1 /* Copyright 2014 Google Inc. All Rights Reserved.
2
3 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6
7 /* Brotli bit stream functions to support the low level format. There are no
8 compression algorithms here, just the right ordering of bits to match the
9 specs. */
10
11 #include "./brotli_bit_stream.h"
12
13 #include <string.h> /* memcpy, memset */
14
15 #include "../common/constants.h"
16 #include "../common/context.h"
17 #include "../common/platform.h"
18 #include <brotli/types.h>
19 #include "./entropy_encode.h"
20 #include "./entropy_encode_static.h"
21 #include "./fast_log.h"
22 #include "./histogram.h"
23 #include "./memory.h"
24 #include "./write_bits.h"
25
26 #if defined(__cplusplus) || defined(c_plusplus)
27 extern "C" {
28 #endif
29
30 #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1)
31 /* The maximum size of Huffman dictionary for distances assuming that
32 NPOSTFIX = 0 and NDIRECT = 0. */
33 #define MAX_SIMPLE_DISTANCE_ALPHABET_SIZE \
34 BROTLI_DISTANCE_ALPHABET_SIZE(0, 0, BROTLI_LARGE_MAX_DISTANCE_BITS)
35 /* MAX_SIMPLE_DISTANCE_ALPHABET_SIZE == 140 */
36
BlockLengthPrefixCode(uint32_t len)37 static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) {
38 uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0);
39 while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) &&
40 len >= _kBrotliPrefixCodeRanges[code + 1].offset) ++code;
41 return code;
42 }
43
GetBlockLengthPrefixCode(uint32_t len,size_t * code,uint32_t * n_extra,uint32_t * extra)44 static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code,
45 uint32_t* n_extra, uint32_t* extra) {
46 *code = BlockLengthPrefixCode(len);
47 *n_extra = _kBrotliPrefixCodeRanges[*code].nbits;
48 *extra = len - _kBrotliPrefixCodeRanges[*code].offset;
49 }
50
51 typedef struct BlockTypeCodeCalculator {
52 size_t last_type;
53 size_t second_last_type;
54 } BlockTypeCodeCalculator;
55
InitBlockTypeCodeCalculator(BlockTypeCodeCalculator * self)56 static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) {
57 self->last_type = 1;
58 self->second_last_type = 0;
59 }
60
NextBlockTypeCode(BlockTypeCodeCalculator * calculator,uint8_t type)61 static BROTLI_INLINE size_t NextBlockTypeCode(
62 BlockTypeCodeCalculator* calculator, uint8_t type) {
63 size_t type_code = (type == calculator->last_type + 1) ? 1u :
64 (type == calculator->second_last_type) ? 0u : type + 2u;
65 calculator->second_last_type = calculator->last_type;
66 calculator->last_type = type;
67 return type_code;
68 }
69
70 /* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3)
71 REQUIRES: length > 0
72 REQUIRES: length <= (1 << 24) */
BrotliEncodeMlen(size_t length,uint64_t * bits,size_t * numbits,uint64_t * nibblesbits)73 static void BrotliEncodeMlen(size_t length, uint64_t* bits,
74 size_t* numbits, uint64_t* nibblesbits) {
75 size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1;
76 size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
77 BROTLI_DCHECK(length > 0);
78 BROTLI_DCHECK(length <= (1 << 24));
79 BROTLI_DCHECK(lg <= 24);
80 *nibblesbits = mnibbles - 4;
81 *numbits = mnibbles * 4;
82 *bits = length - 1;
83 }
84
StoreCommandExtra(const Command * cmd,size_t * storage_ix,uint8_t * storage)85 static BROTLI_INLINE void StoreCommandExtra(
86 const Command* cmd, size_t* storage_ix, uint8_t* storage) {
87 uint32_t copylen_code = CommandCopyLenCode(cmd);
88 uint16_t inscode = GetInsertLengthCode(cmd->insert_len_);
89 uint16_t copycode = GetCopyLengthCode(copylen_code);
90 uint32_t insnumextra = GetInsertExtra(inscode);
91 uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode);
92 uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
93 uint64_t bits = (copyextraval << insnumextra) | insextraval;
94 BrotliWriteBits(
95 insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
96 }
97
98 /* Data structure that stores almost everything that is needed to encode each
99 block switch command. */
100 typedef struct BlockSplitCode {
101 BlockTypeCodeCalculator type_code_calculator;
102 uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
103 uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
104 uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
105 uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
106 } BlockSplitCode;
107
108 /* Stores a number between 0 and 255. */
StoreVarLenUint8(size_t n,size_t * storage_ix,uint8_t * storage)109 static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
110 if (n == 0) {
111 BrotliWriteBits(1, 0, storage_ix, storage);
112 } else {
113 size_t nbits = Log2FloorNonZero(n);
114 BrotliWriteBits(1, 1, storage_ix, storage);
115 BrotliWriteBits(3, nbits, storage_ix, storage);
116 BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage);
117 }
118 }
119
120 /* Stores the compressed meta-block header.
121 REQUIRES: length > 0
122 REQUIRES: length <= (1 << 24) */
StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,size_t length,size_t * storage_ix,uint8_t * storage)123 static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,
124 size_t length,
125 size_t* storage_ix,
126 uint8_t* storage) {
127 uint64_t lenbits;
128 size_t nlenbits;
129 uint64_t nibblesbits;
130
131 /* Write ISLAST bit. */
132 BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage);
133 /* Write ISEMPTY bit. */
134 if (is_final_block) {
135 BrotliWriteBits(1, 0, storage_ix, storage);
136 }
137
138 BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
139 BrotliWriteBits(2, nibblesbits, storage_ix, storage);
140 BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
141
142 if (!is_final_block) {
143 /* Write ISUNCOMPRESSED bit. */
144 BrotliWriteBits(1, 0, storage_ix, storage);
145 }
146 }
147
148 /* Stores the uncompressed meta-block header.
149 REQUIRES: length > 0
150 REQUIRES: length <= (1 << 24) */
BrotliStoreUncompressedMetaBlockHeader(size_t length,size_t * storage_ix,uint8_t * storage)151 static void BrotliStoreUncompressedMetaBlockHeader(size_t length,
152 size_t* storage_ix,
153 uint8_t* storage) {
154 uint64_t lenbits;
155 size_t nlenbits;
156 uint64_t nibblesbits;
157
158 /* Write ISLAST bit.
