1 // Copyright 2018 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 use std::fs::File;
6 use std::io::Read;
7
8 use arch::fdt::{Error, FdtWriter, Result};
9 use arch::SERIAL_ADDR;
10 use devices::{PciAddress, PciInterruptPin};
11 use hypervisor::PsciVersion;
12 use vm_memory::{GuestAddress, GuestMemory};
13
14 // This is the start of DRAM in the physical address space.
15 use crate::AARCH64_PHYS_MEM_START;
16
17 // These are GIC address-space location constants.
18 use crate::AARCH64_GIC_CPUI_BASE;
19 use crate::AARCH64_GIC_CPUI_SIZE;
20 use crate::AARCH64_GIC_DIST_BASE;
21 use crate::AARCH64_GIC_DIST_SIZE;
22 use crate::AARCH64_GIC_REDIST_SIZE;
23
24 // These are RTC related constants
25 use crate::AARCH64_RTC_ADDR;
26 use crate::AARCH64_RTC_IRQ;
27 use crate::AARCH64_RTC_SIZE;
28 use devices::pl030::PL030_AMBA_ID;
29
30 // These are serial device related constants.
31 use crate::AARCH64_SERIAL_1_3_IRQ;
32 use crate::AARCH64_SERIAL_2_4_IRQ;
33 use crate::AARCH64_SERIAL_SIZE;
34 use crate::AARCH64_SERIAL_SPEED;
35
36 // These are related to guest virtio devices.
37 use crate::AARCH64_MMIO_BASE;
38 use crate::AARCH64_MMIO_SIZE;
39 use crate::AARCH64_PCI_CFG_BASE;
40 use crate::AARCH64_PCI_CFG_SIZE;
41
42 use crate::AARCH64_PMU_IRQ;
43
44 // This is an arbitrary number to specify the node for the GIC.
45 // If we had a more complex interrupt architecture, then we'd need an enum for
46 // these.
47 const PHANDLE_GIC: u32 = 1;
48
49 // These are specified by the Linux GIC bindings
50 const GIC_FDT_IRQ_NUM_CELLS: u32 = 3;
51 const GIC_FDT_IRQ_TYPE_SPI: u32 = 0;
52 const GIC_FDT_IRQ_TYPE_PPI: u32 = 1;
53 const GIC_FDT_IRQ_PPI_CPU_SHIFT: u32 = 8;
54 const GIC_FDT_IRQ_PPI_CPU_MASK: u32 = 0xff << GIC_FDT_IRQ_PPI_CPU_SHIFT;
55 const IRQ_TYPE_EDGE_RISING: u32 = 0x00000001;
56 const IRQ_TYPE_LEVEL_HIGH: u32 = 0x00000004;
57 const IRQ_TYPE_LEVEL_LOW: u32 = 0x00000008;
58
create_memory_node(fdt: &mut FdtWriter, guest_mem: &GuestMemory) -> Result<()>59 fn create_memory_node(fdt: &mut FdtWriter, guest_mem: &GuestMemory) -> Result<()> {
60 let mem_size = guest_mem.memory_size();
61 let mem_reg_prop = [AARCH64_PHYS_MEM_START, mem_size];
62
63 let memory_node = fdt.begin_node("memory")?;
64 fdt.property_string("device_type", "memory")?;
65 fdt.property_array_u64("reg", &mem_reg_prop)?;
66 fdt.end_node(memory_node)?;
67 Ok(())
68 }
69
create_cpu_nodes(fdt: &mut FdtWriter, num_cpus: u32) -> Result<()>70 fn create_cpu_nodes(fdt: &mut FdtWriter, num_cpus: u32) -> Result<()> {
71 let cpus_node = fdt.begin_node("cpus")?;
72 fdt.property_u32("#address-cells", 0x1)?;
73 fdt.property_u32("#size-cells", 0x0)?;
74
75 for cpu_id in 0..num_cpus {
76 let cpu_name = format!("cpu@{:x}", cpu_id);
77 let cpu_node = fdt.begin_node(&cpu_name)?;
78 fdt.property_string("device_type", "cpu")?;
79 fdt.property_string("compatible", "arm,arm-v8")?;
80 if num_cpus > 1 {
81 fdt.property_string("enable-method", "psci")?;
82 }
83 fdt.property_u32("reg", cpu_id)?;
84 fdt.end_node(cpu_node)?;
85 }
86 fdt.end_node(cpus_node)?;
87 Ok(())
88 }
89
create_gic_node(fdt: &mut FdtWriter, is_gicv3: bool, num_cpus: u64) -> Result<()>90 fn create_gic_node(fdt: &mut FdtWriter, is_gicv3: bool, num_cpus: u64) -> Result<()> {
