(b->scale);
1177 BC_NUM_RDX_SET_NP(cpa, cpardx);
1178 cpa.scale = cpardx * BC_BASE_DIGS;
1179
1180 if (scale > cpa.scale) {
1181 bc_num_extend(&cpa, scale);
1182 cpardx = BC_NUM_RDX_VAL_NP(cpa);
1183 cpa.scale = cpardx * BC_BASE_DIGS;
1184 }
1185
1186 if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1));
1187
1188 // We want an extra zero in front to make things simpler.
1189 cpa.num[cpa.len++] = 0;
1190
1191 if (cpardx == cpa.len) cpa.len = bc_num_nonzeroLen(&cpa);
1192 if (BC_NUM_RDX_VAL_NP(cpb) == cpb.len) cpb.len = bc_num_nonzeroLen(&cpb);
1193 cpb.scale = 0;
1194 BC_NUM_RDX_SET_NP(cpb, 0);
1195
1196 bc_num_d_long(&cpa, &cpb, c, scale);
1197
1198 bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b));
1199
1200 err:
1201 BC_SIG_MAYLOCK;
1202 bc_num_free(&cpb);
1203 bc_num_free(&cpa);
1204 BC_LONGJMP_CONT;
1205 }
1206
bc_num_r(BcNum * a,BcNum * b,BcNum * restrict c,BcNum * restrict d,size_t scale,size_t ts)1207 static void bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c,
1208 BcNum *restrict d, size_t scale, size_t ts)
1209 {
1210 BcNum temp;
1211 bool neg;
1212
1213 if (BC_NUM_ZERO(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
1214 if (BC_NUM_ZERO(a)) {
1215 bc_num_setToZero(c, ts);
1216 bc_num_setToZero(d, ts);
1217 return;
1218 }
1219
1220 BC_SIG_LOCK;
1221
1222 bc_num_init(&temp, d->cap);
1223
1224 BC_SETJMP_LOCKED(err);
1225
1226 BC_SIG_UNLOCK;
1227
1228 bc_num_d(a, b, c, scale);
1229
1230 if (scale) scale = ts + 1;
1231
1232 assert(BC_NUM_RDX_VALID(c));
1233 assert(BC_NUM_RDX_VALID(b));
1234
1235 bc_num_m(c, b, &temp, scale);
1236 bc_num_sub(a, &temp, d, scale);
1237
1238 if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale);
1239
1240 neg = BC_NUM_NEG(d);
1241 bc_num_retireMul(d, ts, BC_NUM_NEG(a), BC_NUM_NEG(b));
1242 d->rdx = BC_NUM_NEG_VAL(d, BC_NUM_NONZERO(d) ? neg : false);
1243
1244 err:
1245 BC_SIG_MAYLOCK;
1246 bc_num_free(&temp);
1247 BC_LONGJMP_CONT;
1248 }
1249
bc_num_rem(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)1250 static void bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
1251
1252 BcNum c1;
1253 size_t ts;
1254
1255 ts = bc_vm_growSize(scale, b->scale);
1256 ts = BC_MAX(ts, a->scale);
1257
1258 BC_SIG_LOCK;
1259
1260 bc_num_init(&c1, bc_num_mulReq(a, b, ts));
1261
1262 BC_SETJMP_LOCKED(err);
1263
1264 BC_SIG_UNLOCK;
1265
1266 bc_num_r(a, b, &c1, c, scale, ts);
1267
1268 err:
1269 BC_SIG_MAYLOCK;
1270 bc_num_free(&c1);
1271 BC_LONGJMP_CONT;
1272 }
1273
bc_num_p(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)1274 static void bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
1275
1276 BcNum copy;
1277 BcBigDig pow = 0;
1278 size_t i, powrdx, resrdx;
1279 bool neg, zero;
1280
1281 if (BC_ERR(BC_NUM_RDX_VAL(b))) bc_vm_err(BC_ERR_MATH_NON_INTEGER);
1282
1283 if (BC_NUM_ZERO(b)) {
1284 bc_num_one(c);
1285 return;
1286 }
1287 if (BC_NUM_ZERO(a)) {
1288 if (BC_NUM_NEG(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
1289 bc_num_setToZero(c, scale);
1290 return;
1291 }
1292 if (BC_NUM_ONE(b)) {
1293 if (!BC_NUM_NEG(b)) bc_num_copy(c, a);
1294 else bc_num_inv(a, c, scale);
1295 return;
1296 }
1297
1298 BC_SIG_LOCK;
1299
1300 neg = BC_NUM_NEG(b);
1301 BC_NUM_NEG_CLR(b);
1302 bc_num_bigdig(b, &pow);
1303 b->rdx = BC_NUM_NEG_VAL(b, neg);
1304
1305 bc_num_createCopy(©, a);
1306
1307 BC_SETJMP_LOCKED(err);
1308
1309 BC_SIG_UNLOCK;
1310
1311 if (!neg) {
1312 size_t max = BC_MAX(scale, a->scale), scalepow = a->scale * pow;
1313 scale = BC_MIN(scalepow, max);
1314 }
1315
1316 for (powrdx = a->scale; !(pow & 1); pow >>= 1) {
1317 powrdx <<= 1;
1318 assert(BC_NUM_RDX_VALID_NP(copy));
1319 bc_num_mul(©, ©, ©, powrdx);
1320 }
1321
1322 bc_num_copy(c, ©);
1323 resrdx = powrdx;
1324
1325 while (pow >>= 1) {
1326
1327 powrdx <<= 1;
1328 assert(BC_NUM_RDX_VALID_NP(copy));
1329 bc_num_mul(©, ©, ©, powrdx);
1330
1331 if (pow & 1) {
1332 resrdx += powrdx;
1333 assert(BC_NUM_RDX_VALID(c));
1334 assert(BC_NUM_RDX_VALID_NP(copy));
1335 bc_num_mul(c, ©, c, resrdx);
1336 }
1337 }
1338
1339 if (neg) bc_num_inv(c, c, scale);
1340
1341 if (c->scale > scale) bc_num_truncate(c, c->scale - scale);
1342
1343 // We can't use bc_num_clean() here.
1344 for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i];
1345 if (zero) bc_num_setToZero(c, scale);
1346
1347 err:
1348 BC_SIG_MAYLOCK;
1349 bc_num_free(©);
1350 BC_LONGJMP_CONT;
1351 }
1352
1353 #if BC_ENABLE_EXTRA_MATH
bc_num_place(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)1354 static void bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
1355
1356 BcBigDig val = 0;
1357
1358 BC_UNUSED(scale);
1359
1360 bc_num_intop(a, b, c, &val);
1361
1362 if (val < c->scale) bc_num_truncate(c, c->scale - val);
1363 else if (val > c->scale) bc_num_extend(c, val - c->scale);
1364 }
1365
bc_num_left(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)1366 static void bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
1367
1368 BcBigDig val = 0;
1369
1370 BC_UNUSED(scale);
1371
1372 bc_num_intop(a, b, c, &val);
1373
1374 bc_num_shiftLeft(c, (size_t) val);
1375 }
1376
bc_num_right(BcNum * a,BcNum * b,BcNum * restrict c,size_t scale)1377 static void bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) {
1378
1379 BcBigDig val = 0;
1380
1381 BC_UNUSED(scale);
1382
1383 bc_num_intop(a, b, c, &val);
1384
1385 if (BC_NUM_ZERO(c)) return;
1386
1387 bc_num_shiftRight(c, (size_t) val);
1388 }
1389 #endif // BC_ENABLE_EXTRA_MATH
1390
bc_num_binary(BcNum * a,BcNum * b,BcNum * c,size_t scale,BcNumBinOp op,size_t req)1391 static void bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale,
1392 BcNumBinOp op, size_t req)
1393 {
1394 BcNum *ptr_a, *ptr_b, num2;
1395 bool init = false;
1396
1397 assert(a != NULL && b != NULL && c != NULL && op != NULL);
1398
1399 assert(BC_NUM_RDX_VALID(a));
1400 assert(BC_NUM_RDX_VALID(b));
1401
1402 BC_SIG_LOCK;
1403
1404 if (c == a) {
1405
1406 ptr_a = &num2;
1407
1408 memcpy(ptr_a, c, sizeof(BcNum));
1409 init = true;
1410 }
1411 else {
1412 ptr_a = a;
1413 }
1414
1415 if (c == b) {
1416
1417 ptr_b = &num2;
1418
1419 if (c != a) {
1420 memcpy(ptr_b, c, sizeof(BcNum));
1421 init = true;
1422 }
1423 }
1424 else {
1425 ptr_b = b;
1426 }
1427
1428 if (init) {
1429
1430 bc_num_init(c, req);
1431
1432 BC_SETJMP_LOCKED(err);
1433 BC_SIG_UNLOCK;
1434 }
1435 else {
1436 BC_SIG_UNLOCK;
1437 bc_num_expand(c, req);
1438 }
1439
1440 op(ptr_a, ptr_b, c, scale);
1441
1442 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
1443 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
1444 assert(BC_NUM_RDX_VALID(c));
1445 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
1446
1447 err:
1448 if (init) {
1449 BC_SIG_MAYLOCK;
1450 bc_num_free(&num2);
1451 BC_LONGJMP_CONT;
1452 }
1453 }
1454
1455 #if !defined(NDEBUG) || BC_ENABLE_LIBRARY
bc_num_strValid(const char * restrict val)1456 bool bc_num_strValid(const char *restrict val) {
1457
1458 bool radix = false;
1459 size_t i, len = strlen(val);
1460
1461 if (!len) return true;
1462
1463 for (i = 0; i < len; ++i) {
1464
1465 BcDig c = val[i];
1466
1467 if (c == '.') {
1468
1469 if (radix) return false;
1470
1471 radix = true;
1472 continue;
1473 }
1474
1475 if (!(isdigit(c) || isupper(c))) return false;
1476 }
1477
1478 return true;
1479 }
1480 #endif // !defined(NDEBUG) || BC_ENABLE_LIBRARY
1481
bc_num_parseChar(char c,size_t base_t)1482 static BcBigDig bc_num_parseChar(char c, size_t base_t) {
1483
1484 if (isupper(c)) {
1485 c = BC_NUM_NUM_LETTER(c);
1486 c = ((size_t) c) >= base_t ? (char) base_t - 1 : c;
1487 }
1488 else c -= '0';
1489
1490 return (BcBigDig) (uchar) c;
1491 }
1492
bc_num_parseDecimal(BcNum * restrict n,const char * restrict val)1493 static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) {
1494
1495 size_t len, i, temp, mod;
1496 const char *ptr;
1497 bool zero = true, rdx;
1498
1499 for (i = 0; val[i] == '0'; ++i);
1500
1501 val += i;
1502 assert(!val[0] || isalnum(val[0]) || val[0] == '.');
1503
1504 // All 0's. We can just return, since this
1505 // procedure expects a virgin (already 0) BcNum.
