README.md
1# Benchmark
2
3[![build-and-test](https://github.com/google/benchmark/workflows/build-and-test/badge.svg)](https://github.com/google/benchmark/actions?query=workflow%3Abuild-and-test)
4[![pylint](https://github.com/google/benchmark/workflows/pylint/badge.svg)](https://github.com/google/benchmark/actions?query=workflow%3Apylint)
5[![test-bindings](https://github.com/google/benchmark/workflows/test-bindings/badge.svg)](https://github.com/google/benchmark/actions?query=workflow%3Atest-bindings)
6
7[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark)
8[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master)
9[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark)
10
11
12A library to benchmark code snippets, similar to unit tests. Example:
13
14```c++
15#include <benchmark/benchmark.h>
16
17static void BM_SomeFunction(benchmark::State& state) {
18 // Perform setup here
19 for (auto _ : state) {
20 // This code gets timed
21 SomeFunction();
22 }
23}
24// Register the function as a benchmark
25BENCHMARK(BM_SomeFunction);
26// Run the benchmark
27BENCHMARK_MAIN();
28```
29
30To get started, see [Requirements](#requirements) and
31[Installation](#installation). See [Usage](#usage) for a full example and the
32[User Guide](#user-guide) for a more comprehensive feature overview.
33
34It may also help to read the [Google Test documentation](https://github.com/google/googletest/blob/master/googletest/docs/primer.md)
35as some of the structural aspects of the APIs are similar.
36
37### Resources
38
39[Discussion group](https://groups.google.com/d/forum/benchmark-discuss)
40
41IRC channel: [freenode](https://freenode.net) #googlebenchmark
42
43[Additional Tooling Documentation](docs/tools.md)
44
45[Assembly Testing Documentation](docs/AssemblyTests.md)
46
47## Requirements
48
49The library can be used with C++03. However, it requires C++11 to build,
50including compiler and standard library support.
51
52The following minimum versions are required to build the library:
53
54* GCC 4.8
55* Clang 3.4
56* Visual Studio 14 2015
57* Intel 2015 Update 1
58
59See [Platform-Specific Build Instructions](#platform-specific-build-instructions).
60
61## Installation
62
63This describes the installation process using cmake. As pre-requisites, you'll
64need git and cmake installed.
65
66_See [dependencies.md](dependencies.md) for more details regarding supported
67versions of build tools._
68
69```bash
70# Check out the library.
71$ git clone https://github.com/google/benchmark.git
72# Benchmark requires Google Test as a dependency. Add the source tree as a subdirectory.
73$ git clone https://github.com/google/googletest.git benchmark/googletest
74# Go to the library root directory
75$ cd benchmark
76# Make a build directory to place the build output.
77$ cmake -E make_directory "build"
78# Generate build system files with cmake.
79$ cmake -E chdir "build" cmake -DCMAKE_BUILD_TYPE=Release ../
80# or, starting with CMake 3.13, use a simpler form:
81# cmake -DCMAKE_BUILD_TYPE=Release -S . -B "build"
82# Build the library.
83$ cmake --build "build" --config Release
84```
85This builds the `benchmark` and `benchmark_main` libraries and tests.
86On a unix system, the build directory should now look something like this:
87
88```
89/benchmark
90 /build
91 /src
92 /libbenchmark.a
93 /libbenchmark_main.a
94 /test
95 ...
96```
97
98Next, you can run the tests to check the build.
99
100```bash
101$ cmake -E chdir "build" ctest --build-config Release
102```
103
104If you want to install the library globally, also run:
105
106```
107sudo cmake --build "build" --config Release --target install
108```
109
110Note that Google Benchmark requires Google Test to build and run the tests. This
111dependency can be provided two ways:
112
113* Checkout the Google Test sources into `benchmark/googletest` as above.
114* Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during
115 configuration, the library will automatically download and build any required
116 dependencies.
117
118If you do not wish to build and run the tests, add `-DBENCHMARK_ENABLE_GTEST_TESTS=OFF`
119to `CMAKE_ARGS`.
120
121### Debug vs Release
122
123By default, benchmark builds as a debug library. You will see a warning in the
124output when this is the case. To build it as a release library instead, add
125`-DCMAKE_BUILD_TYPE=Release` when generating the build system files, as shown
126above. The use of `--config Release` in build commands is needed to properly
127support multi-configuration tools (like Visual Studio for example) and can be
128skipped for other build systems (like Makefile).
129
130To enable link-time optimisation, also add `-DBENCHMARK_ENABLE_LTO=true` when
131generating the build system files.
132
133If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake
134cache variables, if autodetection fails.
135
136If you are using clang, you may need to set `LLVMAR_EXECUTABLE`,
137`LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables.
138
139### Stable and Experimental Library Versions
140
141The main branch contains the latest stable version of the benchmarking library;
142the API of which can be considered largely stable, with source breaking changes
143being made only upon the release of a new major version.
144
145Newer, experimental, features are implemented and tested on the
146[`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish
147to use, test, and provide feedback on the new features are encouraged to try
148this branch. However, this branch provides no stability guarantees and reserves
149the right to change and break the API at any time.