91 let mut gic_reg_prop = [AARCH64_GIC_DIST_BASE, AARCH64_GIC_DIST_SIZE, 0, 0];
92
93 let intc_node = fdt.begin_node("intc")?;
94 if is_gicv3 {
95 fdt.property_string("compatible", "arm,gic-v3")?;
96 gic_reg_prop[2] = AARCH64_GIC_DIST_BASE - (AARCH64_GIC_REDIST_SIZE * num_cpus);
97 gic_reg_prop[3] = AARCH64_GIC_REDIST_SIZE * num_cpus;
98 } else {
99 fdt.property_string("compatible", "arm,cortex-a15-gic")?;
100 gic_reg_prop[2] = AARCH64_GIC_CPUI_BASE;
101 gic_reg_prop[3] = AARCH64_GIC_CPUI_SIZE;
102 }
103 fdt.property_u32("#interrupt-cells", GIC_FDT_IRQ_NUM_CELLS)?;
104 fdt.property_null("interrupt-controller")?;
105 fdt.property_array_u64("reg", &gic_reg_prop)?;
106 fdt.property_u32("phandle", PHANDLE_GIC)?;
107 fdt.property_u32("#address-cells", 2)?;
108 fdt.property_u32("#size-cells", 2)?;
109 fdt.end_node(intc_node)?;
110
111 Ok(())
112 }
113
create_timer_node(fdt: &mut FdtWriter, num_cpus: u32) -> Result<()>114 fn create_timer_node(fdt: &mut FdtWriter, num_cpus: u32) -> Result<()> {
115 // These are fixed interrupt numbers for the timer device.
116 let irqs = [13, 14, 11, 10];
117 let compatible = "arm,armv8-timer";
118 let cpu_mask: u32 =
119 (((1 << num_cpus) - 1) << GIC_FDT_IRQ_PPI_CPU_SHIFT) & GIC_FDT_IRQ_PPI_CPU_MASK;
120
121 let mut timer_reg_cells = Vec::new();
122 for &irq in &irqs {
123 timer_reg_cells.push(GIC_FDT_IRQ_TYPE_PPI);
124 timer_reg_cells.push(irq);
125 timer_reg_cells.push(cpu_mask | IRQ_TYPE_LEVEL_LOW);
126 }
127
128 let timer_node = fdt.begin_node("timer")?;
129 fdt.property_string("compatible", compatible)?;
130 fdt.property_array_u32("interrupts", &timer_reg_cells)?;
131 fdt.property_null("always-on")?;
132 fdt.end_node(timer_node)?;
133
134 Ok(())
135 }
136
create_pmu_node(fdt: &mut FdtWriter, num_cpus: u32) -> Result<()>137 fn create_pmu_node(fdt: &mut FdtWriter, num_cpus: u32) -> Result<()> {
138 let compatible = "arm,armv8-pmuv3";
139 let cpu_mask: u32 =
140 (((1 << num_cpus) - 1) << GIC_FDT_IRQ_PPI_CPU_SHIFT) & GIC_FDT_IRQ_PPI_CPU_MASK;
141 let irq = [
142 GIC_FDT_IRQ_TYPE_PPI,
143 AARCH64_PMU_IRQ,
144 cpu_mask | IRQ_TYPE_LEVEL_HIGH,
145 ];
146
147 let pmu_node = fdt.begin_node("pmu")?;
148 fdt.property_string("compatible", compatible)?;
149 fdt.property_array_u32("interrupts", &irq)?;
150 fdt.end_node(pmu_node)?;
151 Ok(())
152 }
153
create_serial_node(fdt: &mut FdtWriter, addr: u64, irq: u32) -> Result<()>154 fn create_serial_node(fdt: &mut FdtWriter, addr: u64, irq: u32) -> Result<()> {
155 let serial_reg_prop = [addr, AARCH64_SERIAL_SIZE];
156 let irq = [GIC_FDT_IRQ_TYPE_SPI, irq, IRQ_TYPE_EDGE_RISING];
157
158 let serial_node = fdt.begin_node(&format!("U6_16550A@{:x}", addr))?;
159 fdt.property_string("compatible", "ns16550a")?;
160 fdt.property_array_u64("reg", &serial_reg_prop)?;
161 fdt.property_u32("clock-frequency", AARCH64_SERIAL_SPEED)?;
162 fdt.property_array_u32("interrupts", &irq)?;
163 fdt.end_node(serial_node)?;
164
165 Ok(())
166 }
167
create_serial_nodes(fdt: &mut FdtWriter) -> Result<()>168 fn create_serial_nodes(fdt: &mut FdtWriter) -> Result<()> {
169 // Note that SERIAL_ADDR contains the I/O port addresses conventionally used
170 // for serial ports on x86. This uses the same addresses (but on the MMIO bus)
171 // to simplify the shared serial code.