1506 if (!val[0]) return;
1507
1508 len = strlen(val);
1509
1510 ptr = strchr(val, '.');
1511 rdx = (ptr != NULL);
1512
1513 for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i);
1514
1515 n->scale = (size_t) (rdx * (((uintptr_t) (val + len)) -
1516 (((uintptr_t) ptr) + 1)));
1517
1518 BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale));
1519 i = len - (ptr == val ? 0 : i) - rdx;
1520 temp = BC_NUM_ROUND_POW(i);
1521 mod = n->scale % BC_BASE_DIGS;
1522 i = mod ? BC_BASE_DIGS - mod : 0;
1523 n->len = ((temp + i) / BC_BASE_DIGS);
1524
1525 bc_num_expand(n, n->len);
1526 memset(n->num, 0, BC_NUM_SIZE(n->len));
1527
1528 if (zero) {
1529 // I think I can set rdx directly to zero here because n should be a
1530 // new number with sign set to false.
1531 n->len = n->rdx = 0;
1532 }
1533 else {
1534
1535 BcBigDig exp, pow;
1536
1537 assert(i <= BC_NUM_BIGDIG_MAX);
1538
1539 exp = (BcBigDig) i;
1540 pow = bc_num_pow10[exp];
1541
1542 for (i = len - 1; i < len; --i, ++exp) {
1543
1544 char c = val[i];
1545
1546 if (c == '.') exp -= 1;
1547 else {
1548
1549 size_t idx = exp / BC_BASE_DIGS;
1550
1551 if (isupper(c)) c = '9';
1552 n->num[idx] += (((BcBigDig) c) - '0') * pow;
1553
1554 if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1;
1555 else pow *= BC_BASE;
1556 }
1557 }
1558 }
1559 }
1560
bc_num_parseBase(BcNum * restrict n,const char * restrict val,BcBigDig base)1561 static void bc_num_parseBase(BcNum *restrict n, const char *restrict val,
1562 BcBigDig base)
1563 {
1564 BcNum temp, mult1, mult2, result1, result2, *m1, *m2, *ptr;
1565 char c = 0;
1566 bool zero = true;
1567 BcBigDig v;
1568 size_t i, digs, len = strlen(val);
1569
1570 for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0');
1571 if (zero) return;
1572
1573 BC_SIG_LOCK;
1574
1575 bc_num_init(&temp, BC_NUM_BIGDIG_LOG10);
1576 bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10);
1577
1578 BC_SETJMP_LOCKED(int_err);
1579
1580 BC_SIG_UNLOCK;
1581
1582 for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) {
1583
1584 v = bc_num_parseChar(c, base);
1585
1586 bc_num_mulArray(n, base, &mult1);
1587 bc_num_bigdig2num(&temp, v);
1588 bc_num_add(&mult1, &temp, n, 0);
1589 }
1590
1591 if (i == len && !val[i]) goto int_err;
1592
1593 assert(val[i] == '.');
1594
1595 BC_SIG_LOCK;
1596
1597 BC_UNSETJMP;
1598
1599 bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10);
1600 bc_num_init(&result1, BC_NUM_DEF_SIZE);
1601 bc_num_init(&result2, BC_NUM_DEF_SIZE);
1602 bc_num_one(&mult1);
1603
1604 BC_SETJMP_LOCKED(err);
1605
1606 BC_SIG_UNLOCK;
1607
1608 m1 = &mult1;
1609 m2 = &mult2;
1610
1611 for (i += 1, digs = 0; i < len && (c = val[i]); ++i, ++digs) {
1612
1613 size_t rdx;
1614
1615 v = bc_num_parseChar(c, base);
1616
1617 bc_num_mulArray(&result1, base, &result2);
1618
1619 bc_num_bigdig2num(&temp, v);
1620 bc_num_add(&result2, &temp, &result1, 0);
1621 bc_num_mulArray(m1, base, m2);
1622
1623 rdx = BC_NUM_RDX_VAL(m2);
1624
1625 if (m2->len < rdx) m2->len = rdx;
1626
1627 ptr = m1;
1628 m1 = m2;
1629 m2 = ptr;
1630 }
1631
1632 // This one cannot be a divide by 0 because mult starts out at 1, then is
1633 // multiplied by base, and base cannot be 0, so mult cannot be 0.
