• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version="1.0" encoding="US-ASCII"?>
2<!DOCTYPE rfc SYSTEM "rfc2629.dtd">
3<?rfc toc="yes"?>
4<?rfc tocompact="yes"?>
5<?rfc tocdepth="3"?>
6<?rfc tocindent="yes"?>
7<?rfc symrefs="yes"?>
8<?rfc sortrefs="yes"?>
9<?rfc comments="yes"?>
10<?rfc inline="yes"?>
11<?rfc compact="yes"?>
12<?rfc subcompact="no"?>
13<rfc category="std" docName="draft-ietf-codec-opus-update-10"
14     ipr="trust200902" updates="6716">
15  <front>
16    <title abbrev="Opus Update">Updates to the Opus Audio Codec</title>
17
18<author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
19<organization>Mozilla Corporation</organization>
20<address>
21<postal>
22<street>331 E. Evelyn Avenue</street>
23<city>Mountain View</city>
24<region>CA</region>
25<code>94041</code>
26<country>USA</country>
27</postal>
28<phone>+1 650 903-0800</phone>
29<email>jmvalin@jmvalin.ca</email>
30</address>
31</author>
32
33<author initials="K." surname="Vos" fullname="Koen Vos">
34<organization>vocTone</organization>
35<address>
36<postal>
37<street></street>
38<city></city>
39<region></region>
40<code></code>
41<country></country>
42</postal>
43<phone></phone>
44<email>koenvos74@gmail.com</email>
45</address>
46</author>
47
48
49
50    <date day="24" month="August" year="2017" />
51
52    <abstract>
53      <t>This document addresses minor issues that were found in the specification
54      of the Opus audio codec in RFC 6716. It updates the normative decoder implementation
55      included in the appendix of RFC 6716. The changes fixes real and potential security-related
56      issues, as well minor quality-related issues.</t>
57    </abstract>
58  </front>
59
60  <middle>
61    <section title="Introduction">
62      <t>This document addresses minor issues that were discovered in the reference
63      implementation of the Opus codec. Unlike most IETF specifications, Opus is defined
64      in <xref target="RFC6716">RFC 6716</xref> in terms of a normative reference
65      decoder implementation rather than from the associated text description.
66      That RFC includes the reference decoder implementation as Appendix A.
67      That's why only issues affecting the decoder are
68      listed here. An up-to-date implementation of the Opus encoder can be found at
69      <eref target="https://opus-codec.org/"/>.</t>
70    <t>
71      Some of the changes in this document update normative behaviour in a way that requires
72      new test vectors. The English text of the specification is unaffected, only
73      the C implementation is. The updated specification remains fully compatible with
74      the original specification.
75    </t>
76
77    <t>
78    Note: due to RFC formatting conventions, lines exceeding the column width
79    in the patch are split using a backslash character. The backslashes
80    at the end of a line and the white space at the beginning
81    of the following line are not part of the patch. A properly formatted patch
82    including all changes is available at
83    <eref target="https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-update-00.patch"/>
84    and has a SHA-1 hash of 029e3aa88fc342c91e67a21e7bfbc9458661cd5f.
85    </t>
86
87    </section>
88
89    <section title="Terminology">
90      <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
91      "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
92      document are to be interpreted as described in <xref
93      target="RFC2119">RFC 2119</xref>.</t>
94    </section>
95
96    <section title="Stereo State Reset in SILK">
97      <t>The reference implementation does not reinitialize the stereo state
98      during a mode switch. The old stereo memory can produce a brief impulse
99      (i.e. single sample) in the decoded audio. This can be fixed by changing
100      silk/dec_API.c at line 72:
101    </t>
102<figure>
103<artwork><![CDATA[
104<CODE BEGINS>
105     for( n = 0; n < DECODER_NUM_CHANNELS; n++ ) {
106         ret  = silk_init_decoder( &channel_state[ n ] );
107     }
108+    silk_memset(&((silk_decoder *)decState)->sStereo, 0,
109+                sizeof(((silk_decoder *)decState)->sStereo));
110+    /* Not strictly needed, but it's cleaner that way */
111+    ((silk_decoder *)decState)->prev_decode_only_middle = 0;
112
113     return ret;
114 }
115<CODE ENDS>
116]]></artwork>
117</figure>
118     <t>
119     This change affects the normative output of the decoder, but the
120     amount of change is within the tolerance and too small to make the testvector check fail.
121      </t>
122    </section>
123
124    <section anchor="padding" title="Parsing of the Opus Packet Padding">
125      <t>It was discovered that some invalid packets of very large size could trigger
126      an out-of-bounds read in the Opus packet parsing code responsible for padding.