172 create_serial_node(fdt, SERIAL_ADDR[0], AARCH64_SERIAL_1_3_IRQ)?;
173 create_serial_node(fdt, SERIAL_ADDR[1], AARCH64_SERIAL_2_4_IRQ)?;
174 create_serial_node(fdt, SERIAL_ADDR[2], AARCH64_SERIAL_1_3_IRQ)?;
175 create_serial_node(fdt, SERIAL_ADDR[3], AARCH64_SERIAL_2_4_IRQ)?;
176
177 Ok(())
178 }
179
create_psci_node(fdt: &mut FdtWriter, version: &PsciVersion) -> Result<()>180 fn create_psci_node(fdt: &mut FdtWriter, version: &PsciVersion) -> Result<()> {
181 let mut compatible = vec![format!("arm,psci-{}.{}", version.major, version.minor)];
182 if version.major == 1 {
183 // Put `psci-0.2` as well because PSCI 1.0 is compatible with PSCI 0.2.
184 compatible.push(format!("arm,psci-0.2"))
185 };
186
187 let psci_node = fdt.begin_node("psci")?;
188 fdt.property_string_list("compatible", compatible)?;
189 // Only support aarch64 guest
190 fdt.property_string("method", "hvc")?;
191 fdt.end_node(psci_node)?;
192
193 Ok(())
194 }
195
create_chosen_node( fdt: &mut FdtWriter, cmdline: &str, initrd: Option<(GuestAddress, usize)>, ) -> Result<()>196 fn create_chosen_node(
197 fdt: &mut FdtWriter,
198 cmdline: &str,
199 initrd: Option<(GuestAddress, usize)>,
200 ) -> Result<()> {
201 let chosen_node = fdt.begin_node("chosen")?;
202 fdt.property_u32("linux,pci-probe-only", 1)?;
203 fdt.property_string("bootargs", cmdline)?;
204 // Used by android bootloader for boot console output
205 fdt.property_string("stdout-path", &format!("/U6_16550A@{:x}", SERIAL_ADDR[0]))?;
206
207 let mut random_file = File::open("/dev/urandom").map_err(Error::FdtIoError)?;
208 let mut kaslr_seed_bytes = [0u8; 8];
209 random_file
210 .read_exact(&mut kaslr_seed_bytes)
211 .map_err(Error::FdtIoError)?;
212 let kaslr_seed = u64::from_le_bytes(kaslr_seed_bytes);
213 fdt.property_u64("kaslr-seed", kaslr_seed)?;
214
215 let mut rng_seed_bytes = [0u8; 256];
216 random_file
217 .read_exact(&mut rng_seed_bytes)
218 .map_err(Error::FdtIoError)?;
219 fdt.property("rng-seed", &rng_seed_bytes)?;
220
221 if let Some((initrd_addr, initrd_size)) = initrd {
222 let initrd_start = initrd_addr.offset() as u32;
223 let initrd_end = initrd_start + initrd_size as u32;
224 fdt.property_u32("linux,initrd-start", initrd_start)?;
225 fdt.property_u32("linux,initrd-end", initrd_end)?;
226 }
227 fdt.end_node(chosen_node)?;
228
229 Ok(())
230 }
231
create_pci_nodes( fdt: &mut FdtWriter, pci_irqs: Vec<(PciAddress, u32, PciInterruptPin)>, pci_device_base: u64, pci_device_size: u64, ) -> Result<()>232 fn create_pci_nodes(
233 fdt: &mut FdtWriter,
234 pci_irqs: Vec<(PciAddress, u32, PciInterruptPin)>,
235 pci_device_base: u64,
236 pci_device_size: u64,
237 ) -> Result<()> {
238 // Add devicetree nodes describing a PCI generic host controller.