150
151## Usage
152
153### Basic usage
154
155Define a function that executes the code to measure, register it as a benchmark
156function using the `BENCHMARK` macro, and ensure an appropriate `main` function
157is available:
158
159```c++
160#include <benchmark/benchmark.h>
161
162static void BM_StringCreation(benchmark::State& state) {
163 for (auto _ : state)
164 std::string empty_string;
165}
166// Register the function as a benchmark
167BENCHMARK(BM_StringCreation);
168
169// Define another benchmark
170static void BM_StringCopy(benchmark::State& state) {
171 std::string x = "hello";
172 for (auto _ : state)
173 std::string copy(x);
174}
175BENCHMARK(BM_StringCopy);
176
177BENCHMARK_MAIN();
178```
179
180To run the benchmark, compile and link against the `benchmark` library
181(libbenchmark.a/.so). If you followed the build steps above, this library will
182be under the build directory you created.
183
184```bash
185# Example on linux after running the build steps above. Assumes the
186# `benchmark` and `build` directories are under the current directory.
187$ g++ mybenchmark.cc -std=c++11 -isystem benchmark/include \
188 -Lbenchmark/build/src -lbenchmark -lpthread -o mybenchmark
189```
190
191Alternatively, link against the `benchmark_main` library and remove
192`BENCHMARK_MAIN();` above to get the same behavior.
193
194The compiled executable will run all benchmarks by default. Pass the `--help`
195flag for option information or see the guide below.
196
197### Usage with CMake
198
199If using CMake, it is recommended to link against the project-provided
200`benchmark::benchmark` and `benchmark::benchmark_main` targets using
201`target_link_libraries`.
202It is possible to use ```find_package``` to import an installed version of the
203library.
204```cmake
205find_package(benchmark REQUIRED)
206```
207Alternatively, ```add_subdirectory``` will incorporate the library directly in
208to one's CMake project.
209```cmake
210add_subdirectory(benchmark)
211```
212Either way, link to the library as follows.
213```cmake
214target_link_libraries(MyTarget benchmark::benchmark)
215```
216
217## Platform Specific Build Instructions
218
219### Building with GCC
220
221When the library is built using GCC it is necessary to link with the pthread
222library due to how GCC implements `std::thread`. Failing to link to pthread will
223lead to runtime exceptions (unless you're using libc++), not linker errors. See
224[issue #67](https://github.com/google/benchmark/issues/67) for more details. You
225can link to pthread by adding `-pthread` to your linker command. Note, you can
226also use `-lpthread`, but there are potential issues with ordering of command
227line parameters if you use that.
228
229### Building with Visual Studio 2015 or 2017
230
231The `shlwapi` library (`-lshlwapi`) is required to support a call to `CPUInfo` which reads the registry. Either add `shlwapi.lib` under `[ Configuration Properties > Linker > Input ]`, or use the following:
232
233```
234// Alternatively, can add libraries using linker options.
235#ifdef _WIN32
236#pragma comment ( lib, "Shlwapi.lib" )
237#ifdef _DEBUG
238#pragma comment ( lib, "benchmarkd.lib" )
239#else
240#pragma comment ( lib, "benchmark.lib" )
241#endif
242#endif
243```
244
245Can also use the graphical version of CMake:
246* Open `CMake GUI`.
247* Under `Where to build the binaries`, same path as source plus `build`.
248* Under `CMAKE_INSTALL_PREFIX`, same path as source plus `install`.
249* Click `Configure`, `Generate`, `Open Project`.
250* If build fails, try deleting entire directory and starting again, or unticking options to build less.
251
252### Building with Intel 2015 Update 1 or Intel System Studio Update 4
253
254See instructions for building with Visual Studio. Once built, right click on the solution and change the build to Intel.
255
256### Building on Solaris
257
258If you're running benchmarks on solaris, you'll want the kstat library linked in
259too (`-lkstat`).
260
261## User Guide
262
263### Command Line
264
265[Output Formats](#output-formats)
266
267[Output Files](#output-files)
268
269[Running Benchmarks](#running-benchmarks)
270
271[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
272
273[Result Comparison](#result-comparison)
274
275### Library
276
277[Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
278
279[Passing Arguments](#passing-arguments)
280
281[Calculating Asymptotic Complexity](#asymptotic-complexity)
282
283[Templated Benchmarks](#templated-benchmarks)
284
285[Fixtures](#fixtures)
286
287[Custom Counters](#custom-counters)
288
289[Multithreaded Benchmarks](#multithreaded-benchmarks)
290
291[CPU Timers](#cpu-timers)
292
293[Manual Timing](#manual-timing)
294
295[Setting the Time Unit](#setting-the-time-unit)
296
297[Preventing Optimization](#preventing-optimization)
298
299[Reporting Statistics](#reporting-statistics)
300
301[Custom Statistics](#custom-statistics)
302
303[Using RegisterBenchmark](#using-register-benchmark)
304
305[Exiting with an Error](#exiting-with-an-error)
306
307[A Faster KeepRunning Loop](#a-faster-keep-running-loop)
308
309[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
310
311
312<a name="output-formats" />
313
314### Output Formats
315
316The library supports multiple output formats. Use the
317`--benchmark_format=<console|json|csv>` flag (or set the
318`BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
319the format type. `console` is the default format.