159 Uncompressed block cannot be the last one, so set to 0. */
160 BrotliWriteBits(1, 0, storage_ix, storage);
161 BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
162 BrotliWriteBits(2, nibblesbits, storage_ix, storage);
163 BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
164 /* Write ISUNCOMPRESSED bit. */
165 BrotliWriteBits(1, 1, storage_ix, storage);
166 }
167
BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(const int num_codes,const uint8_t * code_length_bitdepth,size_t * storage_ix,uint8_t * storage)168 static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(
169 const int num_codes, const uint8_t* code_length_bitdepth,
170 size_t* storage_ix, uint8_t* storage) {
171 static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = {
172 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
173 };
174 /* The bit lengths of the Huffman code over the code length alphabet
175 are compressed with the following static Huffman code:
176 Symbol Code
177 ------ ----
178 0 00
179 1 1110
180 2 110
181 3 01
182 4 10
183 5 1111 */
184 static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
185 0, 7, 3, 2, 1, 15
186 };
187 static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
188 2, 4, 3, 2, 2, 4
189 };
190
191 size_t skip_some = 0; /* skips none. */
192
193 /* Throw away trailing zeros: */
194 size_t codes_to_store = BROTLI_CODE_LENGTH_CODES;
195 if (num_codes > 1) {
196 for (; codes_to_store > 0; --codes_to_store) {
197 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
198 break;
199 }
200 }
201 }
202 if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
203 code_length_bitdepth[kStorageOrder[1]] == 0) {
204 skip_some = 2; /* skips two. */
205 if (code_length_bitdepth[kStorageOrder[2]] == 0) {
206 skip_some = 3; /* skips three. */
207 }
208 }
209 BrotliWriteBits(2, skip_some, storage_ix, storage);
210 {
211 size_t i;
212 for (i = skip_some; i < codes_to_store; ++i) {
213 size_t l = code_length_bitdepth[kStorageOrder[i]];
214 BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
215 kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
216 }
217 }
218 }
219
BrotliStoreHuffmanTreeToBitMask(const size_t huffman_tree_size,const uint8_t * huffman_tree,const uint8_t * huffman_tree_extra_bits,const uint8_t * code_length_bitdepth,const uint16_t * code_length_bitdepth_symbols,size_t * BROTLI_RESTRICT storage_ix,uint8_t * BROTLI_RESTRICT storage)220 static void BrotliStoreHuffmanTreeToBitMask(
221 const size_t huffman_tree_size, const uint8_t* huffman_tree,
222 const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth,
223 const uint16_t* code_length_bitdepth_symbols,
224 size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) {
225 size_t i;
226 for (i = 0; i < huffman_tree_size; ++i) {
227 size_t ix = huffman_tree[i];
228 BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
229 storage_ix, storage);
230 /* Extra bits */
231 switch (ix) {
232 case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH:
233 BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
234 break;
235 case BROTLI_REPEAT_ZERO_CODE_LENGTH:
236 BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
237 break;
238 }
239 }
240 }
241
StoreSimpleHuffmanTree(const uint8_t * depths,size_t symbols[4],size_t num_symbols,size_t max_bits,size_t * storage_ix,uint8_t * storage)242 static void StoreSimpleHuffmanTree(const uint8_t* depths,
243 size_t symbols[4],
244 size_t num_symbols,
245 size_t max_bits,
246 size_t* storage_ix, uint8_t* storage) {
247 /* value of 1 indicates a simple Huffman code */
248 BrotliWriteBits(2, 1, storage_ix, storage);
249 BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */
250
251 {
252 /* Sort */
253 size_t i;
254 for (i = 0; i < num_symbols; i++) {
255 size_t j;
256 for (j = i + 1; j < num_symbols; j++) {
257 if (depths[symbols[j]] < depths[symbols[i]]) {
258 BROTLI_SWAP(size_t, symbols, j, i);
259 }
260 }
261 }
262 }
263
264 if (num_symbols == 2) {
265 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
266 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
267 } else if (num_symbols == 3) {
268 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
269 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
270 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
271 } else {
272 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
273 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
274 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
275 BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
276 /* tree-select */
277 BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
278 }
279 }
280
281 /* num = alphabet size
282 depths = symbol depths */
BrotliStoreHuffmanTree(const uint8_t * depths,size_t num,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)283 void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num,
284 HuffmanTree* tree,
285 size_t* storage_ix, uint8_t* storage) {
286 /* Write the Huffman tree into the brotli-representation.
287 The command alphabet is the largest, so this allocation will fit all
288 alphabets. */
289 uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS];
290 uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS];
291 size_t huffman_tree_size = 0;
292 uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 };
293 uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES];
294 uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 };
295 size_t i;
296 int num_codes = 0;
297 size_t code = 0;
298
299 BROTLI_DCHECK(num <= BROTLI_NUM_COMMAND_SYMBOLS);
300
301 BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
302 huffman_tree_extra_bits);
303
304 /* Calculate the statistics of the Huffman tree in brotli-representation. */
305 for (i = 0; i < huffman_tree_size; ++i) {
306 ++huffman_tree_histogram[huffman_tree[i]];
307 }
308
309 for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) {
310 if (huffman_tree_histogram[i]) {
311 if (num_codes == 0) {
312 code = i;
313 num_codes = 1;
314 } else if (num_codes == 1) {
315 num_codes = 2;
316 break;
317 }
318 }
319 }
320
321 /* Calculate another Huffman tree to use for compressing both the
322 earlier Huffman tree with. */
323 BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES,
324 5, tree, code_length_bitdepth);
325 BrotliConvertBitDepthsToSymbols(code_length_bitdepth,
326 BROTLI_CODE_LENGTH_CODES,
327 code_length_bitdepth_symbols);
328
329 /* Now, we have all the data, let's start storing it */
330 BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
331 storage_ix, storage);
332
333 if (num_codes == 1) {
334 code_length_bitdepth[code] = 0;
335 }
336
337 /* Store the real Huffman tree now. */