239 // See Documentation/devicetree/bindings/pci/host-generic-pci.txt in the kernel
240 // and "PCI Bus Binding to IEEE Std 1275-1994".
241 let ranges = [
242 // mmio addresses
243 0x3000000, // (ss = 11: 64-bit memory space)
244 (AARCH64_MMIO_BASE >> 32) as u32, // PCI address
245 AARCH64_MMIO_BASE as u32,
246 (AARCH64_MMIO_BASE >> 32) as u32, // CPU address
247 AARCH64_MMIO_BASE as u32,
248 (AARCH64_MMIO_SIZE >> 32) as u32, // size
249 AARCH64_MMIO_SIZE as u32,
250 // device addresses
251 0x3000000, // (ss = 11: 64-bit memory space)
252 (pci_device_base >> 32) as u32, // PCI address
253 pci_device_base as u32,
254 (pci_device_base >> 32) as u32, // CPU address
255 pci_device_base as u32,
256 (pci_device_size >> 32) as u32, // size
257 pci_device_size as u32,
258 ];
259 let bus_range = [0, 0]; // Only bus 0
260 let reg = [AARCH64_PCI_CFG_BASE, AARCH64_PCI_CFG_SIZE];
261
262 let mut interrupts: Vec<u32> = Vec::new();
263 let mut masks: Vec<u32> = Vec::new();
264
265 for (address, irq_num, irq_pin) in pci_irqs.iter() {
266 // PCI_DEVICE(3)
267 interrupts.push(address.to_config_address(0));
268 interrupts.push(0);
269 interrupts.push(0);
270
271 // INT#(1)
272 interrupts.push(irq_pin.to_mask() + 1);
273
274 // CONTROLLER(PHANDLE)
275 interrupts.push(PHANDLE_GIC);
276 interrupts.push(0);
277 interrupts.push(0);
278
279 // CONTROLLER_DATA(3)
280 interrupts.push(GIC_FDT_IRQ_TYPE_SPI);
281 interrupts.push(*irq_num);
282 interrupts.push(IRQ_TYPE_LEVEL_HIGH);
283
284 // PCI_DEVICE(3)
285 masks.push(0xf800); // bits 11..15 (device)
286 masks.push(0);
287 masks.push(0);
288
289 // INT#(1)
290 masks.push(0x7); // allow INTA#-INTD# (1 | 2 | 3 | 4)
291 }
292
293 let pci_node = fdt.begin_node("pci")?;
294 fdt.property_string("compatible", "pci-host-cam-generic")?;
295 fdt.property_string("device_type", "pci")?;
296 fdt.property_array_u32("ranges", &ranges)?;
297 fdt.property_array_u32("bus-range", &bus_range)?;
298 fdt.property_u32("#address-cells", 3)?;
299 fdt.property_u32("#size-cells", 2)?;
300 fdt.property_array_u64("reg", ®)?;
301 fdt.property_u32("#interrupt-cells", 1)?;
302 fdt.property_array_u32("interrupt-map", &interrupts)?;
303 fdt.property_array_u32("interrupt-map-mask", &masks)?;
304 fdt.property_null("dma-coherent")?;
305 fdt.end_node(pci_node)?;
306
307 Ok(())
308 }
309
create_rtc_node(fdt: &mut FdtWriter) -> Result<()>310 fn create_rtc_node(fdt: &mut FdtWriter) -> Result<()> {
311 // the kernel driver for pl030 really really wants a clock node
312 // associated with an AMBA device or it will fail to probe, so we
313 // need to make up a clock node to associate with the pl030 rtc
314 // node and an associated handle with a unique phandle value.
315 const CLK_PHANDLE: u32 = 24;
316 let clock_node = fdt.begin_node("pclk@3M")?;
317 fdt.property_u32("#clock-cells", 0)?;
318 fdt.property_string("compatible", "fixed-clock")?;
319 fdt.property_u32("clock-frequency", 3141592)?;
320 fdt.property_u32("phandle", CLK_PHANDLE)?;
321 fdt.end_node(clock_node)?;
322
323 let rtc_name = format!("rtc@{:x}", AARCH64_RTC_ADDR);
324 let reg = [AARCH64_RTC_ADDR, AARCH64_RTC_SIZE];
325 let irq = [GIC_FDT_IRQ_TYPE_SPI, AARCH64_RTC_IRQ, IRQ_TYPE_LEVEL_HIGH];
326
327 let rtc_node = fdt.begin_node(&rtc_name)?;
328 fdt.property_string("compatible", "arm,primecell")?;
329 fdt.property_u32("arm,primecell-periphid", PL030_AMBA_ID)?;
330 fdt.property_array_u64("reg", ®)?;
331 fdt.property_array_u32("interrupts", &irq)?;
332 fdt.property_u32("clocks", CLK_PHANDLE)?;
333 fdt.property_string("clock-names", "apb_pclk")?;
334 fdt.end_node(rtc_node)?;
335 Ok(())
336 }
337
338 /// Creates a flattened device tree containing all of the parameters for the
339 /// kernel and loads it into the guest memory at the specified offset.