1634 bc_num_div(&result1, m1, &result2, digs * 2);
1635 bc_num_truncate(&result2, digs);
1636 bc_num_add(n, &result2, n, digs);
1637
1638 if (BC_NUM_NONZERO(n)) {
1639 if (n->scale < digs) bc_num_extend(n, digs - n->scale);
1640 }
1641 else bc_num_zero(n);
1642
1643 err:
1644 BC_SIG_MAYLOCK;
1645 bc_num_free(&result2);
1646 bc_num_free(&result1);
1647 bc_num_free(&mult2);
1648 int_err:
1649 BC_SIG_MAYLOCK;
1650 bc_num_free(&mult1);
1651 bc_num_free(&temp);
1652 BC_LONGJMP_CONT;
1653 }
1654
bc_num_printNewline(void)1655 static inline void bc_num_printNewline(void) {
1656 #if !BC_ENABLE_LIBRARY
1657 if (vm.nchars >= vm.line_len - 1) {
1658 bc_vm_putchar('\\', bc_flush_none);
1659 bc_vm_putchar('\n', bc_flush_err);
1660 }
1661 #endif // !BC_ENABLE_LIBRARY
1662 }
1663
bc_num_putchar(int c)1664 static void bc_num_putchar(int c) {
1665 if (c != '\n') bc_num_printNewline();
1666 bc_vm_putchar(c, bc_flush_save);
1667 }
1668
1669 #if DC_ENABLED && !BC_ENABLE_LIBRARY
bc_num_printChar(size_t n,size_t len,bool rdx)1670 static void bc_num_printChar(size_t n, size_t len, bool rdx) {
1671 BC_UNUSED(rdx);
1672 BC_UNUSED(len);
1673 assert(len == 1);
1674 bc_vm_putchar((uchar) n, bc_flush_save);
1675 }
1676 #endif // DC_ENABLED && !BC_ENABLE_LIBRARY
1677
bc_num_printDigits(size_t n,size_t len,bool rdx)1678 static void bc_num_printDigits(size_t n, size_t len, bool rdx) {
1679
1680 size_t exp, pow;
1681
1682 bc_num_putchar(rdx ? '.' : ' ');
1683
1684 for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE);
1685
1686 for (exp = 0; exp < len; pow /= BC_BASE, ++exp) {
1687 size_t dig = n / pow;
1688 n -= dig * pow;
1689 bc_num_putchar(((uchar) dig) + '0');
1690 }
1691 }
1692
bc_num_printHex(size_t n,size_t len,bool rdx)1693 static void bc_num_printHex(size_t n, size_t len, bool rdx) {
1694
1695 BC_UNUSED(len);
1696
1697 assert(len == 1);
1698
1699 if (rdx) bc_num_putchar('.');
1700
1701 bc_num_putchar(bc_num_hex_digits[n]);
1702 }
1703
bc_num_printDecimal(const BcNum * restrict n)1704 static void bc_num_printDecimal(const BcNum *restrict n) {
1705
1706 size_t i, j, rdx = BC_NUM_RDX_VAL(n);
1707 bool zero = true;
1708 size_t buffer[BC_BASE_DIGS];
1709
1710 if (BC_NUM_NEG(n)) bc_num_putchar('-');
1711
1712 for (i = n->len - 1; i < n->len; --i) {
1713
1714 BcDig n9 = n->num[i];
1715 size_t temp;
1716 bool irdx = (i == rdx - 1);
1717
1718 zero = (zero & !irdx);
1719 temp = n->scale % BC_BASE_DIGS;
1720 temp = i || !temp ? 0 : BC_BASE_DIGS - temp;
1721
1722 memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t));
1723
1724 for (j = 0; n9 && j < BC_BASE_DIGS; ++j) {
1725 buffer[j] = ((size_t) n9) % BC_BASE;
1726 n9 /= BC_BASE;
1727 }
1728
1729 for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j) {
1730 bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1));
1731 zero = (zero && buffer[j] == 0);
1732 if (!zero) bc_num_printHex(buffer[j], 1, print_rdx);
1733 }
1734 }
1735 }
1736
1737 #if BC_ENABLE_EXTRA_MATH
bc_num_printExponent(const BcNum * restrict n,bool eng)1738 static void bc_num_printExponent(const BcNum *restrict n, bool eng) {
1739
1740 size_t places, mod, nrdx = BC_NUM_RDX_VAL(n);
1741 bool neg = (n->len <= nrdx);
1742 BcNum temp, exp;
1743 BcDig digs[BC_NUM_BIGDIG_LOG10];
1744
1745 BC_SIG_LOCK;
1746
1747 bc_num_createCopy(&temp, n);
1748
1749 BC_SETJMP_LOCKED(exit);
1750
1751 BC_SIG_UNLOCK;
1752
1753 if (neg) {
1754
1755 size_t i, idx = bc_num_nonzeroLen(n) - 1;
1756
1757 places = 1;
1758
1759 for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i) {
1760 if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1;
1761 else break;
1762 }
1763
1764 places += (nrdx - (idx + 1)) * BC_BASE_DIGS;
1765 mod = places % 3;
1766
1767 if (eng && mod != 0) places += 3 - mod;
1768 bc_num_shiftLeft(&temp, places);
1769 }
1770 else {
1771 places = bc_num_intDigits(n) - 1;
1772 mod = places % 3;
1773 if (eng && mod != 0) places -= 3 - (3 - mod);
1774 bc_num_shiftRight(&temp, places);
1775 }
1776
1777 bc_num_printDecimal(&temp);
1778 bc_num_putchar('e');
1779
1780 if (!places) {
1781 bc_num_printHex(0, 1, false);
1782 goto exit;
1783 }
1784
1785 if (neg) bc_num_putchar('-');
1786
1787 bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10);
1788 bc_num_bigdig2num(&exp, (BcBigDig) places);
1789
1790 bc_num_printDecimal(&exp);
1791
1792 exit:
1793 BC_SIG_MAYLOCK;
1794 bc_num_free(&temp);
1795 BC_LONGJMP_CONT;
1796 }
1797 #endif // BC_ENABLE_EXTRA_MATH
1798
bc_num_printFixup(BcNum * restrict n,BcBigDig rem,BcBigDig pow,size_t idx)1799 static void bc_num_printFixup(BcNum *restrict n, BcBigDig rem,
1800 BcBigDig pow, size_t idx)
1801 {
1802 size_t i, len = n->len - idx;
1803 BcBigDig acc;
1804 BcDig *a = n->num + idx;
1805
1806 if (len < 2) return;
1807
1808 for (i = len - 1; i > 0; --i) {
1809
1810 acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]);
1811 a[i - 1] = (BcDig) (acc % pow);
1812 acc /= pow;
1813 acc += (BcBigDig) a[i];
1814
1815 if (acc >= BC_BASE_POW) {
1816
1817 if (i == len - 1) {
1818 len = bc_vm_growSize(len, 1);
1819 bc_num_expand(n, bc_vm_growSize(len, idx));
1820 a = n->num + idx;
1821 a[len - 1] = 0;
1822 }
1823
1824 a[i + 1] += acc / BC_BASE_POW;
1825 acc %= BC_BASE_POW;
1826 }
1827
1828 assert(acc < BC_BASE_POW);
1829 a[i] = (BcDig) acc;
1830 }
1831
1832 n->len = len + idx;
1833 }
1834
bc_num_printPrepare(BcNum * restrict n,BcBigDig rem,BcBigDig pow)1835 static void bc_num_printPrepare(BcNum *restrict n, BcBigDig rem,
1836 BcBigDig pow)
1837 {
1838 size_t i;
1839
1840 for (i = 0; i < n->len; ++i) bc_num_printFixup(n, rem, pow, i);
1841
1842 for (i = 0; i < n->len; ++i) {
1843
1844 assert(pow == ((BcBigDig) ((BcDig) pow)));
1845
1846 if (n->num[i] >= (BcDig) pow) {
1847
1848 if (i + 1 == n->len) {
1849 n->len = bc_vm_growSize(n->len, 1);
1850 bc_num_expand(n, n->len);
1851 n->num[i + 1] = 0;
1852 }
1853
1854 assert(pow < BC_BASE_POW);
1855 n->num[i + 1] += n->num[i] / ((BcDig) pow);
1856 n->num[i] %= (BcDig) pow;
1857 }
1858 }
1859 }
1860
bc_num_printNum(BcNum * restrict n,BcBigDig base,size_t len,BcNumDigitOp print)1861 static void bc_num_printNum(BcNum *restrict n, BcBigDig base,
1862 size_t len, BcNumDigitOp print)
1863 {
1864 BcVec stack;
1865 BcNum intp, fracp1, fracp2, digit, flen1, flen2, *n1, *n2, *temp;
1866 BcBigDig dig = 0, *ptr, acc, exp;
1867 size_t i, j, nrdx;
1868 bool radix;
1869 BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1];
1870
1871 assert(base > 1);
1872
1873 if (BC_NUM_ZERO(n)) {
1874 print(0, len, false);
1875 return;
1876 }
1877
1878 // This function uses an algorithm that Stefan Esser <se@freebsd.org> came
1879 // up with to print the integer part of a number. What it does is convert
1880 // intp into a number of the specified base, but it does it directly,
1881 // instead of just doing a series of divisions and printing the remainders
1882 // in reverse order.
1883 //
1884 // Let me explain in a bit more detail:
1885 //
1886 // The algorithm takes the current least significant digit (after intp has
1887 // been converted to an integer) and the next to least significant digit,
1888 // and it converts the least significant digit into one of the specified
1889 // base, putting any overflow into the next to least significant digit. It
1890 // iterates through the whole number, from least significant to most
1891 // significant, doing this conversion. At the end of that iteration, the
1892 // least significant digit is converted, but the others are not, so it
1893 // iterates again, starting at the next to least significant digit. It keeps
1894 // doing that conversion, skipping one more digit than the last time, until
1895 // all digits have been converted. Then it prints them in reverse order.
1896 //
1897 // That is the gist of the algorithm. It leaves out several things, such as
1898 // the fact that digits are not always converted into the specified base,
1899 // but into something close, basically a power of the specified base. In
1900 // Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS
1901 // in the normal case and obase^N for the largest value of N that satisfies
1902 // obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base
1903 // "obase", but in base "obase^N", which happens to be printable as a number
1904 // of base "obase" without consideration for neighbouring BcDigs." This fact
1905 // is what necessitates the existence of the loop later in this function.
1906 //
1907 // The conversion happens in bc_num_printPrepare() where the outer loop
1908 // happens and bc_num_printFixup() where the inner loop, or actual
1909 // conversion, happens.