320
321The Console format is intended to be a human readable format. By default
322the format generates color output. Context is output on stderr and the
323tabular data on stdout. Example tabular output looks like:
324
325```
326Benchmark Time(ns) CPU(ns) Iterations
327----------------------------------------------------------------------
328BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
329BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
330BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
331```
332
333The JSON format outputs human readable json split into two top level attributes.
334The `context` attribute contains information about the run in general, including
335information about the CPU and the date.
336The `benchmarks` attribute contains a list of every benchmark run. Example json
337output looks like:
338
339```json
340{
341 "context": {
342 "date": "2015/03/17-18:40:25",
343 "num_cpus": 40,
344 "mhz_per_cpu": 2801,
345 "cpu_scaling_enabled": false,
346 "build_type": "debug"
347 },
348 "benchmarks": [
349 {
350 "name": "BM_SetInsert/1024/1",
351 "iterations": 94877,
352 "real_time": 29275,
353 "cpu_time": 29836,
354 "bytes_per_second": 134066,
355 "items_per_second": 33516
356 },
357 {
358 "name": "BM_SetInsert/1024/8",
359 "iterations": 21609,
360 "real_time": 32317,
361 "cpu_time": 32429,
362 "bytes_per_second": 986770,
363 "items_per_second": 246693
364 },
365 {
366 "name": "BM_SetInsert/1024/10",
367 "iterations": 21393,
368 "real_time": 32724,
369 "cpu_time": 33355,
370 "bytes_per_second": 1199226,
371 "items_per_second": 299807
372 }
373 ]
374}
375```
376
377The CSV format outputs comma-separated values. The `context` is output on stderr
378and the CSV itself on stdout. Example CSV output looks like:
379
380```
381name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
382"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
383"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
384"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
385```
386
387<a name="output-files" />
388
389### Output Files
390
391Write benchmark results to a file with the `--benchmark_out=<filename>` option
392(or set `BENCHMARK_OUT`). Specify the output format with
393`--benchmark_out_format={json|console|csv}` (or set
394`BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that specifying
395`--benchmark_out` does not suppress the console output.
396
397<a name="running-benchmarks" />
398
399### Running Benchmarks
400
401Benchmarks are executed by running the produced binaries. Benchmarks binaries,
402by default, accept options that may be specified either through their command
403line interface or by setting environment variables before execution. For every
404`--option_flag=<value>` CLI switch, a corresponding environment variable
405`OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
406 prevails). A complete list of CLI options is available running benchmarks
407 with the `--help` switch.
408
409<a name="running-a-subset-of-benchmarks" />
410
411### Running a Subset of Benchmarks
412
413The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
414environment variable) can be used to only run the benchmarks that match
415the specified `<regex>`. For example:
416
417```bash
418$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
419Run on (1 X 2300 MHz CPU )
4202016-06-25 19:34:24
421Benchmark Time CPU Iterations
422----------------------------------------------------
423BM_memcpy/32 11 ns 11 ns 79545455
424BM_memcpy/32k 2181 ns 2185 ns 324074
425BM_memcpy/32 12 ns 12 ns 54687500
426BM_memcpy/32k 1834 ns 1837 ns 357143
427```
428
429<a name="result-comparison" />
430
431### Result comparison
432
433It is possible to compare the benchmarking results.
434See [Additional Tooling Documentation](docs/tools.md)
435
436<a name="runtime-and-reporting-considerations" />
437
438### Runtime and Reporting Considerations
439
440When the benchmark binary is executed, each benchmark function is run serially.
441The number of iterations to run is determined dynamically by running the
442benchmark a few times and measuring the time taken and ensuring that the
443ultimate result will be statistically stable. As such, faster benchmark
444functions will be run for more iterations than slower benchmark functions, and
445the number of iterations is thus reported.
446
447In all cases, the number of iterations for which the benchmark is run is
448governed by the amount of time the benchmark takes. Concretely, the number of
449iterations is at least one, not more than 1e9, until CPU time is greater than
450the minimum time, or the wallclock time is 5x minimum time. The minimum time is
451set per benchmark by calling `MinTime` on the registered benchmark object.
452
453Average timings are then reported over the iterations run. If multiple
454repetitions are requested using the `--benchmark_repetitions` command-line
455option, or at registration time, the benchmark function will be run several
456times and statistical results across these repetitions will also be reported.
457
458As well as the per-benchmark entries, a preamble in the report will include
459information about the machine on which the benchmarks are run.
460
461<a name="passing-arguments" />
462
463### Passing Arguments
464
465Sometimes a family of benchmarks can be implemented with just one routine that
466takes an extra argument to specify which one of the family of benchmarks to
467run. For example, the following code defines a family of benchmarks for
468measuring the speed of `memcpy()` calls of different lengths:
469
470```c++
471static void BM_memcpy(benchmark::State& state) {
472 char* src = new char[state.range(0)];
473 char* dst = new char[state.range(0)];
474 memset(src, 'x', state.range(0));
475 for (auto _ : state)
476 memcpy(dst, src, state.range(0));
477 state.SetBytesProcessed(int64_t(state.iterations()) *
478 int64_t(state.range(0)));
479 delete[] src;
480 delete[] dst;
481}
482BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
483```
484
485The preceding code is quite repetitive, and can be replaced with the following
486short-hand. The following invocation will pick a few appropriate arguments in
487the specified range and will generate a benchmark for each such argument.