340 ///
341 /// # Arguments
342 ///
343 /// * `fdt_max_size` - The amount of space reserved for the device tree
344 /// * `guest_mem` - The guest memory object
345 /// * `pci_irqs` - List of PCI device address to PCI interrupt number and pin mappings
346 /// * `num_cpus` - Number of virtual CPUs the guest will have
347 /// * `fdt_load_offset` - The offset into physical memory for the device tree
348 /// * `pci_device_base` - The offset into physical memory for PCI device memory
349 /// * `pci_device_size` - The size of PCI device memory
350 /// * `cmdline` - The kernel commandline
351 /// * `initrd` - An optional tuple of initrd guest physical address and size
352 /// * `android_fstab` - An optional file holding Android fstab entries
353 /// * `is_gicv3` - True if gicv3, false if v2
354 /// * `psci_version` - the current PSCI version
create_fdt( fdt_max_size: usize, guest_mem: &GuestMemory, pci_irqs: Vec<(PciAddress, u32, PciInterruptPin)>, num_cpus: u32, fdt_load_offset: u64, pci_device_base: u64, pci_device_size: u64, cmdline: &str, initrd: Option<(GuestAddress, usize)>, android_fstab: Option<File>, is_gicv3: bool, use_pmu: bool, psci_version: PsciVersion, ) -> Result<()>355 pub fn create_fdt(
356 fdt_max_size: usize,
357 guest_mem: &GuestMemory,
358 pci_irqs: Vec<(PciAddress, u32, PciInterruptPin)>,
359 num_cpus: u32,
360 fdt_load_offset: u64,
361 pci_device_base: u64,
362 pci_device_size: u64,
363 cmdline: &str,
364 initrd: Option<(GuestAddress, usize)>,
365 android_fstab: Option<File>,
366 is_gicv3: bool,
367 use_pmu: bool,
368 psci_version: PsciVersion,
369 ) -> Result<()> {
370 let mut fdt = FdtWriter::new(&[]);
371
372 // The whole thing is put into one giant node with some top level properties
373 let root_node = fdt.begin_node("")?;
374 fdt.property_u32("interrupt-parent", PHANDLE_GIC)?;
375 fdt.property_string("compatible", "linux,dummy-virt")?;
376 fdt.property_u32("#address-cells", 0x2)?;
377 fdt.property_u32("#size-cells", 0x2)?;
378 if let Some(android_fstab) = android_fstab {
379 arch::android::create_android_fdt(&mut fdt, android_fstab)?;
380 }
381 create_chosen_node(&mut fdt, cmdline, initrd)?;
382 create_memory_node(&mut fdt, guest_mem)?;
383 create_cpu_nodes(&mut fdt, num_cpus)?;
384 create_gic_node(&mut fdt, is_gicv3, num_cpus as u64)?;
385 create_timer_node(&mut fdt, num_cpus)?;
386 if use_pmu {
387 create_pmu_node(&mut fdt, num_cpus)?;
388 }
389 create_serial_nodes(&mut fdt)?;
390 create_psci_node(&mut fdt, &psci_version)?;
391 create_pci_nodes(&mut fdt, pci_irqs, pci_device_base, pci_device_size)?;
392 create_rtc_node(&mut fdt)?;
393 // End giant node
394 fdt.end_node(root_node)?;
395
396 let fdt_final = fdt.finish(fdt_max_size)?;
397
398 let fdt_address = GuestAddress(AARCH64_PHYS_MEM_START + fdt_load_offset);
399 let written = guest_mem
400 .write_at_addr(fdt_final.as_slice(), fdt_address)
401 .map_err(|_| Error::FdtGuestMemoryWriteError)?;
402 if written < fdt_max_size {
403 return Err(Error::FdtGuestMemoryWriteError);
404 }
405 Ok(())
406 }
407