1910
1911 nrdx = BC_NUM_RDX_VAL(n);
1912
1913 BC_SIG_LOCK;
1914
1915 bc_vec_init(&stack, sizeof(BcBigDig), NULL);
1916 bc_num_init(&fracp1, nrdx);
1917
1918 bc_num_createCopy(&intp, n);
1919
1920 BC_SETJMP_LOCKED(err);
1921
1922 BC_SIG_UNLOCK;
1923
1924 bc_num_truncate(&intp, intp.scale);
1925
1926 bc_num_sub(n, &intp, &fracp1, 0);
1927
1928 if (base != vm.last_base) {
1929
1930 vm.last_pow = 1;
1931 vm.last_exp = 0;
1932
1933 while (vm.last_pow * base <= BC_BASE_POW) {
1934 vm.last_pow *= base;
1935 vm.last_exp += 1;
1936 }
1937
1938 vm.last_rem = BC_BASE_POW - vm.last_pow;
1939 vm.last_base = base;
1940 }
1941
1942 exp = vm.last_exp;
1943
1944 if (vm.last_rem != 0) bc_num_printPrepare(&intp, vm.last_rem, vm.last_pow);
1945
1946 for (i = 0; i < intp.len; ++i) {
1947
1948 acc = (BcBigDig) intp.num[i];
1949
1950 for (j = 0; j < exp && (i < intp.len - 1 || acc != 0); ++j)
1951 {
1952 if (j != exp - 1) {
1953 dig = acc % base;
1954 acc /= base;
1955 }
1956 else {
1957 dig = acc;
1958 acc = 0;
1959 }
1960
1961 assert(dig < base);
1962
1963 bc_vec_push(&stack, &dig);
1964 }
1965
1966 assert(acc == 0);
1967 }
1968
1969 for (i = 0; i < stack.len; ++i) {
1970 ptr = bc_vec_item_rev(&stack, i);
1971 assert(ptr != NULL);
1972 print(*ptr, len, false);
1973 }
1974
1975 if (!n->scale) goto err;
1976
1977 BC_SIG_LOCK;
1978
1979 BC_UNSETJMP;
1980
1981 bc_num_init(&fracp2, nrdx);
1982 bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig));
1983 bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10);
1984 bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10);
1985
1986 BC_SETJMP_LOCKED(frac_err);
1987
1988 BC_SIG_UNLOCK;
1989
1990 bc_num_one(&flen1);
1991
1992 radix = true;
1993 n1 = &flen1;
1994 n2 = &flen2;
1995
1996 fracp2.scale = n->scale;
1997 BC_NUM_RDX_SET_NP(fracp2, BC_NUM_RDX(fracp2.scale));
1998
1999 while (bc_num_intDigits(n1) < n->scale + 1) {
2000
2001 bc_num_expand(&fracp2, fracp1.len + 1);
2002 bc_num_mulArray(&fracp1, base, &fracp2);
2003
2004 nrdx = BC_NUM_RDX_VAL_NP(fracp2);
2005
2006 if (fracp2.len < nrdx) fracp2.len = nrdx;
2007
2008 // fracp is guaranteed to be non-negative and small enough.
2009 bc_num_bigdig2(&fracp2, &dig);
2010
2011 bc_num_bigdig2num(&digit, dig);
2012 bc_num_sub(&fracp2, &digit, &fracp1, 0);
2013
2014 print(dig, len, radix);
2015 bc_num_mulArray(n1, base, n2);
2016
2017 radix = false;
2018 temp = n1;
2019 n1 = n2;
2020 n2 = temp;
2021 }
2022
2023 frac_err:
2024 BC_SIG_MAYLOCK;
2025 bc_num_free(&flen2);
2026 bc_num_free(&flen1);
2027 bc_num_free(&fracp2);
2028 err:
2029 BC_SIG_MAYLOCK;
2030 bc_num_free(&fracp1);
2031 bc_num_free(&intp);
2032 bc_vec_free(&stack);
2033 BC_LONGJMP_CONT;
2034 }
2035
bc_num_printBase(BcNum * restrict n,BcBigDig base)2036 static void bc_num_printBase(BcNum *restrict n, BcBigDig base) {
2037
2038 size_t width;
2039 BcNumDigitOp print;
2040 bool neg = BC_NUM_NEG(n);
2041
2042 if (neg) bc_num_putchar('-');
2043
2044 BC_NUM_NEG_CLR(n);
2045
2046 if (base <= BC_NUM_MAX_POSIX_IBASE) {
2047 width = 1;
2048 print = bc_num_printHex;
2049 }
2050 else {
2051 assert(base <= BC_BASE_POW);
2052 width = bc_num_log10(base - 1);
2053 print = bc_num_printDigits;
2054 }
2055
2056 bc_num_printNum(n, base, width, print);
2057 n->rdx = BC_NUM_NEG_VAL(n, neg);
2058 }
2059
2060 #if DC_ENABLED && !BC_ENABLE_LIBRARY
bc_num_stream(BcNum * restrict n,BcBigDig base)2061 void bc_num_stream(BcNum *restrict n, BcBigDig base) {
2062 bc_num_printNum(n, base, 1, bc_num_printChar);
2063 }
2064 #endif // DC_ENABLED && !BC_ENABLE_LIBRARY
2065
bc_num_setup(BcNum * restrict n,BcDig * restrict num,size_t cap)2066 void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) {
2067 assert(n != NULL);
2068 n->num = num;
2069 n->cap = cap;
2070 bc_num_zero(n);
2071 }
2072
bc_num_init(BcNum * restrict n,size_t req)2073 void bc_num_init(BcNum *restrict n, size_t req) {
2074
2075 BcDig *num;
2076
2077 BC_SIG_ASSERT_LOCKED;
2078
2079 assert(n != NULL);
2080
2081 req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE;
2082
2083 if (req == BC_NUM_DEF_SIZE && vm.temps.len) {
2084 BcNum *nptr = bc_vec_top(&vm.temps);
2085 num = nptr->num;
2086 bc_vec_pop(&vm.temps);
2087 }
2088 else num = bc_vm_malloc(BC_NUM_SIZE(req));
2089
2090 bc_num_setup(n, num, req);
2091 }
2092
bc_num_clear(BcNum * restrict n)2093 void bc_num_clear(BcNum *restrict n) {
2094 n->num = NULL;
2095 n->cap = 0;
2096 }
2097
bc_num_free(void * num)2098 void bc_num_free(void *num) {
2099
2100 BcNum *n = (BcNum*) num;
2101
2102 BC_SIG_ASSERT_LOCKED;
2103
2104 assert(n != NULL);
2105
2106 if (n->cap == BC_NUM_DEF_SIZE) bc_vec_push(&vm.temps, n);
2107 else free(n->num);
2108 }
2109
bc_num_copy(BcNum * d,const BcNum * s)2110 void bc_num_copy(BcNum *d, const BcNum *s) {
2111 assert(d != NULL && s != NULL);
2112 if (d == s) return;
2113 bc_num_expand(d, s->len);
2114 d->len = s->len;
2115 // I can just copy directly here.