488
489```c++
490BENCHMARK(BM_memcpy)->Range(8, 8<<10);
491```
492
493By default the arguments in the range are generated in multiples of eight and
494the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
495range multiplier is changed to multiples of two.
496
497```c++
498BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
499```
500
501Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
502
503The preceding code shows a method of defining a sparse range. The following
504example shows a method of defining a dense range. It is then used to benchmark
505the performance of `std::vector` initialization for uniformly increasing sizes.
506
507```c++
508static void BM_DenseRange(benchmark::State& state) {
509 for(auto _ : state) {
510 std::vector<int> v(state.range(0), state.range(0));
511 benchmark::DoNotOptimize(v.data());
512 benchmark::ClobberMemory();
513 }
514}
515BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
516```
517
518Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
519
520You might have a benchmark that depends on two or more inputs. For example, the
521following code defines a family of benchmarks for measuring the speed of set
522insertion.
523
524```c++
525static void BM_SetInsert(benchmark::State& state) {
526 std::set<int> data;
527 for (auto _ : state) {
528 state.PauseTiming();
529 data = ConstructRandomSet(state.range(0));
530 state.ResumeTiming();
531 for (int j = 0; j < state.range(1); ++j)
532 data.insert(RandomNumber());
533 }
534}
535BENCHMARK(BM_SetInsert)
536 ->Args({1<<10, 128})
537 ->Args({2<<10, 128})
538 ->Args({4<<10, 128})
539 ->Args({8<<10, 128})
540 ->Args({1<<10, 512})
541 ->Args({2<<10, 512})
542 ->Args({4<<10, 512})
543 ->Args({8<<10, 512});
544```
545
546The preceding code is quite repetitive, and can be replaced with the following
547short-hand. The following macro will pick a few appropriate arguments in the
548product of the two specified ranges and will generate a benchmark for each such
549pair.
550
551```c++
552BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
553```
554
555Some benchmarks may require specific argument values that cannot be expressed
556with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
557benchmark input for each combination in the product of the supplied vectors.
558
559```c++
560BENCHMARK(BM_SetInsert)
561 ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
562// would generate the same benchmark arguments as
563BENCHMARK(BM_SetInsert)
564 ->Args({1<<10, 20})
565 ->Args({3<<10, 20})
566 ->Args({8<<10, 20})
567 ->Args({3<<10, 40})
568 ->Args({8<<10, 40})
569 ->Args({1<<10, 40})
570 ->Args({1<<10, 60})
571 ->Args({3<<10, 60})
572 ->Args({8<<10, 60})
573 ->Args({1<<10, 80})
574 ->Args({3<<10, 80})
575 ->Args({8<<10, 80});
576```
577
578For more complex patterns of inputs, passing a custom function to `Apply` allows
579programmatic specification of an arbitrary set of arguments on which to run the
580benchmark. The following example enumerates a dense range on one parameter,
581and a sparse range on the second.
582
583```c++
584static void CustomArguments(benchmark::internal::Benchmark* b) {
585 for (int i = 0; i <= 10; ++i)
586 for (int j = 32; j <= 1024*1024; j *= 8)
587 b->Args({i, j});
588}
589BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
590```
591
592#### Passing Arbitrary Arguments to a Benchmark
593
594In C++11 it is possible to define a benchmark that takes an arbitrary number
595of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
596macro creates a benchmark that invokes `func` with the `benchmark::State` as
597the first argument followed by the specified `args...`.
598The `test_case_name` is appended to the name of the benchmark and
599should describe the values passed.
600
601```c++
602template <class ...ExtraArgs>
603void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
604 [...]
605}
606// Registers a benchmark named "BM_takes_args/int_string_test" that passes
607// the specified values to `extra_args`.
608BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
609```
610
611Note that elements of `...args` may refer to global variables. Users should
612avoid modifying global state inside of a benchmark.
613
614<a name="asymptotic-complexity" />
615
616### Calculating Asymptotic Complexity (Big O)
617
618Asymptotic complexity might be calculated for a family of benchmarks. The
619following code will calculate the coefficient for the high-order term in the
620running time and the normalized root-mean square error of string comparison.
621
622```c++
623static void BM_StringCompare(benchmark::State& state) {
624 std::string s1(state.range(0), '-');
625 std::string s2(state.range(0), '-');
626 for (auto _ : state) {
627 benchmark::DoNotOptimize(s1.compare(s2));
628 }
629 state.SetComplexityN(state.range(0));
630}
631BENCHMARK(BM_StringCompare)
632 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
633```
634
635As shown in the following invocation, asymptotic complexity might also be
636calculated automatically.
637
638```c++
639BENCHMARK(BM_StringCompare)
640 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
641```
642
643The following code will specify asymptotic complexity with a lambda function,
644that might be used to customize high-order term calculation.