338 BrotliStoreHuffmanTreeToBitMask(huffman_tree_size,
339 huffman_tree,
340 huffman_tree_extra_bits,
341 code_length_bitdepth,
342 code_length_bitdepth_symbols,
343 storage_ix, storage);
344 }
345
346 /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and
347 bits[0:length] and stores the encoded tree to the bit stream. */
BuildAndStoreHuffmanTree(const uint32_t * histogram,const size_t histogram_length,const size_t alphabet_size,HuffmanTree * tree,uint8_t * depth,uint16_t * bits,size_t * storage_ix,uint8_t * storage)348 static void BuildAndStoreHuffmanTree(const uint32_t* histogram,
349 const size_t histogram_length,
350 const size_t alphabet_size,
351 HuffmanTree* tree,
352 uint8_t* depth,
353 uint16_t* bits,
354 size_t* storage_ix,
355 uint8_t* storage) {
356 size_t count = 0;
357 size_t s4[4] = { 0 };
358 size_t i;
359 size_t max_bits = 0;
360 for (i = 0; i < histogram_length; i++) {
361 if (histogram[i]) {
362 if (count < 4) {
363 s4[count] = i;
364 } else if (count > 4) {
365 break;
366 }
367 count++;
368 }
369 }
370
371 {
372 size_t max_bits_counter = alphabet_size - 1;
373 while (max_bits_counter) {
374 max_bits_counter >>= 1;
375 ++max_bits;
376 }
377 }
378
379 if (count <= 1) {
380 BrotliWriteBits(4, 1, storage_ix, storage);
381 BrotliWriteBits(max_bits, s4[0], storage_ix, storage);
382 depth[s4[0]] = 0;
383 bits[s4[0]] = 0;
384 return;
385 }
386
387 memset(depth, 0, histogram_length * sizeof(depth[0]));
388 BrotliCreateHuffmanTree(histogram, histogram_length, 15, tree, depth);
389 BrotliConvertBitDepthsToSymbols(depth, histogram_length, bits);
390
391 if (count <= 4) {
392 StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
393 } else {
394 BrotliStoreHuffmanTree(depth, histogram_length, tree, storage_ix, storage);
395 }
396 }
397
SortHuffmanTree(const HuffmanTree * v0,const HuffmanTree * v1)398 static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
399 const HuffmanTree* v0, const HuffmanTree* v1) {
400 return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
401 }
402
BrotliBuildAndStoreHuffmanTreeFast(MemoryManager * m,const uint32_t * histogram,const size_t histogram_total,const size_t max_bits,uint8_t * depth,uint16_t * bits,size_t * storage_ix,uint8_t * storage)403 void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m,
404 const uint32_t* histogram,
405 const size_t histogram_total,
406 const size_t max_bits,
407 uint8_t* depth, uint16_t* bits,
408 size_t* storage_ix,
409 uint8_t* storage) {
410 size_t count = 0;
411 size_t symbols[4] = { 0 };
412 size_t length = 0;
413 size_t total = histogram_total;
414 while (total != 0) {
415 if (histogram[length]) {
416 if (count < 4) {
417 symbols[count] = length;
418 }
419 ++count;
420 total -= histogram[length];
421 }
422 ++length;
423 }
424
425 if (count <= 1) {
426 BrotliWriteBits(4, 1, storage_ix, storage);
427 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
428 depth[symbols[0]] = 0;
429 bits[symbols[0]] = 0;
430 return;
431 }
432
433 memset(depth, 0, length * sizeof(depth[0]));
434 {
435 const size_t max_tree_size = 2 * length + 1;
436 HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size);
437 uint32_t count_limit;
438 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(tree)) return;
439 for (count_limit = 1; ; count_limit *= 2) {
440 HuffmanTree* node = tree;
441 size_t l;
442 for (l = length; l != 0;) {
443 --l;
444 if (histogram[l]) {
445 if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) {
446 InitHuffmanTree(node, histogram[l], -1, (int16_t)l);
447 } else {
448 InitHuffmanTree(node, count_limit, -1, (int16_t)l);
449 }
450 ++node;
451 }
452 }
453 {
454 const int n = (int)(node - tree);
455 HuffmanTree sentinel;
456 int i = 0; /* Points to the next leaf node. */
457 int j = n + 1; /* Points to the next non-leaf node. */
458 int k;
459
460 SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree);
461 /* The nodes are:
462 [0, n): the sorted leaf nodes that we start with.
463 [n]: we add a sentinel here.
464 [n + 1, 2n): new parent nodes are added here, starting from
465 (n+1). These are naturally in ascending order.
466 [2n]: we add a sentinel at the end as well.
467 There will be (2n+1) elements at the end. */
468 InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
469 *node++ = sentinel;
470 *node++ = sentinel;
471
472 for (k = n - 1; k > 0; --k) {
473 int left, right;
474 if (tree[i].total_count_ <= tree[j].total_count_) {
475 left = i;
476 ++i;
477 } else {
478 left = j;
479 ++j;
480 }
481 if (tree[i].total_count_ <= tree[j].total_count_) {
482 right = i;
483 ++i;
484 } else {
485 right = j;
486 ++j;
487 }
488 /* The sentinel node becomes the parent node. */
489 node[-1].total_count_ =
490 tree[left].total_count_ + tree[right].total_count_;
491 node[-1].index_left_ = (int16_t)left;
492 node[-1].index_right_or_value_ = (int16_t)right;
493 /* Add back the last sentinel node. */
494 *node++ = sentinel;
495 }
496 if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) {
497 /* We need to pack the Huffman tree in 14 bits. If this was not
498 successful, add fake entities to the lowest values and retry. */
499 break;
500 }
501 }
502 }
503 BROTLI_FREE(m, tree);
504 }
505 BrotliConvertBitDepthsToSymbols(depth, length, bits);
506 if (count <= 4) {
507 size_t i;
508 /* value of 1 indicates a simple Huffman code */
509 BrotliWriteBits(2, 1, storage_ix, storage);
510 BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */
511
512 /* Sort */
513 for (i = 0; i < count; i++) {
514 size_t j;
515 for (j = i + 1; j < count; j++) {
516 if (depth[symbols[j]] < depth[symbols[i]]) {
517 BROTLI_SWAP(size_t, symbols, j, i);
518 }
519 }
520 }
521
522 if (count == 2) {
523 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
524 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
525 } else if (count == 3) {
526 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
527 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
528 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
529 } else {
530 BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
531 BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
532 BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
533 BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
534 /* tree-select */
535 BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
536 }
537 } else {
538 uint8_t previous_value = 8;
539 size_t i;
540 /* Complex Huffman Tree */
541 StoreStaticCodeLengthCode(storage_ix, storage);
542
543 /* Actual RLE coding. */
544 for (i = 0; i < length;) {
545 const uint8_t value = depth[i];
546 size_t reps = 1;
547 size_t k;
548 for (k = i + 1; k < length && depth[k] == value; ++k) {
549 ++reps;