2116 d->rdx = s->rdx;
2117 d->scale = s->scale;
2118 memcpy(d->num, s->num, BC_NUM_SIZE(d->len));
2119 }
2120
bc_num_createCopy(BcNum * d,const BcNum * s)2121 void bc_num_createCopy(BcNum *d, const BcNum *s) {
2122 BC_SIG_ASSERT_LOCKED;
2123 bc_num_init(d, s->len);
2124 bc_num_copy(d, s);
2125 }
2126
bc_num_createFromBigdig(BcNum * n,BcBigDig val)2127 void bc_num_createFromBigdig(BcNum *n, BcBigDig val) {
2128 BC_SIG_ASSERT_LOCKED;
2129 bc_num_init(n, BC_NUM_BIGDIG_LOG10);
2130 bc_num_bigdig2num(n, val);
2131 }
2132
bc_num_scale(const BcNum * restrict n)2133 size_t bc_num_scale(const BcNum *restrict n) {
2134 return n->scale;
2135 }
2136
bc_num_len(const BcNum * restrict n)2137 size_t bc_num_len(const BcNum *restrict n) {
2138
2139 size_t len = n->len;
2140
2141 if (BC_NUM_ZERO(n)) return n->scale ? n->scale : 1;
2142
2143 if (BC_NUM_RDX_VAL(n) == len) {
2144
2145 size_t zero, scale;
2146
2147 len = bc_num_nonzeroLen(n);
2148
2149 scale = n->scale % BC_BASE_DIGS;
2150 scale = scale ? scale : BC_BASE_DIGS;
2151
2152 zero = bc_num_zeroDigits(n->num + len - 1);
2153
2154 len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale);
2155 }
2156 else len = bc_num_intDigits(n) + n->scale;
2157
2158 return len;
2159 }
2160
bc_num_parse(BcNum * restrict n,const char * restrict val,BcBigDig base)2161 void bc_num_parse(BcNum *restrict n, const char *restrict val, BcBigDig base) {
2162
2163 assert(n != NULL && val != NULL && base);
2164 assert(base >= BC_NUM_MIN_BASE && base <= vm.maxes[BC_PROG_GLOBALS_IBASE]);
2165 assert(bc_num_strValid(val));
2166
2167 if (!val[1]) {
2168 BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE);
2169 bc_num_bigdig2num(n, dig);
2170 }
2171 else if (base == BC_BASE) bc_num_parseDecimal(n, val);
2172 else bc_num_parseBase(n, val, base);
2173
2174 assert(BC_NUM_RDX_VALID(n));
2175 }
2176
bc_num_print(BcNum * restrict n,BcBigDig base,bool newline)2177 void bc_num_print(BcNum *restrict n, BcBigDig base, bool newline) {
2178
2179 assert(n != NULL);
2180 assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE);
2181
2182 bc_num_printNewline();
2183
2184 if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false);
2185 else if (base == BC_BASE) bc_num_printDecimal(n);
2186 #if BC_ENABLE_EXTRA_MATH
2187 else if (base == 0 || base == 1) bc_num_printExponent(n, base != 0);
2188 #endif // BC_ENABLE_EXTRA_MATH
2189 else bc_num_printBase(n, base);
2190
2191 if (newline) bc_num_putchar('\n');
2192 }
2193
bc_num_bigdig2(const BcNum * restrict n,BcBigDig * result)2194 void bc_num_bigdig2(const BcNum *restrict n, BcBigDig *result) {
2195
2196 // This function returns no errors because it's guaranteed to succeed if
2197 // its preconditions are met. Those preconditions include both parameters
2198 // being non-NULL, n being non-negative, and n being less than vm.max. If
2199 // all of that is true, then we can just convert without worrying about
2200 // negative errors or overflow.
2201
2202 BcBigDig r = 0;
2203 size_t nrdx = BC_NUM_RDX_VAL(n);
2204
2205 assert(n != NULL && result != NULL);
2206 assert(!BC_NUM_NEG(n));
2207 assert(bc_num_cmp(n, &vm.max) < 0);
2208 assert(n->len - nrdx <= 3);
2209
2210 // There is a small speed win from unrolling the loop here, and since it
2211 // only adds 53 bytes, I decided that it was worth it.
2212 switch (n->len - nrdx) {
2213
2214 case 3:
2215 {
2216 r = (BcBigDig) n->num[nrdx + 2];
2217 }
2218 // Fallthrough.
2219 BC_FALLTHROUGH
2220
2221 case 2:
2222 {
2223 r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx + 1];
2224 }
2225 // Fallthrough.
2226 BC_FALLTHROUGH
2227
2228 case 1:
2229 {
2230 r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx];
2231 }
2232 }
2233
2234 *result = r;
2235 }
2236
bc_num_bigdig(const BcNum * restrict n,BcBigDig * result)2237 void bc_num_bigdig(const BcNum *restrict n, BcBigDig *result) {
2238
2239 assert(n != NULL && result != NULL);
2240
2241 if (BC_ERR(BC_NUM_NEG(n))) bc_vm_err(BC_ERR_MATH_NEGATIVE);
2242 if (BC_ERR(bc_num_cmp(n, &vm.max) >= 0))
2243 bc_vm_err(BC_ERR_MATH_OVERFLOW);
2244
2245 bc_num_bigdig2(n, result);
2246 }
2247
bc_num_bigdig2num(BcNum * restrict n,BcBigDig val)2248 void bc_num_bigdig2num(BcNum *restrict n, BcBigDig val) {
2249
2250 BcDig *ptr;
2251 size_t i;
2252
2253 assert(n != NULL);
2254
2255 bc_num_zero(n);
2256
2257 if (!val) return;
2258
2259 bc_num_expand(n, BC_NUM_BIGDIG_LOG10);
2260
2261 for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW)
2262 ptr[i] = val % BC_BASE_POW;
2263
2264 n->len = i;
2265 }
2266
2267 #if BC_ENABLE_EXTRA_MATH && BC_ENABLE_RAND
bc_num_rng(const BcNum * restrict n,BcRNG * rng)2268 void bc_num_rng(const BcNum *restrict n, BcRNG *rng) {
2269
2270 BcNum temp, temp2, intn, frac;
2271 BcRand state1, state2, inc1, inc2;
2272 size_t nrdx = BC_NUM_RDX_VAL(n);
2273
2274 BC_SIG_LOCK;
2275
2276 bc_num_init(&temp, n->len);
2277 bc_num_init(&temp2, n->len);
2278 bc_num_init(&frac, nrdx);
2279 bc_num_init(&intn, bc_num_int(n));
2280
2281 BC_SETJMP_LOCKED(err);
2282
2283 BC_SIG_UNLOCK;
2284
2285 assert(BC_NUM_RDX_VALID_NP(vm.max));
2286
2287 memcpy(frac.num, n->num, BC_NUM_SIZE(nrdx));
2288 frac.len = nrdx;
2289 BC_NUM_RDX_SET_NP(frac, nrdx);
2290 frac.scale = n->scale;
2291
2292 assert(BC_NUM_RDX_VALID_NP(frac));
2293 assert(BC_NUM_RDX_VALID_NP(vm.max2));
2294
2295 bc_num_mul(&frac, &vm.max2, &temp, 0);
2296
2297 bc_num_truncate(&temp, temp.scale);
2298 bc_num_copy(&frac, &temp);
2299
2300 memcpy(intn.num, n->num + nrdx, BC_NUM_SIZE(bc_num_int(n)));
2301 intn.len = bc_num_int(n);
2302
2303 // This assert is here because it has to be true. It is also here to justify
2304 // the use of BC_ERR_SIGNAL_ONLY() on each of the divmod's and mod's below.
2305 assert(BC_NUM_NONZERO(&vm.max));
2306
2307 if (BC_NUM_NONZERO(&frac)) {
2308
2309 bc_num_divmod(&frac, &vm.max, &temp, &temp2, 0);
2310
2311 // frac is guaranteed to be smaller than vm.max * vm.max (pow).
2312 // This means that when dividing frac by vm.max, as above, the
2313 // quotient and remainder are both guaranteed to be less than vm.max,
2314 // which means we can use bc_num_bigdig2() here and not worry about
2315 // overflow.
2316 bc_num_bigdig2(&temp2, (BcBigDig*) &state1);
2317 bc_num_bigdig2(&temp, (BcBigDig*) &state2);
2318 }
2319 else state1 = state2 = 0;
2320
2321 if (BC_NUM_NONZERO(&intn)) {
2322
2323 bc_num_divmod(&intn, &vm.max, &temp, &temp2, 0);
2324
2325 // Because temp2 is the mod of vm.max, from above, it is guaranteed
2326 // to be small enough to use bc_num_bigdig2().
2327 bc_num_bigdig2(&temp2, (BcBigDig*) &inc1);
2328
2329 if (bc_num_cmp(&temp, &vm.max) >= 0) {
2330 bc_num_copy(&temp2, &temp);
2331 bc_num_mod(&temp2, &vm.max, &temp, 0);
2332 }
2333
2334 // The if statement above ensures that temp is less than vm.max, which
2335 // means that we can use bc_num_bigdig2() here.
2336 bc_num_bigdig2(&temp, (BcBigDig*) &inc2);
2337 }
2338 else inc1 = inc2 = 0;
2339
2340 bc_rand_seed(rng, state1, state2, inc1, inc2);
2341
2342 err:
2343 BC_SIG_MAYLOCK;
2344 bc_num_free(&intn);
2345 bc_num_free(&frac);
2346 bc_num_free(&temp2);
2347 bc_num_free(&temp);
2348 BC_LONGJMP_CONT;
2349 }
2350
bc_num_createFromRNG(BcNum * restrict n,BcRNG * rng)2351 void bc_num_createFromRNG(BcNum *restrict n, BcRNG *rng) {
2352
2353 BcRand s1, s2, i1, i2;
2354 BcNum conv, temp1, temp2, temp3;
2355 BcDig temp1_num[BC_RAND_NUM_SIZE], temp2_num[BC_RAND_NUM_SIZE];
2356 BcDig conv_num[BC_NUM_BIGDIG_LOG10];
2357
2358 BC_SIG_LOCK;
2359
2360 bc_num_init(&temp3, 2 * BC_RAND_NUM_SIZE);
2361
2362 BC_SETJMP_LOCKED(err);
2363
2364 BC_SIG_UNLOCK;
2365
2366 bc_num_setup(&temp1, temp1_num, sizeof(temp1_num) / sizeof(BcDig));
2367 bc_num_setup(&temp2, temp2_num, sizeof(temp2_num) / sizeof(BcDig));
2368 bc_num_setup(&conv, conv_num, sizeof(conv_num) / sizeof(BcDig));
2369
2370 // This assert is here because it has to be true. It is also here to justify
2371 // the assumption that vm.max2 is not zero.
