1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/time/time.h"
6
7 #include <cmath>
8 #include <ios>
9 #include <limits>
10 #include <ostream>
11 #include <sstream>
12
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "base/no_destructor.h"
16 #include "base/strings/stringprintf.h"
17 #include "base/third_party/nspr/prtime.h"
18 #include "base/time/time_override.h"
19 #include "build/build_config.h"
20
21 namespace base {
22
23 namespace internal {
24
25 TimeNowFunction g_time_now_function = &subtle::TimeNowIgnoringOverride;
26
27 TimeNowFunction g_time_now_from_system_time_function =
28 &subtle::TimeNowFromSystemTimeIgnoringOverride;
29
30 TimeTicksNowFunction g_time_ticks_now_function =
31 &subtle::TimeTicksNowIgnoringOverride;
32
33 ThreadTicksNowFunction g_thread_ticks_now_function =
34 &subtle::ThreadTicksNowIgnoringOverride;
35
36 } // namespace internal
37
38 // TimeDelta ------------------------------------------------------------------
39
InDays() const40 int TimeDelta::InDays() const {
41 if (is_max()) {
42 // Preserve max to prevent overflow.
43 return std::numeric_limits<int>::max();
44 }
45 return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
46 }
47
InDaysFloored() const48 int TimeDelta::InDaysFloored() const {
49 if (is_max()) {
50 // Preserve max to prevent overflow.
51 return std::numeric_limits<int>::max();
52 }
53 int result = delta_ / Time::kMicrosecondsPerDay;
54 int64_t remainder = delta_ - (result * Time::kMicrosecondsPerDay);
55 if (remainder < 0) {
56 --result; // Use floor(), not trunc() rounding behavior.
57 }
58 return result;
59 }
60
InHours() const61 int TimeDelta::InHours() const {
62 if (is_max()) {
63 // Preserve max to prevent overflow.
64 return std::numeric_limits<int>::max();
65 }
66 return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
67 }
68
InMinutes() const69 int TimeDelta::InMinutes() const {
70 if (is_max()) {
71 // Preserve max to prevent overflow.
72 return std::numeric_limits<int>::max();
73 }
74 return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
75 }
76
InSecondsF() const77 double TimeDelta::InSecondsF() const {
78 if (is_max()) {
79 // Preserve max to prevent overflow.
80 return std::numeric_limits<double>::infinity();
81 }
82 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
83 }
84
InSeconds() const85 int64_t TimeDelta::InSeconds() const {
86 if (is_max()) {
87 // Preserve max to prevent overflow.
88 return std::numeric_limits<int64_t>::max();
89 }
90 return delta_ / Time::kMicrosecondsPerSecond;
91 }
92
InMillisecondsF() const93 double TimeDelta::InMillisecondsF() const {
94 if (is_max()) {
95 // Preserve max to prevent overflow.
96 return std::numeric_limits<double>::infinity();
97 }
98 return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
99 }
100
InMilliseconds() const101 int64_t TimeDelta::InMilliseconds() const {
102 if (is_max()) {
103 // Preserve max to prevent overflow.
104 return std::numeric_limits<int64_t>::max();
105 }
106 return delta_ / Time::kMicrosecondsPerMillisecond;
107 }
108
InMillisecondsRoundedUp() const109 int64_t TimeDelta::InMillisecondsRoundedUp() const {
110 if (is_max()) {
111 // Preserve max to prevent overflow.
112 return std::numeric_limits<int64_t>::max();
113 }
114 int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
115 int64_t remainder = delta_ - (result * Time::kMicrosecondsPerMillisecond);
116 if (remainder > 0) {
117 ++result; // Use ceil(), not trunc() rounding behavior.
118 }
119 return result;
120 }
121
InMicroseconds() const122 int64_t TimeDelta::InMicroseconds() const {
123 if (is_max()) {
124 // Preserve max to prevent overflow.
125 return std::numeric_limits<int64_t>::max();
126 }
127 return delta_;
128 }
129
InMicrosecondsF() const130 double TimeDelta::InMicrosecondsF() const {
131 if (is_max()) {
132 // Preserve max to prevent overflow.
133 return std::numeric_limits<double>::infinity();
134 }
135 return static_cast<double>(delta_);
136 }
137
InNanoseconds() const138 int64_t TimeDelta::InNanoseconds() const {
139 if (is_max()) {
140 // Preserve max to prevent overflow.
141 return std::numeric_limits<int64_t>::max();
142 }
143 return delta_ * Time::kNanosecondsPerMicrosecond;
144 }
145
146 namespace time_internal {
147
SaturatedAdd(TimeDelta delta,int64_t value)148 int64_t SaturatedAdd(TimeDelta delta, int64_t value) {
149 CheckedNumeric<int64_t> rv(delta.delta_);
150 rv += value;
151 if (rv.IsValid())
152 return rv.ValueOrDie();
153 // Positive RHS overflows. Negative RHS underflows.