550 }
551 i += reps;
552 if (value == 0) {
553 BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
554 storage_ix, storage);
555 } else {
556 if (previous_value != value) {
557 BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
558 storage_ix, storage);
559 --reps;
560 }
561 if (reps < 3) {
562 while (reps != 0) {
563 reps--;
564 BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
565 storage_ix, storage);
566 }
567 } else {
568 reps -= 3;
569 BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
570 storage_ix, storage);
571 }
572 previous_value = value;
573 }
574 }
575 }
576 }
577
IndexOf(const uint8_t * v,size_t v_size,uint8_t value)578 static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
579 size_t i = 0;
580 for (; i < v_size; ++i) {
581 if (v[i] == value) return i;
582 }
583 return i;
584 }
585
MoveToFront(uint8_t * v,size_t index)586 static void MoveToFront(uint8_t* v, size_t index) {
587 uint8_t value = v[index];
588 size_t i;
589 for (i = index; i != 0; --i) {
590 v[i] = v[i - 1];
591 }
592 v[0] = value;
593 }
594
MoveToFrontTransform(const uint32_t * BROTLI_RESTRICT v_in,const size_t v_size,uint32_t * v_out)595 static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in,
596 const size_t v_size,
597 uint32_t* v_out) {
598 size_t i;
599 uint8_t mtf[256];
600 uint32_t max_value;
601 if (v_size == 0) {
602 return;
603 }
604 max_value = v_in[0];
605 for (i = 1; i < v_size; ++i) {
606 if (v_in[i] > max_value) max_value = v_in[i];
607 }
608 BROTLI_DCHECK(max_value < 256u);
609 for (i = 0; i <= max_value; ++i) {
610 mtf[i] = (uint8_t)i;
611 }
612 {
613 size_t mtf_size = max_value + 1;
614 for (i = 0; i < v_size; ++i) {
615 size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]);
616 BROTLI_DCHECK(index < mtf_size);
617 v_out[i] = (uint32_t)index;
618 MoveToFront(mtf, index);
619 }
620 }
621 }
622
623 /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
624 the run length plus extra bits (lower 9 bits is the prefix code and the rest
625 are the extra bits). Non-zero values in v[] are shifted by
626 *max_length_prefix. Will not create prefix codes bigger than the initial
627 value of *max_run_length_prefix. The prefix code of run length L is simply
628 Log2Floor(L) and the number of extra bits is the same as the prefix code. */
RunLengthCodeZeros(const size_t in_size,uint32_t * BROTLI_RESTRICT v,size_t * BROTLI_RESTRICT out_size,uint32_t * BROTLI_RESTRICT max_run_length_prefix)629 static void RunLengthCodeZeros(const size_t in_size,
630 uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size,
631 uint32_t* BROTLI_RESTRICT max_run_length_prefix) {
632 uint32_t max_reps = 0;
633 size_t i;
634 uint32_t max_prefix;
635 for (i = 0; i < in_size;) {
636 uint32_t reps = 0;
637 for (; i < in_size && v[i] != 0; ++i) ;
638 for (; i < in_size && v[i] == 0; ++i) {
639 ++reps;
640 }
641 max_reps = BROTLI_MAX(uint32_t, reps, max_reps);
642 }
643 max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
644 max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix);
645 *max_run_length_prefix = max_prefix;
646 *out_size = 0;
647 for (i = 0; i < in_size;) {
648 BROTLI_DCHECK(*out_size <= i);
649 if (v[i] != 0) {
650 v[*out_size] = v[i] + *max_run_length_prefix;
651 ++i;
652 ++(*out_size);
653 } else {
654 uint32_t reps = 1;
655 size_t k;
656 for (k = i + 1; k < in_size && v[k] == 0; ++k) {
657 ++reps;
658 }
659 i += reps;
660 while (reps != 0) {
661 if (reps < (2u << max_prefix)) {
662 uint32_t run_length_prefix = Log2FloorNonZero(reps);
663 const uint32_t extra_bits = reps - (1u << run_length_prefix);
664 v[*out_size] = run_length_prefix + (extra_bits << 9);
665 ++(*out_size);
666 break;
667 } else {
668 const uint32_t extra_bits = (1u << max_prefix) - 1u;
669 v[*out_size] = max_prefix + (extra_bits << 9);
670 reps -= (2u << max_prefix) - 1u;
671 ++(*out_size);
672 }
673 }
674 }
675 }
676 }
677
678 #define SYMBOL_BITS 9
679
EncodeContextMap(MemoryManager * m,const uint32_t * context_map,size_t context_map_size,size_t num_clusters,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)680 static void EncodeContextMap(MemoryManager* m,
681 const uint32_t* context_map,
682 size_t context_map_size,
683 size_t num_clusters,
684 HuffmanTree* tree,
685 size_t* storage_ix, uint8_t* storage) {
686 size_t i;
687 uint32_t* rle_symbols;
688 uint32_t max_run_length_prefix = 6;
689 size_t num_rle_symbols = 0;
690 uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
691 static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u;
692 uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
693 uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
694
695 StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
696
697 if (num_clusters == 1) {
698 return;
699 }
700
701 rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size);
702 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(rle_symbols)) return;
703 MoveToFrontTransform(context_map, context_map_size, rle_symbols);
704 RunLengthCodeZeros(context_map_size, rle_symbols,
705 &num_rle_symbols, &max_run_length_prefix);
706 memset(histogram, 0, sizeof(histogram));
707 for (i = 0; i < num_rle_symbols; ++i) {
708 ++histogram[rle_symbols[i] & kSymbolMask];
709 }
710 {
711 BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0);
712 BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage);
713 if (use_rle) {
714 BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
715 }
716 }
717 BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
718 num_clusters + max_run_length_prefix,
719 tree, depths, bits, storage_ix, storage);
720 for (i = 0; i < num_rle_symbols; ++i) {
721 const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
722 const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS;
723 BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
724 if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
725 BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
726 }
727 }
728 BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */
729 BROTLI_FREE(m, rle_symbols);
730 }
731
732 /* Stores the block switch command with index block_ix to the bit stream. */
StoreBlockSwitch(BlockSplitCode * code,const uint32_t block_len,const uint8_t block_type,BROTLI_BOOL is_first_block,size_t * storage_ix,uint8_t * storage)733 static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code,
734 const uint32_t block_len,
735 const uint8_t block_type,
736 BROTLI_BOOL is_first_block,
737 size_t* storage_ix,
738 uint8_t* storage) {
739 size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type);
740 size_t lencode;
741 uint32_t len_nextra;
742 uint32_t len_extra;
743 if (!is_first_block) {