2372 assert(BC_NUM_NONZERO(&vm.max));
2373
2374 // Because this is true, we can just use BC_ERR_SIGNAL_ONLY() below when
2375 // dividing by vm.max2.
2376 assert(BC_NUM_NONZERO(&vm.max2));
2377
2378 bc_rand_getRands(rng, &s1, &s2, &i1, &i2);
2379
2380 bc_num_bigdig2num(&conv, (BcBigDig) s2);
2381
2382 assert(BC_NUM_RDX_VALID_NP(conv));
2383
2384 bc_num_mul(&conv, &vm.max, &temp1, 0);
2385
2386 bc_num_bigdig2num(&conv, (BcBigDig) s1);
2387
2388 bc_num_add(&conv, &temp1, &temp2, 0);
2389
2390 bc_num_div(&temp2, &vm.max2, &temp3, BC_RAND_STATE_BITS);
2391
2392 bc_num_bigdig2num(&conv, (BcBigDig) i2);
2393
2394 assert(BC_NUM_RDX_VALID_NP(conv));
2395
2396 bc_num_mul(&conv, &vm.max, &temp1, 0);
2397
2398 bc_num_bigdig2num(&conv, (BcBigDig) i1);
2399
2400 bc_num_add(&conv, &temp1, &temp2, 0);
2401
2402 bc_num_add(&temp2, &temp3, n, 0);
2403
2404 assert(BC_NUM_RDX_VALID(n));
2405
2406 err:
2407 BC_SIG_MAYLOCK;
2408 bc_num_free(&temp3);
2409 BC_LONGJMP_CONT;
2410 }
2411
bc_num_irand(const BcNum * restrict a,BcNum * restrict b,BcRNG * restrict rng)2412 void bc_num_irand(const BcNum *restrict a, BcNum *restrict b,
2413 BcRNG *restrict rng)
2414 {
2415 BcRand r;
2416 BcBigDig modl;
2417 BcNum pow, pow2, cp, cp2, mod, temp1, temp2, rand;
2418 BcNum *p1, *p2, *t1, *t2, *c1, *c2, *tmp;
2419 BcDig rand_num[BC_NUM_BIGDIG_LOG10];
2420 bool carry;
2421 ssize_t cmp;
2422
2423 assert(a != b);
2424
2425 if (BC_ERR(BC_NUM_NEG(a))) bc_vm_err(BC_ERR_MATH_NEGATIVE);
2426 if (BC_ERR(BC_NUM_RDX_VAL(a))) bc_vm_err(BC_ERR_MATH_NON_INTEGER);
2427 if (BC_NUM_ZERO(a) || BC_NUM_ONE(a)) return;
2428
2429 cmp = bc_num_cmp(a, &vm.max);
2430
2431 if (cmp <= 0) {
2432
2433 BcRand bits = 0;
2434
2435 if (cmp < 0) bc_num_bigdig2(a, (BcBigDig*) &bits);
2436
2437 // This condition means that bits is a power of 2. In that case, we
2438 // can just grab a full-size int and mask out the unneeded bits.
2439 // Also, this condition says that 0 is a power of 2, which works for
2440 // us, since a value of 0 means a == rng->max. The bitmask will mask
2441 // nothing in that case as well.
2442 if (!(bits & (bits - 1))) r = bc_rand_int(rng) & (bits - 1);
2443 else r = bc_rand_bounded(rng, bits);
2444
2445 // We made sure that r is less than vm.max,
2446 // so we can use bc_num_bigdig2() here.
2447 bc_num_bigdig2num(b, r);
2448
2449 return;
2450 }
2451
2452 // In the case where a is less than rng->max, we have to make sure we have
2453 // an exclusive bound. This ensures that it happens. (See below.)
2454 carry = (cmp < 0);
2455
2456 BC_SIG_LOCK;
2457
2458 bc_num_createCopy(&cp, a);
2459
2460 bc_num_init(&cp2, cp.len);
2461 bc_num_init(&mod, BC_NUM_BIGDIG_LOG10);
2462 bc_num_init(&temp1, BC_NUM_DEF_SIZE);
2463 bc_num_init(&temp2, BC_NUM_DEF_SIZE);
2464 bc_num_init(&pow2, BC_NUM_DEF_SIZE);
2465 bc_num_init(&pow, BC_NUM_DEF_SIZE);
2466 bc_num_one(&pow);
2467 bc_num_setup(&rand, rand_num, sizeof(rand_num) / sizeof(BcDig));
2468
2469 BC_SETJMP_LOCKED(err);
2470
2471 BC_SIG_UNLOCK;
2472
2473 p1 = &pow;
2474 p2 = &pow2;
2475 t1 = &temp1;
2476 t2 = &temp2;
2477 c1 = &cp;
2478 c2 = &cp2;
2479
2480 // This assert is here because it has to be true. It is also here to justify
2481 // the use of BC_ERR_SIGNAL_ONLY() on each of the divmod's and mod's below.
2482 assert(BC_NUM_NONZERO(&vm.max));
2483
2484 while (BC_NUM_NONZERO(c1)) {
2485
2486 bc_num_divmod(c1, &vm.max, c2, &mod, 0);
2487
2488 // Because mod is the mod of vm.max, it is guaranteed to be smaller,
2489 // which means we can use bc_num_bigdig2() here.
2490 bc_num_bigdig(&mod, &modl);
2491
2492 if (bc_num_cmp(c1, &vm.max) < 0) {
2493
2494 // In this case, if there is no carry, then we know we can generate
2495 // an integer *equal* to modl. Thus, we add one if there is no
2496 // carry. Otherwise, we add zero, and we are still bounded properly.
2497 // Since the last portion is guaranteed to be greater than 1, we
2498 // know modl isn't 0 unless there is no carry.