645
646```c++
647BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
648 ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
649```
650
651<a name="templated-benchmarks" />
652
653### Templated Benchmarks
654
655This example produces and consumes messages of size `sizeof(v)` `range_x`
656times. It also outputs throughput in the absence of multiprogramming.
657
658```c++
659template <class Q> void BM_Sequential(benchmark::State& state) {
660 Q q;
661 typename Q::value_type v;
662 for (auto _ : state) {
663 for (int i = state.range(0); i--; )
664 q.push(v);
665 for (int e = state.range(0); e--; )
666 q.Wait(&v);
667 }
668 // actually messages, not bytes:
669 state.SetBytesProcessed(
670 static_cast<int64_t>(state.iterations())*state.range(0));
671}
672BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
673```
674
675Three macros are provided for adding benchmark templates.
676
677```c++
678#ifdef BENCHMARK_HAS_CXX11
679#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
680#else // C++ < C++11
681#define BENCHMARK_TEMPLATE(func, arg1)
682#endif
683#define BENCHMARK_TEMPLATE1(func, arg1)
684#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
685```
686
687<a name="fixtures" />
688
689### Fixtures
690
691Fixture tests are created by first defining a type that derives from
692`::benchmark::Fixture` and then creating/registering the tests using the
693following macros:
694
695* `BENCHMARK_F(ClassName, Method)`
696* `BENCHMARK_DEFINE_F(ClassName, Method)`
697* `BENCHMARK_REGISTER_F(ClassName, Method)`
698
699For Example:
700
701```c++
702class MyFixture : public benchmark::Fixture {
703public:
704 void SetUp(const ::benchmark::State& state) {
705 }
706
707 void TearDown(const ::benchmark::State& state) {
708 }
709};
710
711BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
712 for (auto _ : st) {
713 ...
714 }
715}
716
717BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
718 for (auto _ : st) {
719 ...
720 }
721}
722/* BarTest is NOT registered */
723BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
724/* BarTest is now registered */
725```
726
727#### Templated Fixtures
728
729Also you can create templated fixture by using the following macros:
730
731* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
732* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
733
734For example:
735
736```c++
737template<typename T>
738class MyFixture : public benchmark::Fixture {};
739
740BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
741 for (auto _ : st) {
742 ...
743 }
744}
745
746BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
747 for (auto _ : st) {
748 ...
749 }
750}
751
752BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
753```
754
755<a name="custom-counters" />
756
757### Custom Counters
758
759You can add your own counters with user-defined names. The example below
760will add columns "Foo", "Bar" and "Baz" in its output:
761
762```c++
763static void UserCountersExample1(benchmark::State& state) {
764 double numFoos = 0, numBars = 0, numBazs = 0;
765 for (auto _ : state) {
766 // ... count Foo,Bar,Baz events
767 }
768 state.counters["Foo"] = numFoos;
769 state.counters["Bar"] = numBars;
770 state.counters["Baz"] = numBazs;
771}
772```
773
774The `state.counters` object is a `std::map` with `std::string` keys
775and `Counter` values. The latter is a `double`-like class, via an implicit
776conversion to `double&`. Thus you can use all of the standard arithmetic
777assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
778
779In multithreaded benchmarks, each counter is set on the calling thread only.
780When the benchmark finishes, the counters from each thread will be summed;
781the resulting sum is the value which will be shown for the benchmark.
782
783The `Counter` constructor accepts three parameters: the value as a `double`
784; a bit flag which allows you to show counters as rates, and/or as per-thread
785iteration, and/or as per-thread averages, and/or iteration invariants,
786and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
787is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
788(`benchmark::Counter::OneK::kIs1024`)?
789
790```c++
791 // sets a simple counter
792 state.counters["Foo"] = numFoos;
793
794 // Set the counter as a rate. It will be presented divided
795 // by the duration of the benchmark.
796 // Meaning: per one second, how many 'foo's are processed?
797 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
798
799 // Set the counter as a rate. It will be presented divided
800 // by the duration of the benchmark, and the result inverted.
801 // Meaning: how many seconds it takes to process one 'foo'?
802 state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
803
804 // Set the counter as a thread-average quantity. It will
805 // be presented divided by the number of threads.
806 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
807
808 // There's also a combined flag:
809 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
810
811 // This says that we process with the rate of state.range(0) bytes every iteration:
812 state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
813```
814
815When you're compiling in C++11 mode or later you can use `insert()` with
816`std::initializer_list`:
817
818```c++
819 // With C++11, this can be done:
820 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
821 // ... instead of:
822 state.counters["Foo"] = numFoos;
823 state.counters["Bar"] = numBars;
824 state.counters["Baz"] = numBazs;
825```
826
827#### Counter Reporting
828
829When using the console reporter, by default, user counters are printed at
830the end after the table, the same way as ``bytes_processed`` and
831``items_processed``. This is best for cases in which there are few counters,
832or where there are only a couple of lines per benchmark. Here's an example of
833the default output:
834
835```
836------------------------------------------------------------------------------
837Benchmark Time CPU Iterations UserCounters...