744 BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode],
745 storage_ix, storage);
746 }
747 GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra);
748
749 BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode],
750 storage_ix, storage);
751 BrotliWriteBits(len_nextra, len_extra, storage_ix, storage);
752 }
753
754 /* Builds a BlockSplitCode data structure from the block split given by the
755 vector of block types and block lengths and stores it to the bit stream. */
BuildAndStoreBlockSplitCode(const uint8_t * types,const uint32_t * lengths,const size_t num_blocks,const size_t num_types,HuffmanTree * tree,BlockSplitCode * code,size_t * storage_ix,uint8_t * storage)756 static void BuildAndStoreBlockSplitCode(const uint8_t* types,
757 const uint32_t* lengths,
758 const size_t num_blocks,
759 const size_t num_types,
760 HuffmanTree* tree,
761 BlockSplitCode* code,
762 size_t* storage_ix,
763 uint8_t* storage) {
764 uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
765 uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
766 size_t i;
767 BlockTypeCodeCalculator type_code_calculator;
768 memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
769 memset(length_histo, 0, sizeof(length_histo));
770 InitBlockTypeCodeCalculator(&type_code_calculator);
771 for (i = 0; i < num_blocks; ++i) {
772 size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]);
773 if (i != 0) ++type_histo[type_code];
774 ++length_histo[BlockLengthPrefixCode(lengths[i])];
775 }
776 StoreVarLenUint8(num_types - 1, storage_ix, storage);
777 if (num_types > 1) { /* TODO: else? could StoreBlockSwitch occur? */
778 BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, num_types + 2, tree,
779 &code->type_depths[0], &code->type_bits[0],
780 storage_ix, storage);
781 BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS,
782 BROTLI_NUM_BLOCK_LEN_SYMBOLS,
783 tree, &code->length_depths[0],
784 &code->length_bits[0], storage_ix, storage);
785 StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage);
786 }
787 }
788
789 /* Stores a context map where the histogram type is always the block type. */
StoreTrivialContextMap(size_t num_types,size_t context_bits,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)790 static void StoreTrivialContextMap(size_t num_types,
791 size_t context_bits,
792 HuffmanTree* tree,
793 size_t* storage_ix,
794 uint8_t* storage) {
795 StoreVarLenUint8(num_types - 1, storage_ix, storage);
796 if (num_types > 1) {
797 size_t repeat_code = context_bits - 1u;
798 size_t repeat_bits = (1u << repeat_code) - 1u;
799 size_t alphabet_size = num_types + repeat_code;
800 uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
801 uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
802 uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
803 size_t i;
804 memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
805 /* Write RLEMAX. */
806 BrotliWriteBits(1, 1, storage_ix, storage);
807 BrotliWriteBits(4, repeat_code - 1, storage_ix, storage);
808 histogram[repeat_code] = (uint32_t)num_types;
809 histogram[0] = 1;
810 for (i = context_bits; i < alphabet_size; ++i) {
811 histogram[i] = 1;
812 }
813 BuildAndStoreHuffmanTree(histogram, alphabet_size, alphabet_size,
814 tree, depths, bits, storage_ix, storage);
815 for (i = 0; i < num_types; ++i) {
816 size_t code = (i == 0 ? 0 : i + context_bits - 1);
817 BrotliWriteBits(depths[code], bits[code], storage_ix, storage);
818 BrotliWriteBits(
819 depths[repeat_code], bits[repeat_code], storage_ix, storage);
820 BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage);
821 }
822 /* Write IMTF (inverse-move-to-front) bit. */
823 BrotliWriteBits(1, 1, storage_ix, storage);
824 }
825 }
826
827 /* Manages the encoding of one block category (literal, command or distance). */
828 typedef struct BlockEncoder {
829 size_t histogram_length_;
830 size_t num_block_types_;
831 const uint8_t* block_types_; /* Not owned. */
832 const uint32_t* block_lengths_; /* Not owned. */
833 size_t num_blocks_;
834 BlockSplitCode block_split_code_;
835 size_t block_ix_;
836 size_t block_len_;
837 size_t entropy_ix_;
838 uint8_t* depths_;
839 uint16_t* bits_;
840 } BlockEncoder;
841
InitBlockEncoder(BlockEncoder * self,size_t histogram_length,size_t num_block_types,const uint8_t * block_types,const uint32_t * block_lengths,const size_t num_blocks)842 static void InitBlockEncoder(BlockEncoder* self, size_t histogram_length,
843 size_t num_block_types, const uint8_t* block_types,
844 const uint32_t* block_lengths, const size_t num_blocks) {
845 self->histogram_length_ = histogram_length;
846 self->num_block_types_ = num_block_types;
847 self->block_types_ = block_types;
848 self->block_lengths_ = block_lengths;
849 self->num_blocks_ = num_blocks;
850 InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator);
851 self->block_ix_ = 0;
852 self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0];
853 self->entropy_ix_ = 0;
854 self->depths_ = 0;
855 self->bits_ = 0;
856 }
857
CleanupBlockEncoder(MemoryManager * m,BlockEncoder * self)858 static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) {
859 BROTLI_FREE(m, self->depths_);
860 BROTLI_FREE(m, self->bits_);
861 }
862
863 /* Creates entropy codes of block lengths and block types and stores them
864 to the bit stream. */
BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder * self,HuffmanTree * tree,size_t * storage_ix,uint8_t * storage)865 static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self,
866 HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) {
867 BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_,
868 self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_,
869 storage_ix, storage);
870 }
871
872 /* Stores the next symbol with the entropy code of the current block type.
873 Updates the block type and block length at block boundaries. */
StoreSymbol(BlockEncoder * self,size_t symbol,size_t * storage_ix,uint8_t * storage)874 static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix,
875 uint8_t* storage) {
876 if (self->block_len_ == 0) {
877 size_t block_ix = ++self->block_ix_;
878 uint32_t block_len = self->block_lengths_[block_ix];
879 uint8_t block_type = self->block_types_[block_ix];
880 self->block_len_ = block_len;
881 self->entropy_ix_ = block_type * self->histogram_length_;
882 StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
883 storage_ix, storage);
884 }
885 --self->block_len_;
886 {
887 size_t ix = self->entropy_ix_ + symbol;
888 BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
889 }
890 }
891
892 /* Stores the next symbol with the entropy code of the current block type and
893 context value.