2499 modl += !carry;
2500
2501 if (modl == 1) r = 0;
2502 else if (!modl) r = bc_rand_int(rng);
2503 else r = bc_rand_bounded(rng, (BcRand) modl);
2504 }
2505 else {
2506 if (modl) modl -= carry;
2507 r = bc_rand_int(rng);
2508 carry = (r >= (BcRand) modl);
2509 }
2510
2511 bc_num_bigdig2num(&rand, r);
2512
2513 assert(BC_NUM_RDX_VALID_NP(rand));
2514 assert(BC_NUM_RDX_VALID(p1));
2515
2516 bc_num_mul(&rand, p1, p2, 0);
2517 bc_num_add(p2, t1, t2, 0);
2518
2519 if (BC_NUM_NONZERO(c2)) {
2520
2521 assert(BC_NUM_RDX_VALID_NP(vm.max));
2522 assert(BC_NUM_RDX_VALID(p1));
2523
2524 bc_num_mul(&vm.max, p1, p2, 0);
2525
2526 tmp = p1;
2527 p1 = p2;
2528 p2 = tmp;
2529
2530 tmp = c1;
2531 c1 = c2;
2532 c2 = tmp;
2533 }
2534 else c1 = c2;
2535
2536 tmp = t1;
2537 t1 = t2;
2538 t2 = tmp;
2539 }
2540
2541 bc_num_copy(b, t1);
2542 bc_num_clean(b);
2543
2544 assert(BC_NUM_RDX_VALID(b));
2545
2546 err:
2547 BC_SIG_MAYLOCK;
2548 bc_num_free(&pow);
2549 bc_num_free(&pow2);
2550 bc_num_free(&temp2);
2551 bc_num_free(&temp1);
2552 bc_num_free(&mod);
2553 bc_num_free(&cp2);
2554 bc_num_free(&cp);
2555 BC_LONGJMP_CONT;
2556 }
2557 #endif // BC_ENABLE_EXTRA_MATH && BC_ENABLE_RAND
2558
bc_num_addReq(const BcNum * a,const BcNum * b,size_t scale)2559 size_t bc_num_addReq(const BcNum *a, const BcNum *b, size_t scale) {
2560
2561 size_t aint, bint, ardx, brdx;
2562
2563 BC_UNUSED(scale);
2564
2565 ardx = BC_NUM_RDX_VAL(a);
2566 aint = bc_num_int(a);
2567 assert(aint <= a->len && ardx <= a->len);
2568
2569 brdx = BC_NUM_RDX_VAL(b);
2570 bint = bc_num_int(b);
2571 assert(bint <= b->len && brdx <= b->len);
2572
2573 ardx = BC_MAX(ardx, brdx);
2574 aint = BC_MAX(aint, bint);
2575
2576 return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1);
2577 }
2578
bc_num_mulReq(const BcNum * a,const BcNum * b,size_t scale)2579 size_t bc_num_mulReq(const BcNum *a, const BcNum *b, size_t scale) {
2580 size_t max, rdx;
2581 rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b));
2582 max = BC_NUM_RDX(scale);
2583 max = bc_vm_growSize(BC_MAX(max, rdx), 1);
2584 rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max);
2585 return rdx;
2586 }
2587
bc_num_divReq(const BcNum * a,const BcNum * b,size_t scale)2588 size_t bc_num_divReq(const BcNum *a, const BcNum *b, size_t scale) {
2589 size_t max, rdx;
2590 rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b));
2591 max = BC_NUM_RDX(scale);
2592 max = bc_vm_growSize(BC_MAX(max, rdx), 1);
2593 rdx = bc_vm_growSize(bc_num_int(a), max);
2594 return rdx;
2595 }
2596
bc_num_powReq(const BcNum * a,const BcNum * b,size_t scale)2597 size_t bc_num_powReq(const BcNum *a, const BcNum *b, size_t scale) {
2598 BC_UNUSED(scale);
2599 return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1);
2600 }
2601
2602 #if BC_ENABLE_EXTRA_MATH
bc_num_placesReq(const BcNum * a,const BcNum * b,size_t scale)2603 size_t bc_num_placesReq(const BcNum *a, const BcNum *b, size_t scale) {
2604 BC_UNUSED(scale);
2605 return a->len + b->len - BC_NUM_RDX_VAL(a) - BC_NUM_RDX_VAL(b);
2606 }
2607 #endif // BC_ENABLE_EXTRA_MATH
2608
bc_num_add(BcNum * a,BcNum * b,BcNum * c,size_t scale)2609 void bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2610 assert(BC_NUM_RDX_VALID(a));
2611 assert(BC_NUM_RDX_VALID(b));
2612 bc_num_binary(a, b, c, false, bc_num_as, bc_num_addReq(a, b, scale));
2613 }
2614
bc_num_sub(BcNum * a,BcNum * b,BcNum * c,size_t scale)2615 void bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2616 assert(BC_NUM_RDX_VALID(a));
2617 assert(BC_NUM_RDX_VALID(b));
2618 bc_num_binary(a, b, c, true, bc_num_as, bc_num_addReq(a, b, scale));
2619 }
2620
bc_num_mul(BcNum * a,BcNum * b,BcNum * c,size_t scale)2621 void bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2622 assert(BC_NUM_RDX_VALID(a));
2623 assert(BC_NUM_RDX_VALID(b));
2624 bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale));
2625 }
2626
bc_num_div(BcNum * a,BcNum * b,BcNum * c,size_t scale)2627 void bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2628 assert(BC_NUM_RDX_VALID(a));
2629 assert(BC_NUM_RDX_VALID(b));
2630 bc_num_binary(a, b, c, scale, bc_num_d, bc_num_divReq(a, b, scale));
2631 }
2632
bc_num_mod(BcNum * a,BcNum * b,BcNum * c,size_t scale)2633 void bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2634 assert(BC_NUM_RDX_VALID(a));
2635 assert(BC_NUM_RDX_VALID(b));
2636 bc_num_binary(a, b, c, scale, bc_num_rem, bc_num_divReq(a, b, scale));
2637 }
2638
bc_num_pow(BcNum * a,BcNum * b,BcNum * c,size_t scale)2639 void bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2640 assert(BC_NUM_RDX_VALID(a));
2641 assert(BC_NUM_RDX_VALID(b));
2642 bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale));
2643 }
2644
2645 #if BC_ENABLE_EXTRA_MATH
bc_num_places(BcNum * a,BcNum * b,BcNum * c,size_t scale)2646 void bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2647 assert(BC_NUM_RDX_VALID(a));
2648 assert(BC_NUM_RDX_VALID(b));
2649 bc_num_binary(a, b, c, scale, bc_num_place, bc_num_placesReq(a, b, scale));
2650 }
2651
bc_num_lshift(BcNum * a,BcNum * b,BcNum * c,size_t scale)2652 void bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2653 assert(BC_NUM_RDX_VALID(a));
2654 assert(BC_NUM_RDX_VALID(b));
2655 bc_num_binary(a, b, c, scale, bc_num_left, bc_num_placesReq(a, b, scale));
2656 }
2657
bc_num_rshift(BcNum * a,BcNum * b,BcNum * c,size_t scale)2658 void bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) {
2659 assert(BC_NUM_RDX_VALID(a));
2660 assert(BC_NUM_RDX_VALID(b));
2661 bc_num_binary(a, b, c, scale, bc_num_right, bc_num_placesReq(a, b, scale));
2662 }
2663 #endif // BC_ENABLE_EXTRA_MATH
2664
bc_num_sqrt(BcNum * restrict a,BcNum * restrict b,size_t scale)2665 void bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) {
2666
2667 BcNum num1, num2, half, f, fprime, *x0, *x1, *temp;
2668 size_t pow, len, rdx, req, resscale;
2669 BcDig half_digs[1];
2670
2671 assert(a != NULL && b != NULL && a != b);
2672
2673 if (BC_ERR(BC_NUM_NEG(a))) bc_vm_err(BC_ERR_MATH_NEGATIVE);
2674
2675 if (a->scale > scale) scale = a->scale;
2676
2677 len = bc_vm_growSize(bc_num_intDigits(a), 1);
2678 rdx = BC_NUM_RDX(scale);
2679 req = bc_vm_growSize(BC_MAX(rdx, BC_NUM_RDX_VAL(a)), len >> 1);
2680
2681 BC_SIG_LOCK;
2682
2683 bc_num_init(b, bc_vm_growSize(req, 1));
2684
2685 BC_SIG_UNLOCK;
2686
2687 assert(a != NULL && b != NULL && a != b);
2688 assert(a->num != NULL && b->num != NULL);
2689
2690 if (BC_NUM_ZERO(a)) {
2691 bc_num_setToZero(b, scale);
2692 return;
2693 }
2694 if (BC_NUM_ONE(a)) {
2695 bc_num_one(b);
2696 bc_num_extend(b, scale);
2697 return;
2698 }
2699
2700 rdx = BC_NUM_RDX(scale);
2701 rdx = BC_MAX(rdx, BC_NUM_RDX_VAL(a));
2702 len = bc_vm_growSize(a->len, rdx);
2703
2704 BC_SIG_LOCK;
2705
2706 bc_num_init(&num1, len);
2707 bc_num_init(&num2, len);
2708 bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig));
2709
2710 bc_num_one(&half);
2711 half.num[0] = BC_BASE_POW / 2;
2712 half.len = 1;
2713 BC_NUM_RDX_SET_NP(half, 1);
2714 half.scale = 1;
2715
2716 bc_num_init(&f, len);
2717 bc_num_init(&fprime, len);
2718
2719 BC_SETJMP_LOCKED(err);
2720
2721 BC_SIG_UNLOCK;
2722
2723 x0 = &num1;
2724 x1 = &num2;
2725
2726 bc_num_one(x0);
2727 pow = bc_num_intDigits(a);
2728
2729 if (pow) {
2730
2731 if (pow & 1) x0->num[0] = 2;
2732 else x0->num[0] = 6;
2733
2734 pow -= 2 - (pow & 1);
2735 bc_num_shiftLeft(x0, pow / 2);
2736 }
2737
2738 // I can set the rdx here directly because neg should be false.