154 if (value < 0)
155 return std::numeric_limits<int64_t>::min();
156 return std::numeric_limits<int64_t>::max();
157 }
158
SaturatedSub(TimeDelta delta,int64_t value)159 int64_t SaturatedSub(TimeDelta delta, int64_t value) {
160 CheckedNumeric<int64_t> rv(delta.delta_);
161 rv -= value;
162 if (rv.IsValid())
163 return rv.ValueOrDie();
164 // Negative RHS overflows. Positive RHS underflows.
165 if (value < 0)
166 return std::numeric_limits<int64_t>::max();
167 return std::numeric_limits<int64_t>::min();
168 }
169
170 } // namespace time_internal
171
operator <<(std::ostream & os,TimeDelta time_delta)172 std::ostream& operator<<(std::ostream& os, TimeDelta time_delta) {
173 return os << time_delta.InSecondsF() << " s";
174 }
175
176 // Time -----------------------------------------------------------------------
177
178 // static
Now()179 Time Time::Now() {
180 return internal::g_time_now_function();
181 }
182
183 // static
NowFromSystemTime()184 Time Time::NowFromSystemTime() {
185 // Just use g_time_now_function because it returns the system time.
186 return internal::g_time_now_from_system_time_function();
187 }
188
189 // static
FromDeltaSinceWindowsEpoch(TimeDelta delta)190 Time Time::FromDeltaSinceWindowsEpoch(TimeDelta delta) {
191 return Time(delta.InMicroseconds());
192 }
193
ToDeltaSinceWindowsEpoch() const194 TimeDelta Time::ToDeltaSinceWindowsEpoch() const {
195 return TimeDelta::FromMicroseconds(us_);
196 }
197
198 // static
FromTimeT(time_t tt)199 Time Time::FromTimeT(time_t tt) {
200 if (tt == 0)
201 return Time(); // Preserve 0 so we can tell it doesn't exist.
202 if (tt == std::numeric_limits<time_t>::max())
203 return Max();
204 return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSeconds(tt);
205 }
206
ToTimeT() const207 time_t Time::ToTimeT() const {
208 if (is_null())
209 return 0; // Preserve 0 so we can tell it doesn't exist.
210 if (is_max()) {
211 // Preserve max without offset to prevent overflow.
212 return std::numeric_limits<time_t>::max();
213 }
214 if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
215 DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
216 "value " << us_ << " to time_t.";
217 return std::numeric_limits<time_t>::max();
218 }
219 return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
220 }
221
222 // static
FromDoubleT(double dt)223 Time Time::FromDoubleT(double dt) {
224 if (dt == 0 || std::isnan(dt))
225 return Time(); // Preserve 0 so we can tell it doesn't exist.
226 return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSecondsD(dt);
227 }
228
ToDoubleT() const229 double Time::ToDoubleT() const {
230 if (is_null())
231 return 0; // Preserve 0 so we can tell it doesn't exist.
232 if (is_max()) {
233 // Preserve max without offset to prevent overflow.
234 return std::numeric_limits<double>::infinity();
235 }
236 return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
237 static_cast<double>(kMicrosecondsPerSecond));
238 }
239
240 #if defined(OS_POSIX)
241 // static
FromTimeSpec(const timespec & ts)242 Time Time::FromTimeSpec(const timespec& ts) {
243 return FromDoubleT(ts.tv_sec +
244 static_cast<double>(ts.tv_nsec) /
245 base::Time::kNanosecondsPerSecond);
246 }
247 #endif
248
249 // static
FromJsTime(double ms_since_epoch)250 Time Time::FromJsTime(double ms_since_epoch) {
251 // The epoch is a valid time, so this constructor doesn't interpret
252 // 0 as the null time.
253 return Time(kTimeTToMicrosecondsOffset) +
254 TimeDelta::FromMillisecondsD(ms_since_epoch);
255 }
256
ToJsTime() const257 double Time::ToJsTime() const {
258 if (is_null()) {
259 // Preserve 0 so the invalid result doesn't depend on the platform.
260 return 0;
261 }
262 if (is_max()) {
263 // Preserve max without offset to prevent overflow.
264 return std::numeric_limits<double>::infinity();
265 }
266 return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
267 kMicrosecondsPerMillisecond);
268 }
269
FromJavaTime(int64_t ms_since_epoch)270 Time Time::FromJavaTime(int64_t ms_since_epoch) {
271 return base::Time::UnixEpoch() +
272 base::TimeDelta::FromMilliseconds(ms_since_epoch);
273 }
274
ToJavaTime() const275 int64_t Time::ToJavaTime() const {
276 if (is_null()) {
277 // Preserve 0 so the invalid result doesn't depend on the platform.
278 return 0;
279 }
280 if (is_max()) {
281 // Preserve max without offset to prevent overflow.
282 return std::numeric_limits<int64_t>::max();
283 }
284 return ((us_ - kTimeTToMicrosecondsOffset) /
285 kMicrosecondsPerMillisecond);
286 }
287
288 // static
UnixEpoch()289 Time Time::UnixEpoch() {
290 Time time;
291 time.us_ = kTimeTToMicrosecondsOffset;
292 return time;
293 }
294
LocalMidnight() const295 Time Time::LocalMidnight() const {
296 Exploded exploded;
297 LocalExplode(&exploded);
298 exploded.hour = 0;
299 exploded.minute = 0;
300 exploded.second = 0;
301 exploded.millisecond = 0;
302 Time out_time;
303 if (FromLocalExploded(exploded, &out_time))
304 return out_time;
305 // This function must not fail.