838------------------------------------------------------------------------------
839BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
840BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
841BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
842BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
843BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
844BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
845BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
846BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
847BM_Factorial 26 ns 26 ns 26608979 40320
848BM_Factorial/real_time 26 ns 26 ns 26587936 40320
849BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
850BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
851BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
852BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355
853```
854
855If this doesn't suit you, you can print each counter as a table column by
856passing the flag `--benchmark_counters_tabular=true` to the benchmark
857application. This is best for cases in which there are a lot of counters, or
858a lot of lines per individual benchmark. Note that this will trigger a
859reprinting of the table header any time the counter set changes between
860individual benchmarks. Here's an example of corresponding output when
861`--benchmark_counters_tabular=true` is passed:
862
863```
864---------------------------------------------------------------------------------------
865Benchmark Time CPU Iterations Bar Bat Baz Foo
866---------------------------------------------------------------------------------------
867BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
868BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
869BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
870BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
871BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
872BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
873BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
874BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
875--------------------------------------------------------------
876Benchmark Time CPU Iterations
877--------------------------------------------------------------
878BM_Factorial 26 ns 26 ns 26392245 40320
879BM_Factorial/real_time 26 ns 26 ns 26494107 40320
880BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
881BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
882BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
883BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
884BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
885BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
886BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
887BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
888BM_CalculatePi/threads:8 2255 ns 9943 ns 70936
889```
890
891Note above the additional header printed when the benchmark changes from
892``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
893not have the same counter set as ``BM_UserCounter``.
894
895<a name="multithreaded-benchmarks"/>
896
897### Multithreaded Benchmarks
898
899In a multithreaded test (benchmark invoked by multiple threads simultaneously),
900it is guaranteed that none of the threads will start until all have reached
901the start of the benchmark loop, and all will have finished before any thread
902exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
903API) As such, any global setup or teardown can be wrapped in a check against the thread
904index:
905
906```c++
907static void BM_MultiThreaded(benchmark::State& state) {
908 if (state.thread_index == 0) {
909 // Setup code here.
910 }
911 for (auto _ : state) {
912 // Run the test as normal.
913 }
914 if (state.thread_index == 0) {
915 // Teardown code here.
916 }
917}
918BENCHMARK(BM_MultiThreaded)->Threads(2);
919```
920
921If the benchmarked code itself uses threads and you want to compare it to
922single-threaded code, you may want to use real-time ("wallclock") measurements
923for latency comparisons:
924
925```c++
926BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
927```
928
929Without `UseRealTime`, CPU time is used by default.
930
931<a name="cpu-timers" />
932
933### CPU Timers
934
935By default, the CPU timer only measures the time spent by the main thread.
936If the benchmark itself uses threads internally, this measurement may not
937be what you are looking for. Instead, there is a way to measure the total
938CPU usage of the process, by all the threads.
939
940```c++
941void callee(int i);
942
943static void MyMain(int size) {
944#pragma omp parallel for
945 for(int i = 0; i < size; i++)
946 callee(i);
947}
948
949static void BM_OpenMP(benchmark::State& state) {
950 for (auto _ : state)
951 MyMain(state.range(0));
952}
953
954// Measure the time spent by the main thread, use it to decide for how long to
955// run the benchmark loop. Depending on the internal implementation detail may
956// measure to anywhere from near-zero (the overhead spent before/after work
957// handoff to worker thread[s]) to the whole single-thread time.
958BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
959
960// Measure the user-visible time, the wall clock (literally, the time that
961// has passed on the clock on the wall), use it to decide for how long to
962// run the benchmark loop. This will always be meaningful, an will match the
963// time spent by the main thread in single-threaded case, in general decreasing
964// with the number of internal threads doing the work.
965BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
966
967// Measure the total CPU consumption, use it to decide for how long to
968// run the benchmark loop. This will always measure to no less than the
969// time spent by the main thread in single-threaded case.
970BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
971
972// A mixture of the last two. Measure the total CPU consumption, but use the
973// wall clock to decide for how long to run the benchmark loop.
974BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
975```
976
977#### Controlling Timers
978
979Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
980is measured. But sometimes, it is necessary to do some work inside of
981that loop, every iteration, but without counting that time to the benchmark time.
982That is possible, although it is not recommended, since it has high overhead.
983
984```c++
985static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
986 std::set<int> data;
987 for (auto _ : state) {
988 state.PauseTiming(); // Stop timers. They will not count until they are resumed.
989 data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
990 state.ResumeTiming(); // And resume timers. They are now counting again.
991 // The rest will be measured.
992 for (int j = 0; j < state.range(1); ++j)
993 data.insert(RandomNumber());
994 }
995}
996BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
997```
998
999<a name="manual-timing" />
1000
1001### Manual Timing
1002
1003For benchmarking something for which neither CPU time nor real-time are
1004correct or accurate enough, completely manual timing is supported using
1005the `UseManualTime` function.
1006
1007When `UseManualTime` is used, the benchmarked code must call
1008`SetIterationTime` once per iteration of the benchmark loop to
1009report the manually measured time.
1010
1011An example use case for this is benchmarking GPU execution (e.g. OpenCL
1012or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
1013be accurately measured using CPU time or real-time. Instead, they can be
1014measured accurately using a dedicated API, and these measurement results
1015can be reported back with `SetIterationTime`.