2739 x0->scale = x0->rdx = 0;
2740 resscale = (scale + BC_BASE_DIGS) + 2;
2741
2742 while (bc_num_cmp(x1, x0)) {
2743
2744 assert(BC_NUM_NONZERO(x0));
2745
2746 bc_num_div(a, x0, &f, resscale);
2747 bc_num_add(x0, &f, &fprime, resscale);
2748
2749 assert(BC_NUM_RDX_VALID_NP(fprime));
2750 assert(BC_NUM_RDX_VALID_NP(half));
2751
2752 bc_num_mul(&fprime, &half, x1, resscale);
2753
2754 temp = x0;
2755 x0 = x1;
2756 x1 = temp;
2757 }
2758
2759 bc_num_copy(b, x0);
2760 if (b->scale > scale) bc_num_truncate(b, b->scale - scale);
2761
2762 assert(!BC_NUM_NEG(b) || BC_NUM_NONZERO(b));
2763 assert(BC_NUM_RDX_VALID(b));
2764 assert(BC_NUM_RDX_VAL(b) <= b->len || !b->len);
2765 assert(!b->len || b->num[b->len - 1] || BC_NUM_RDX_VAL(b) == b->len);
2766
2767 err:
2768 BC_SIG_MAYLOCK;
2769 bc_num_free(&fprime);
2770 bc_num_free(&f);
2771 bc_num_free(&num2);
2772 bc_num_free(&num1);
2773 BC_LONGJMP_CONT;
2774 }
2775
bc_num_divmod(BcNum * a,BcNum * b,BcNum * c,BcNum * d,size_t scale)2776 void bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) {
2777
2778 size_t ts, len;
2779 BcNum *ptr_a, num2;
2780 bool init = false;
2781
2782 ts = BC_MAX(scale + b->scale, a->scale);
2783 len = bc_num_mulReq(a, b, ts);
2784
2785 assert(a != NULL && b != NULL && c != NULL && d != NULL);
2786 assert(c != d && a != d && b != d && b != c);
2787
2788 if (c == a) {
2789
2790 memcpy(&num2, c, sizeof(BcNum));
2791 ptr_a = &num2;
2792
2793 BC_SIG_LOCK;
2794
2795 bc_num_init(c, len);
2796
2797 init = true;
2798
2799 BC_SETJMP_LOCKED(err);
2800
2801 BC_SIG_UNLOCK;
2802 }
2803 else {
2804 ptr_a = a;
2805 bc_num_expand(c, len);
2806 }
2807
2808 if (BC_NUM_NONZERO(a) && !BC_NUM_RDX_VAL(a) &&
2809 !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale)
2810 {
2811 BcBigDig rem;
2812
2813 bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem);
2814
2815 assert(rem < BC_BASE_POW);
2816
2817 d->num[0] = (BcDig) rem;
2818 d->len = (rem != 0);
2819 }
2820 else bc_num_r(ptr_a, b, c, d, scale, ts);
2821
2822 assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c));
2823 assert(BC_NUM_RDX_VALID(c));
2824 assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len);
2825 assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len);
2826 assert(!BC_NUM_NEG(d) || BC_NUM_NONZERO(d));
2827 assert(BC_NUM_RDX_VALID(d));
2828 assert(BC_NUM_RDX_VAL(d) <= d->len || !d->len);
2829 assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len);
2830
2831 err:
2832 if (init) {
2833 BC_SIG_MAYLOCK;
2834 bc_num_free(&num2);
2835 BC_LONGJMP_CONT;
2836 }
2837 }
2838
2839 #if DC_ENABLED
bc_num_modexp(BcNum * a,BcNum * b,BcNum * c,BcNum * restrict d)2840 void bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) {
2841
2842 BcNum base, exp, two, temp;
2843 BcDig two_digs[2];
2844
2845 assert(a != NULL && b != NULL && c != NULL && d != NULL);
2846 assert(a != d && b != d && c != d);
2847
2848 if (BC_ERR(BC_NUM_ZERO(c))) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO);
2849 if (BC_ERR(BC_NUM_NEG(b))) bc_vm_err(BC_ERR_MATH_NEGATIVE);
2850 if (BC_ERR(BC_NUM_RDX_VAL(a) || BC_NUM_RDX_VAL(b) || BC_NUM_RDX_VAL(c)))
2851 bc_vm_err(BC_ERR_MATH_NON_INTEGER);
2852
2853 bc_num_expand(d, c->len);
2854
2855 BC_SIG_LOCK;
2856
2857 bc_num_init(&base, c->len);
2858 bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig));
2859 bc_num_init(&temp, b->len + 1);
2860 bc_num_createCopy(&exp, b);
2861
2862 BC_SETJMP_LOCKED(err);
2863
2864 BC_SIG_UNLOCK;
2865
2866 bc_num_one(&two);
2867 two.num[0] = 2;
2868 bc_num_one(d);
2869
2870 // We already checked for 0.
2871 bc_num_rem(a, c, &base, 0);
2872
2873 while (BC_NUM_NONZERO(&exp)) {
2874
2875 // Num two cannot be 0, so no errors.
2876 bc_num_divmod(&exp, &two, &exp, &temp, 0);
2877
2878 if (BC_NUM_ONE(&temp) && !BC_NUM_NEG_NP(temp)) {
2879
2880 assert(BC_NUM_RDX_VALID(d));
2881 assert(BC_NUM_RDX_VALID_NP(base));
2882
2883 bc_num_mul(d, &base, &temp, 0);
2884
2885 // We already checked for 0.
2886 bc_num_rem(&temp, c, d, 0);
2887 }
2888
2889 assert(BC_NUM_RDX_VALID_NP(base));
2890
2891 bc_num_mul(&base, &base, &temp, 0);
2892
2893 // We already checked for 0.
2894 bc_num_rem(&temp, c, &base, 0);
2895 }
2896
2897 err:
2898 BC_SIG_MAYLOCK;
2899 bc_num_free(&exp);
2900 bc_num_free(&temp);
2901 bc_num_free(&base);
2902 BC_LONGJMP_CONT;
2903 assert(!BC_NUM_NEG(d) || d->len);
2904 assert(BC_NUM_RDX_VALID(d));
2905 assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len);
2906 }
2907 #endif // DC_ENABLED
2908
2909 #if BC_DEBUG_CODE
bc_num_printDebug(const BcNum * n,const char * name,bool emptyline)2910 void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) {
2911 bc_file_puts(&vm.fout, bc_flush_none, name);
2912 bc_file_puts(&vm.fout, bc_flush_none, ": ");
2913 bc_num_printDecimal(n);
2914 bc_file_putchar(&vm.fout, bc_flush_err, '\n');
2915 if (emptyline) bc_file_putchar(&vm.fout, bc_flush_err, '\n');
2916 vm.nchars = 0;
2917 }
2918
bc_num_printDigs(const BcDig * n,size_t len,bool emptyline)2919 void bc_num_printDigs(const BcDig *n, size_t len, bool emptyline) {
2920
2921 size_t i;
2922
2923 for (i = len - 1; i < len; --i)
2924 bc_file_printf(&vm.fout, " %lu", (unsigned long) n[i]);
2925
2926 bc_file_putchar(&vm.fout, bc_flush_err, '\n');
2927 if (emptyline) bc_file_putchar(&vm.fout, bc_flush_err, '\n');
2928 vm.nchars = 0;
2929 }
2930
bc_num_printWithDigs(const BcNum * n,const char * name,bool emptyline)2931 void bc_num_printWithDigs(const BcNum *n, const char *name, bool emptyline) {
2932 bc_file_puts(&vm.fout, bc_flush_none, name);
2933 bc_file_printf(&vm.fout, " len: %zu, rdx: %zu, scale: %zu\n",
2934 name, n->len, BC_NUM_RDX_VAL(n), n->scale);
2935 bc_num_printDigs(n->num, n->len, emptyline);
2936 }
2937
bc_num_dump(const char * varname,const BcNum * n)2938 void bc_num_dump(const char *varname, const BcNum *n) {
2939
2940 ulong i, scale = n->scale;
2941
2942 bc_file_printf(&vm.ferr, "\n%s = %s", varname,
2943 n->len ? (BC_NUM_NEG(n) ? "-" : "+") : "0 ");
2944
2945 for (i = n->len - 1; i < n->len; --i) {
2946
2947 if (i + 1 == BC_NUM_RDX_VAL(n))
2948 bc_file_puts(&vm.ferr, bc_flush_none, ". ");
2949
2950 if (scale / BC_BASE_DIGS != BC_NUM_RDX_VAL(n) - i - 1)
2951 bc_file_printf(&vm.ferr, "%lu ", (unsigned long) n->num[i]);
2952 else {
2953
2954 int mod = scale % BC_BASE_DIGS;
2955 int d = BC_BASE_DIGS - mod;
2956 BcDig div;
2957
2958 if (mod != 0) {
2959 div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]);
2960 bc_file_printf(&vm.ferr, "%lu", (unsigned long) div);
2961 }
2962
2963 div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]);
2964 bc_file_printf(&vm.ferr, " ' %lu ", (unsigned long) div);
2965 }
2966 }
2967
2968 bc_file_printf(&vm.ferr, "(%zu | %zu.%zu / %zu) %lu\n",
2969 n->scale, n->len, BC_NUM_RDX_VAL(n), n->cap,
2970 (unsigned long) (void*) n->num);
2971
2972 bc_file_flush(&vm.ferr, bc_flush_err);
2973 }
2974 #endif // BC_DEBUG_CODE
2975