306 NOTREACHED();
307 return Time();
308 }
309
310 // static
FromStringInternal(const char * time_string,bool is_local,Time * parsed_time)311 bool Time::FromStringInternal(const char* time_string,
312 bool is_local,
313 Time* parsed_time) {
314 DCHECK((time_string != nullptr) && (parsed_time != nullptr));
315
316 if (time_string[0] == '\0')
317 return false;
318
319 PRTime result_time = 0;
320 PRStatus result = PR_ParseTimeString(time_string,
321 is_local ? PR_FALSE : PR_TRUE,
322 &result_time);
323 if (PR_SUCCESS != result)
324 return false;
325
326 result_time += kTimeTToMicrosecondsOffset;
327 *parsed_time = Time(result_time);
328 return true;
329 }
330
331 // static
ExplodedMostlyEquals(const Exploded & lhs,const Exploded & rhs)332 bool Time::ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs) {
333 return lhs.year == rhs.year && lhs.month == rhs.month &&
334 lhs.day_of_month == rhs.day_of_month && lhs.hour == rhs.hour &&
335 lhs.minute == rhs.minute && lhs.second == rhs.second &&
336 lhs.millisecond == rhs.millisecond;
337 }
338
operator <<(std::ostream & os,Time time)339 std::ostream& operator<<(std::ostream& os, Time time) {
340 Time::Exploded exploded;
341 time.UTCExplode(&exploded);
342 // Use StringPrintf because iostreams formatting is painful.
343 return os << StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
344 exploded.year,
345 exploded.month,
346 exploded.day_of_month,
347 exploded.hour,
348 exploded.minute,
349 exploded.second,
350 exploded.millisecond);
351 }
352
353 // TimeTicks ------------------------------------------------------------------
354
355 // static
Now()356 TimeTicks TimeTicks::Now() {
357 return internal::g_time_ticks_now_function();
358 }
359
360 // static
UnixEpoch()361 TimeTicks TimeTicks::UnixEpoch() {
362 static const base::NoDestructor<base::TimeTicks> epoch([]() {
363 return subtle::TimeTicksNowIgnoringOverride() -
364 (subtle::TimeNowIgnoringOverride() - Time::UnixEpoch());
365 }());
366 return *epoch;
367 }
368
SnappedToNextTick(TimeTicks tick_phase,TimeDelta tick_interval) const369 TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
370 TimeDelta tick_interval) const {
371 // |interval_offset| is the offset from |this| to the next multiple of
372 // |tick_interval| after |tick_phase|, possibly negative if in the past.
373 TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
374 // If |this| is exactly on the interval (i.e. offset==0), don't adjust.
375 // Otherwise, if |tick_phase| was in the past, adjust forward to the next
376 // tick after |this|.
377 if (!interval_offset.is_zero() && tick_phase < *this)
378 interval_offset += tick_interval;
379 return *this + interval_offset;
380 }
381
operator <<(std::ostream & os,TimeTicks time_ticks)382 std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks) {
383 // This function formats a TimeTicks object as "bogo-microseconds".
384 // The origin and granularity of the count are platform-specific, and may very
385 // from run to run. Although bogo-microseconds usually roughly correspond to
386 // real microseconds, the only real guarantee is that the number never goes
387 // down during a single run.
388 const TimeDelta as_time_delta = time_ticks - TimeTicks();
389 return os << as_time_delta.InMicroseconds() << " bogo-microseconds";
390 }
391
392 // ThreadTicks ----------------------------------------------------------------
393
394 // static
Now()395 ThreadTicks ThreadTicks::Now() {
396 return internal::g_thread_ticks_now_function();
397 }
398
operator <<(std::ostream & os,ThreadTicks thread_ticks)399 std::ostream& operator<<(std::ostream& os, ThreadTicks thread_ticks) {
400 const TimeDelta as_time_delta = thread_ticks - ThreadTicks();
401 return os << as_time_delta.InMicroseconds() << " bogo-thread-microseconds";
402 }
403
404 // Time::Exploded -------------------------------------------------------------
405
is_in_range(int value,int lo,int hi)406 inline bool is_in_range(int value, int lo, int hi) {
407 return lo <= value && value <= hi;
408 }
409
HasValidValues() const410 bool Time::Exploded::HasValidValues() const {
411 return is_in_range(month, 1, 12) &&
412 is_in_range(day_of_week, 0, 6) &&
413 is_in_range(day_of_month, 1, 31) &&
414 is_in_range(hour, 0, 23) &&
415 is_in_range(minute, 0, 59) &&
416 is_in_range(second, 0, 60) &&
417 is_in_range(millisecond, 0, 999);
418 }
419
420 } // namespace base
421