1016
1017```c++
1018static void BM_ManualTiming(benchmark::State& state) {
1019 int microseconds = state.range(0);
1020 std::chrono::duration<double, std::micro> sleep_duration {
1021 static_cast<double>(microseconds)
1022 };
1023
1024 for (auto _ : state) {
1025 auto start = std::chrono::high_resolution_clock::now();
1026 // Simulate some useful workload with a sleep
1027 std::this_thread::sleep_for(sleep_duration);
1028 auto end = std::chrono::high_resolution_clock::now();
1029
1030 auto elapsed_seconds =
1031 std::chrono::duration_cast<std::chrono::duration<double>>(
1032 end - start);
1033
1034 state.SetIterationTime(elapsed_seconds.count());
1035 }
1036}
1037BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
1038```
1039
1040<a name="setting-the-time-unit" />
1041
1042### Setting the Time Unit
1043
1044If a benchmark runs a few milliseconds it may be hard to visually compare the
1045measured times, since the output data is given in nanoseconds per default. In
1046order to manually set the time unit, you can specify it manually:
1047
1048```c++
1049BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
1050```
1051
1052<a name="preventing-optimization" />
1053
1054### Preventing Optimization
1055
1056To prevent a value or expression from being optimized away by the compiler
1057the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
1058functions can be used.
1059
1060```c++
1061static void BM_test(benchmark::State& state) {
1062 for (auto _ : state) {
1063 int x = 0;
1064 for (int i=0; i < 64; ++i) {
1065 benchmark::DoNotOptimize(x += i);
1066 }
1067 }
1068}
1069```
1070
1071`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
1072memory or a register. For GNU based compilers it acts as read/write barrier
1073for global memory. More specifically it forces the compiler to flush pending
1074writes to memory and reload any other values as necessary.
1075
1076Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
1077in any way. `<expr>` may even be removed entirely when the result is already
1078known. For example:
1079
1080```c++
1081 /* Example 1: `<expr>` is removed entirely. */
1082 int foo(int x) { return x + 42; }
1083 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
1084
1085 /* Example 2: Result of '<expr>' is only reused */
1086 int bar(int) __attribute__((const));
1087 while (...) DoNotOptimize(bar(0)); // Optimized to:
1088 // int __result__ = bar(0);
1089 // while (...) DoNotOptimize(__result__);
1090```
1091
1092The second tool for preventing optimizations is `ClobberMemory()`. In essence
1093`ClobberMemory()` forces the compiler to perform all pending writes to global
1094memory. Memory managed by block scope objects must be "escaped" using
1095`DoNotOptimize(...)` before it can be clobbered. In the below example
1096`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
1097away.
1098
1099```c++
1100static void BM_vector_push_back(benchmark::State& state) {
1101 for (auto _ : state) {
1102 std::vector<int> v;
1103 v.reserve(1);
1104 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
1105 v.push_back(42);
1106 benchmark::ClobberMemory(); // Force 42 to be written to memory.
1107 }
1108}
1109```
1110
1111Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
1112
1113<a name="reporting-statistics" />
1114
1115### Statistics: Reporting the Mean, Median and Standard Deviation of Repeated Benchmarks
1116
1117By default each benchmark is run once and that single result is reported.
1118However benchmarks are often noisy and a single result may not be representative
1119of the overall behavior. For this reason it's possible to repeatedly rerun the
1120benchmark.
1121
1122The number of runs of each benchmark is specified globally by the
1123`--benchmark_repetitions` flag or on a per benchmark basis by calling
1124`Repetitions` on the registered benchmark object. When a benchmark is run more
1125than once the mean, median and standard deviation of the runs will be reported.
1126
1127Additionally the `--benchmark_report_aggregates_only={true|false}`,
1128`--benchmark_display_aggregates_only={true|false}` flags or
1129`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
1130used to change how repeated tests are reported. By default the result of each
1131repeated run is reported. When `report aggregates only` option is `true`,
1132only the aggregates (i.e. mean, median and standard deviation, maybe complexity
1133measurements if they were requested) of the runs is reported, to both the
1134reporters - standard output (console), and the file.
1135However when only the `display aggregates only` option is `true`,
1136only the aggregates are displayed in the standard output, while the file
1137output still contains everything.
1138Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
1139registered benchmark object overrides the value of the appropriate flag for that
1140benchmark.
1141
1142<a name="custom-statistics" />
1143
1144### Custom Statistics
1145
1146While having mean, median and standard deviation is nice, this may not be
1147enough for everyone. For example you may want to know what the largest
1148observation is, e.g. because you have some real-time constraints. This is easy.
1149The following code will specify a custom statistic to be calculated, defined
1150by a lambda function.
1151
1152```c++
1153void BM_spin_empty(benchmark::State& state) {
1154 for (auto _ : state) {
1155 for (int x = 0; x < state.range(0); ++x) {
1156 benchmark::DoNotOptimize(x);
1157 }
1158 }
1159}
1160
1161BENCHMARK(BM_spin_empty)
1162 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
1163 return *(std::max_element(std::begin(v), std::end(v)));
1164 })
1165 ->Arg(512);
1166```
1167
1168<a name="using-register-benchmark" />
1169
1170### Using RegisterBenchmark(name, fn, args...)