894 Updates the block type and block length at block boundaries. */
StoreSymbolWithContext(BlockEncoder * self,size_t symbol,size_t context,const uint32_t * context_map,size_t * storage_ix,uint8_t * storage,const size_t context_bits)895 static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol,
896 size_t context, const uint32_t* context_map, size_t* storage_ix,
897 uint8_t* storage, const size_t context_bits) {
898 if (self->block_len_ == 0) {
899 size_t block_ix = ++self->block_ix_;
900 uint32_t block_len = self->block_lengths_[block_ix];
901 uint8_t block_type = self->block_types_[block_ix];
902 self->block_len_ = block_len;
903 self->entropy_ix_ = (size_t)block_type << context_bits;
904 StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
905 storage_ix, storage);
906 }
907 --self->block_len_;
908 {
909 size_t histo_ix = context_map[self->entropy_ix_ + context];
910 size_t ix = histo_ix * self->histogram_length_ + symbol;
911 BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
912 }
913 }
914
915 #define FN(X) X ## Literal
916 /* NOLINTNEXTLINE(build/include) */
917 #include "./block_encoder_inc.h"
918 #undef FN
919
920 #define FN(X) X ## Command
921 /* NOLINTNEXTLINE(build/include) */
922 #include "./block_encoder_inc.h"
923 #undef FN
924
925 #define FN(X) X ## Distance
926 /* NOLINTNEXTLINE(build/include) */
927 #include "./block_encoder_inc.h"
928 #undef FN
929
JumpToByteBoundary(size_t * storage_ix,uint8_t * storage)930 static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
931 *storage_ix = (*storage_ix + 7u) & ~7u;
932 storage[*storage_ix >> 3] = 0;
933 }
934
BrotliStoreMetaBlock(MemoryManager * m,const uint8_t * input,size_t start_pos,size_t length,size_t mask,uint8_t prev_byte,uint8_t prev_byte2,BROTLI_BOOL is_last,const BrotliEncoderParams * params,ContextType literal_context_mode,const Command * commands,size_t n_commands,const MetaBlockSplit * mb,size_t * storage_ix,uint8_t * storage)935 void BrotliStoreMetaBlock(MemoryManager* m,
936 const uint8_t* input, size_t start_pos, size_t length, size_t mask,
937 uint8_t prev_byte, uint8_t prev_byte2, BROTLI_BOOL is_last,
938 const BrotliEncoderParams* params, ContextType literal_context_mode,
939 const Command* commands, size_t n_commands, const MetaBlockSplit* mb,
940 size_t* storage_ix, uint8_t* storage) {
941
942 size_t pos = start_pos;
943 size_t i;
944 uint32_t num_distance_symbols = params->dist.alphabet_size_max;
945 uint32_t num_effective_distance_symbols = params->dist.alphabet_size_limit;
946 HuffmanTree* tree;
947 ContextLut literal_context_lut = BROTLI_CONTEXT_LUT(literal_context_mode);
948 BlockEncoder literal_enc;
949 BlockEncoder command_enc;
950 BlockEncoder distance_enc;
951 const BrotliDistanceParams* dist = ¶ms->dist;
952 BROTLI_DCHECK(
953 num_effective_distance_symbols <= BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS);
954
955 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
956
957 tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
958 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(tree)) return;
959 InitBlockEncoder(&literal_enc, BROTLI_NUM_LITERAL_SYMBOLS,
960 mb->literal_split.num_types, mb->literal_split.types,
961 mb->literal_split.lengths, mb->literal_split.num_blocks);
962 InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS,
963 mb->command_split.num_types, mb->command_split.types,
964 mb->command_split.lengths, mb->command_split.num_blocks);
965 InitBlockEncoder(&distance_enc, num_effective_distance_symbols,
966 mb->distance_split.num_types, mb->distance_split.types,
967 mb->distance_split.lengths, mb->distance_split.num_blocks);
968
969 BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage);
970 BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage);
971 BuildAndStoreBlockSwitchEntropyCodes(
972 &distance_enc, tree, storage_ix, storage);
973
974 BrotliWriteBits(2, dist->distance_postfix_bits, storage_ix, storage);
975 BrotliWriteBits(
976 4, dist->num_direct_distance_codes >> dist->distance_postfix_bits,
977 storage_ix, storage);
978 for (i = 0; i < mb->literal_split.num_types; ++i) {
979 BrotliWriteBits(2, literal_context_mode, storage_ix, storage);
980 }
981
982 if (mb->literal_context_map_size == 0) {
983 StoreTrivialContextMap(mb->literal_histograms_size,
984 BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage);
985 } else {
986 EncodeContextMap(m,
987 mb->literal_context_map, mb->literal_context_map_size,
988 mb->literal_histograms_size, tree, storage_ix, storage);
989 if (BROTLI_IS_OOM(m)) return;
990 }
991
992 if (mb->distance_context_map_size == 0) {
993 StoreTrivialContextMap(mb->distance_histograms_size,
994 BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage);
995 } else {
996 EncodeContextMap(m,
997 mb->distance_context_map, mb->distance_context_map_size,
998 mb->distance_histograms_size, tree, storage_ix, storage);
999 if (BROTLI_IS_OOM(m)) return;
1000 }
1001
1002 BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms,
1003 mb->literal_histograms_size, BROTLI_NUM_LITERAL_SYMBOLS, tree,
1004 storage_ix, storage);
1005 if (BROTLI_IS_OOM(m)) return;
1006 BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms,
1007 mb->command_histograms_size, BROTLI_NUM_COMMAND_SYMBOLS, tree,
1008 storage_ix, storage);
1009 if (BROTLI_IS_OOM(m)) return;
1010 BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms,
1011 mb->distance_histograms_size, num_distance_symbols, tree,
1012 storage_ix, storage);
1013 if (BROTLI_IS_OOM(m)) return;
1014 BROTLI_FREE(m, tree);
1015
1016 for (i = 0; i < n_commands; ++i) {
1017 const Command cmd = commands[i];
1018 size_t cmd_code = cmd.cmd_prefix_;
1019 StoreSymbol(&command_enc, cmd_code, storage_ix, storage);
1020 StoreCommandExtra(&cmd, storage_ix, storage);
1021 if (mb->literal_context_map_size == 0) {
1022 size_t j;