1171
1172The `RegisterBenchmark(name, func, args...)` function provides an alternative
1173way to create and register benchmarks.
1174`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
1175pointer to a new benchmark with the specified `name` that invokes
1176`func(st, args...)` where `st` is a `benchmark::State` object.
1177
1178Unlike the `BENCHMARK` registration macros, which can only be used at the global
1179scope, the `RegisterBenchmark` can be called anywhere. This allows for
1180benchmark tests to be registered programmatically.
1181
1182Additionally `RegisterBenchmark` allows any callable object to be registered
1183as a benchmark. Including capturing lambdas and function objects.
1184
1185For Example:
1186```c++
1187auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
1188
1189int main(int argc, char** argv) {
1190 for (auto& test_input : { /* ... */ })
1191 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
1192 benchmark::Initialize(&argc, argv);
1193 benchmark::RunSpecifiedBenchmarks();
1194}
1195```
1196
1197<a name="exiting-with-an-error" />
1198
1199### Exiting with an Error
1200
1201When errors caused by external influences, such as file I/O and network
1202communication, occur within a benchmark the
1203`State::SkipWithError(const char* msg)` function can be used to skip that run
1204of benchmark and report the error. Note that only future iterations of the
1205`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
1206Users must explicitly exit the loop, otherwise all iterations will be performed.
1207Users may explicitly return to exit the benchmark immediately.
1208
1209The `SkipWithError(...)` function may be used at any point within the benchmark,
1210including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
1211has been used, it is not required to reach the benchmark loop and one may return
1212from the benchmark function early.
1213
1214For example:
1215
1216```c++
1217static void BM_test(benchmark::State& state) {
1218 auto resource = GetResource();
1219 if (!resource.good()) {
1220 state.SkipWithError("Resource is not good!");
1221 // KeepRunning() loop will not be entered.
1222 }
1223 while (state.KeepRunning()) {
1224 auto data = resource.read_data();
1225 if (!resource.good()) {
1226 state.SkipWithError("Failed to read data!");
1227 break; // Needed to skip the rest of the iteration.
1228 }
1229 do_stuff(data);
1230 }
1231}
1232
1233static void BM_test_ranged_fo(benchmark::State & state) {
1234 auto resource = GetResource();
1235 if (!resource.good()) {
1236 state.SkipWithError("Resource is not good!");
1237 return; // Early return is allowed when SkipWithError() has been used.
1238 }
1239 for (auto _ : state) {
1240 auto data = resource.read_data();
1241 if (!resource.good()) {
1242 state.SkipWithError("Failed to read data!");
1243 break; // REQUIRED to prevent all further iterations.
1244 }
1245 do_stuff(data);
1246 }
1247}
1248```
1249<a name="a-faster-keep-running-loop" />
1250
1251### A Faster KeepRunning Loop
1252
1253In C++11 mode, a ranged-based for loop should be used in preference to
1254the `KeepRunning` loop for running the benchmarks. For example:
1255
1256```c++
1257static void BM_Fast(benchmark::State &state) {
1258 for (auto _ : state) {
1259 FastOperation();
1260 }
1261}
1262BENCHMARK(BM_Fast);
1263```
1264
1265The reason the ranged-for loop is faster than using `KeepRunning`, is
1266because `KeepRunning` requires a memory load and store of the iteration count
1267ever iteration, whereas the ranged-for variant is able to keep the iteration count
1268in a register.
1269
1270For example, an empty inner loop of using the ranged-based for method looks like:
1271
1272```asm
1273# Loop Init
1274 mov rbx, qword ptr [r14 + 104]
1275 call benchmark::State::StartKeepRunning()
1276 test rbx, rbx
1277 je .LoopEnd
1278.LoopHeader: # =>This Inner Loop Header: Depth=1
1279 add rbx, -1
1280 jne .LoopHeader
1281.LoopEnd:
1282```
1283
1284Compared to an empty `KeepRunning` loop, which looks like:
1285
1286```asm
1287.LoopHeader: # in Loop: Header=BB0_3 Depth=1
1288 cmp byte ptr [rbx], 1
1289 jne .LoopInit
1290.LoopBody: # =>This Inner Loop Header: Depth=1
1291 mov rax, qword ptr [rbx + 8]
1292 lea rcx, [rax + 1]
1293 mov qword ptr [rbx + 8], rcx
1294 cmp rax, qword ptr [rbx + 104]
1295 jb .LoopHeader
1296 jmp .LoopEnd
1297.LoopInit:
1298 mov rdi, rbx
1299 call benchmark::State::StartKeepRunning()
1300 jmp .LoopBody
1301.LoopEnd:
1302```
1303
1304Unless C++03 compatibility is required, the ranged-for variant of writing
1305the benchmark loop should be preferred.
1306
1307<a name="disabling-cpu-frequency-scaling" />
1308
1309### Disabling CPU Frequency Scaling
1310
1311If you see this error:
1312
1313```
1314***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
1315```
1316
1317you might want to disable the CPU frequency scaling while running the benchmark:
1318
1319```bash
1320sudo cpupower frequency-set --governor performance
1321./mybench
1322sudo cpupower frequency-set --governor powersave
1323```
1324