1023 for (j = cmd.insert_len_; j != 0; --j) {
1024 StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage);
1025 ++pos;
1026 }
1027 } else {
1028 size_t j;
1029 for (j = cmd.insert_len_; j != 0; --j) {
1030 size_t context =
1031 BROTLI_CONTEXT(prev_byte, prev_byte2, literal_context_lut);
1032 uint8_t literal = input[pos & mask];
1033 StoreSymbolWithContext(&literal_enc, literal, context,
1034 mb->literal_context_map, storage_ix, storage,
1035 BROTLI_LITERAL_CONTEXT_BITS);
1036 prev_byte2 = prev_byte;
1037 prev_byte = literal;
1038 ++pos;
1039 }
1040 }
1041 pos += CommandCopyLen(&cmd);
1042 if (CommandCopyLen(&cmd)) {
1043 prev_byte2 = input[(pos - 2) & mask];
1044 prev_byte = input[(pos - 1) & mask];
1045 if (cmd.cmd_prefix_ >= 128) {
1046 size_t dist_code = cmd.dist_prefix_ & 0x3FF;
1047 uint32_t distnumextra = cmd.dist_prefix_ >> 10;
1048 uint64_t distextra = cmd.dist_extra_;
1049 if (mb->distance_context_map_size == 0) {
1050 StoreSymbol(&distance_enc, dist_code, storage_ix, storage);
1051 } else {
1052 size_t context = CommandDistanceContext(&cmd);
1053 StoreSymbolWithContext(&distance_enc, dist_code, context,
1054 mb->distance_context_map, storage_ix, storage,
1055 BROTLI_DISTANCE_CONTEXT_BITS);
1056 }
1057 BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
1058 }
1059 }
1060 }
1061 CleanupBlockEncoder(m, &distance_enc);
1062 CleanupBlockEncoder(m, &command_enc);
1063 CleanupBlockEncoder(m, &literal_enc);
1064 if (is_last) {
1065 JumpToByteBoundary(storage_ix, storage);
1066 }
1067 }
1068
BuildHistograms(const uint8_t * input,size_t start_pos,size_t mask,const Command * commands,size_t n_commands,HistogramLiteral * lit_histo,HistogramCommand * cmd_histo,HistogramDistance * dist_histo)1069 static void BuildHistograms(const uint8_t* input,
1070 size_t start_pos,
1071 size_t mask,
1072 const Command* commands,
1073 size_t n_commands,
1074 HistogramLiteral* lit_histo,
1075 HistogramCommand* cmd_histo,
1076 HistogramDistance* dist_histo) {
1077 size_t pos = start_pos;
1078 size_t i;
1079 for (i = 0; i < n_commands; ++i) {
1080 const Command cmd = commands[i];
1081 size_t j;
1082 HistogramAddCommand(cmd_histo, cmd.cmd_prefix_);
1083 for (j = cmd.insert_len_; j != 0; --j) {
1084 HistogramAddLiteral(lit_histo, input[pos & mask]);
1085 ++pos;
1086 }
1087 pos += CommandCopyLen(&cmd);
1088 if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
1089 HistogramAddDistance(dist_histo, cmd.dist_prefix_ & 0x3FF);
1090 }
1091 }
1092 }
1093
StoreDataWithHuffmanCodes(const uint8_t * input,size_t start_pos,size_t mask,const Command * commands,size_t n_commands,const uint8_t * lit_depth,const uint16_t * lit_bits,const uint8_t * cmd_depth,const uint16_t * cmd_bits,const uint8_t * dist_depth,const uint16_t * dist_bits,size_t * storage_ix,uint8_t * storage)1094 static void StoreDataWithHuffmanCodes(const uint8_t* input,
1095 size_t start_pos,
1096 size_t mask,
1097 const Command* commands,
1098 size_t n_commands,
1099 const uint8_t* lit_depth,
1100 const uint16_t* lit_bits,
1101 const uint8_t* cmd_depth,
1102 const uint16_t* cmd_bits,
1103 const uint8_t* dist_depth,
1104 const uint16_t* dist_bits,
1105 size_t* storage_ix,
1106 uint8_t* storage) {
1107 size_t pos = start_pos;
1108 size_t i;
1109 for (i = 0; i < n_commands; ++i) {
1110 const Command cmd = commands[i];
1111 const size_t cmd_code = cmd.cmd_prefix_;
1112 size_t j;
1113 BrotliWriteBits(
1114 cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
1115 StoreCommandExtra(&cmd, storage_ix, storage);
1116 for (j = cmd.insert_len_; j != 0; --j) {
1117 const uint8_t literal = input[pos & mask];
1118 BrotliWriteBits(
1119 lit_depth[literal], lit_bits[literal], storage_ix, storage);
1120 ++pos;
1121 }
1122 pos += CommandCopyLen(&cmd);
1123 if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
1124 const size_t dist_code = cmd.dist_prefix_ & 0x3FF;
1125 const uint32_t distnumextra = cmd.dist_prefix_ >> 10;
1126 const uint32_t distextra = cmd.dist_extra_;
1127 BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code],
1128 storage_ix, storage);
1129 BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
1130 }
1131 }
1132 }
1133
BrotliStoreMetaBlockTrivial(MemoryManager * m,const uint8_t * input,size_t start_pos,size_t length,size_t mask,BROTLI_BOOL is_last,const BrotliEncoderParams * params,const Command * commands,size_t n_commands,size_t * storage_ix,uint8_t * storage)1134 void BrotliStoreMetaBlockTrivial(MemoryManager* m,
1135 const uint8_t* input, size_t start_pos, size_t length, size_t mask,
1136 BROTLI_BOOL is_last, const BrotliEncoderParams* params,
1137 const Command* commands, size_t n_commands,
1138 size_t* storage_ix, uint8_t* storage) {
1139 HistogramLiteral lit_histo;
1140 HistogramCommand cmd_histo;
1141 HistogramDistance dist_histo;
1142 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
1143 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
1144 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
1145 uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
1146 uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
1147 uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
1148 HuffmanTree* tree;
1149 uint32_t num_distance_symbols = params->dist.alphabet_size_max;
1150
1151 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
1152
1153 HistogramClearLiteral(&lit_histo);
1154 HistogramClearCommand(&cmd_histo);
1155 HistogramClearDistance(&dist_histo);
1156
1157 BuildHistograms(input, start_pos, mask, commands, n_commands,
1158 &lit_histo, &cmd_histo, &dist_histo);
1159
1160 BrotliWriteBits(13, 0, storage_ix, storage);
1161
1162 tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
1163 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(tree)) return;
1164 BuildAndStoreHuffmanTree(lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS,
1165 BROTLI_NUM_LITERAL_SYMBOLS, tree,
1166 lit_depth, lit_bits,
1167 storage_ix, storage);
1168 BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS,
1169 BROTLI_NUM_COMMAND_SYMBOLS, tree,
1170 cmd_depth, cmd_bits,
1171 storage_ix, storage);
1172 BuildAndStoreHuffmanTree(dist_histo.data_, MAX_SIMPLE_DISTANCE_ALPHABET_SIZE,
1173 num_distance_symbols, tree,
1174 dist_depth, dist_bits,
1175 storage_ix, storage);
1176 BROTLI_FREE(m, tree);
1177 StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
1178 n_commands, lit_depth, lit_bits,
1179 cmd_depth, cmd_bits,
1180 dist_depth, dist_bits,
1181 storage_ix, storage);
1182 if (is_last) {
1183 JumpToByteBoundary(storage_ix, storage);
1184 }
1185 }
1186
BrotliStoreMetaBlockFast(MemoryManager * m,const uint8_t * input,size_t start_pos,size_t length,size_t mask,BROTLI_BOOL is_last,const BrotliEncoderParams * params,const Command * commands,size_t n_commands,size_t * storage_ix,uint8_t * storage)1187 void BrotliStoreMetaBlockFast(MemoryManager* m,
1188 const uint8_t* input, size_t start_pos, size_t length, size_t mask,
1189 BROTLI_BOOL is_last, const BrotliEncoderParams* params,
1190 const Command* commands, size_t n_commands,
1191 size_t* storage_ix, uint8_t* storage) {
1192 uint32_t num_distance_symbols = params->dist.alphabet_size_max;
1193 uint32_t distance_alphabet_bits =
1194 Log2FloorNonZero(num_distance_symbols - 1) + 1;
1195
1196 StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
1197
1198 BrotliWriteBits(13, 0, storage_ix, storage);
1199
1200 if (n_commands <= 128) {
1201 uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 };
1202 size_t pos = start_pos;
1203 size_t num_literals = 0;
1204 size_t i;
1205 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
1206 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
1207 for (i = 0; i < n_commands; ++i) {
1208 const Command cmd = commands[i];
1209 size_t j;
1210 for (j = cmd.insert_len_; j != 0; --j) {
1211 ++histogram[input[pos & mask]];
1212 ++pos;
1213 }
1214 num_literals += cmd.insert_len_;
1215 pos += CommandCopyLen(&cmd);
1216 }
1217 BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals,
1218 /* max_bits = */ 8,
1219 lit_depth, lit_bits,
1220 storage_ix, storage);
1221 if (BROTLI_IS_OOM(m)) return;
1222 StoreStaticCommandHuffmanTree(storage_ix, storage);
1223 StoreStaticDistanceHuffmanTree(storage_ix, storage);
1224 StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
1225 n_commands, lit_depth, lit_bits,
1226 kStaticCommandCodeDepth,
1227 kStaticCommandCodeBits,
1228 kStaticDistanceCodeDepth,
1229 kStaticDistanceCodeBits,
1230 storage_ix, storage);
1231 } else {
1232 HistogramLiteral lit_histo;
1233 HistogramCommand cmd_histo;
1234 HistogramDistance dist_histo;
1235 uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
1236 uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
1237 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
1238 uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
1239 uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
1240 uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
1241 HistogramClearLiteral(&lit_histo);
1242 HistogramClearCommand(&cmd_histo);
1243 HistogramClearDistance(&dist_histo);
1244 BuildHistograms(input, start_pos, mask, commands, n_commands,
1245 &lit_histo, &cmd_histo, &dist_histo);
1246 BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_,
1247 lit_histo.total_count_,
1248 /* max_bits = */ 8,
1249 lit_depth, lit_bits,
1250 storage_ix, storage);
1251 if (BROTLI_IS_OOM(m)) return;
1252 BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_,
1253 cmd_histo.total_count_,
1254 /* max_bits = */ 10,
1255 cmd_depth, cmd_bits,
1256 storage_ix, storage);
1257 if (BROTLI_IS_OOM(m)) return;
1258 BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_,
1259 dist_histo.total_count_,
1260 /* max_bits = */
1261 distance_alphabet_bits,
1262 dist_depth, dist_bits,
1263 storage_ix, storage);
1264 if (BROTLI_IS_OOM(m)) return;
1265 StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
1266 n_commands, lit_depth, lit_bits,
1267 cmd_depth, cmd_bits,
1268 dist_depth, dist_bits,
1269 storage_ix, storage);
1270 }
1271
1272 if (is_last) {
1273 JumpToByteBoundary(storage_ix, storage);
1274 }
1275 }
1276
1277 /* This is for storing uncompressed blocks (simple raw storage of
1278 bytes-as-bytes). */
BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,const uint8_t * BROTLI_RESTRICT input,size_t position,size_t mask,size_t len,size_t * BROTLI_RESTRICT storage_ix,uint8_t * BROTLI_RESTRICT storage)1279 void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,
1280 const uint8_t* BROTLI_RESTRICT input,
1281 size_t position, size_t mask,
1282 size_t len,
1283 size_t* BROTLI_RESTRICT storage_ix,
1284 uint8_t* BROTLI_RESTRICT storage) {
1285 size_t masked_pos = position & mask;
1286 BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage);
1287 JumpToByteBoundary(storage_ix, storage);
1288
1289 if (masked_pos + len > mask + 1) {
1290 size_t len1 = mask + 1 - masked_pos;
1291 memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
1292 *storage_ix += len1 << 3;
1293 len -= len1;
1294 masked_pos = 0;
1295 }
1296 memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
1297 *storage_ix += len << 3;
1298
1299 /* We need to clear the next 4 bytes to continue to be
1300 compatible with BrotliWriteBits. */
1301 BrotliWriteBitsPrepareStorage(*storage_ix, storage);
1302
1303 /* Since the uncompressed block itself may not be the final block, add an
1304 empty one after this. */
1305 if (is_final_block) {
1306 BrotliWriteBits(1, 1, storage_ix, storage); /* islast */
1307 BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */
1308 JumpToByteBoundary(storage_ix, storage);
1309 }
1310 }
1311
1312 #if defined(__cplusplus) || defined(c_plusplus)
1313 } /* extern "C" */
1314 #endif
1315