127      This is due to an integer overflow if the signaled padding exceeds 2^31-1 bytes
128      (the actual packet may be smaller). The code can be fixed by decrementing the
129      (signed) len value, instead of incrementing a separate padding counter.
130      This is done by applying the following changes at line 596 of src/opus_decoder.c:
131    </t>
132<figure>
133<artwork><![CDATA[
134<CODE BEGINS>
135       /* Padding flag is bit 6 */
136       if (ch&0x40)
137       {
138-         int padding=0;
139          int p;
140          do {
141             if (len<=0)
142                return OPUS_INVALID_PACKET;
143             p = *data++;
144             len--;
145-            padding += p==255 ? 254: p;
146+            len -= p==255 ? 254: p;
147          } while (p==255);
148-         len -= padding;
149       }
150<CODE ENDS>
151]]></artwork>
152</figure>
153      <t>This packet parsing issue is limited to reading memory up
154         to about 60 kB beyond the compressed buffer. This can only be triggered
155         by a compressed packet more than about 16 MB long, so it's not a problem
156         for RTP. In theory, it could crash a file
157         decoder (e.g. Opus in Ogg) if the memory just after the incoming packet
158         is out-of-range, but our attempts to trigger such a crash in a production
159         application built using an affected version of the Opus decoder failed.</t>
160    </section>
161
162    <section anchor="resampler" title="Resampler buffer">
163      <t>The SILK resampler had the following issues:
164        <list style="numbers">
165    <t>The calls to memcpy() were using sizeof(opus_int32), but the type of the
166        local buffer was opus_int16.</t>
167    <t>Because the size was wrong, this potentially allowed the source
168        and destination regions of the memcpy() to overlap on the copy from "buf" to "buf".
169          We believe that nSamplesIn (number of input samples) is at least fs_in_khZ (sampling rate in kHz),
170          which is at least 8.
171       Since RESAMPLER_ORDER_FIR_12 is only 8, that should not be a problem once
172       the type size is fixed.</t>
173          <t>The size of the buffer used RESAMPLER_MAX_BATCH_SIZE_IN, but the
174        data stored in it was actually twice the input batch size
175        (nSamplesIn&lt;&lt;1).</t>
176      </list></t>
177    <t>The code can be fixed by applying the following changes to line 78 of silk/resampler_private_IIR_FIR.c:
178    </t>
179<figure>
180<artwork><![CDATA[
181<CODE BEGINS>
182 )
183 {
184     silk_resampler_state_struct *S = \
185(silk_resampler_state_struct *)SS;
186     opus_int32 nSamplesIn;
187     opus_int32 max_index_Q16, index_increment_Q16;
188-    opus_int16 buf[ RESAMPLER_MAX_BATCH_SIZE_IN + \
189RESAMPLER_ORDER_FIR_12 ];
190+    opus_int16 buf[ 2*RESAMPLER_MAX_BATCH_SIZE_IN + \
191RESAMPLER_ORDER_FIR_12 ];
192
193     /* Copy buffered samples to start of buffer */
194-    silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
195* sizeof( opus_int32 ) );
196+    silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
197* sizeof( opus_int16 ) );
198
199     /* Iterate over blocks of frameSizeIn input samples */
200     index_increment_Q16 = S->invRatio_Q16;
201     while( 1 ) {
202         nSamplesIn = silk_min( inLen, S->batchSize );
203
204         /* Upsample 2x */
205         silk_resampler_private_up2_HQ( S->sIIR, &buf[ \
206RESAMPLER_ORDER_FIR_12 ], in, nSamplesIn );
207
208         max_index_Q16 = silk_LSHIFT32( nSamplesIn, 16 + 1 \
209);         /* + 1 because 2x upsampling */
210         out = silk_resampler_private_IIR_FIR_INTERPOL( out, \
211buf, max_index_Q16, index_increment_Q16 );
212         in += nSamplesIn;
213         inLen -= nSamplesIn;
214
215         if( inLen > 0 ) {
216             /* More iterations to do; copy last part of \
217filtered signal to beginning of buffer */
218-            silk_memcpy( buf, &buf[ nSamplesIn << 1 ], \
219RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
220+            silk_memmove( buf, &buf[ nSamplesIn << 1 ], \
221RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
222         } else {
223             break;
224         }
225     }
226
227     /* Copy last part of filtered signal to the state for \
228the next call */
229-    silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
230RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
231+    silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
232RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
233 }
234<CODE ENDS>
235]]></artwork>
236</figure>
237    </section>
238
239    <section title="Integer wrap-around in inverse gain computation">
240      <t>
241        It was discovered through decoder fuzzing that some bitstreams could produce
242        integer values exceeding 32-bits in LPC_inverse_pred_gain_QA(), causing
243        a wrap-around. The C standard considers
244        this behavior as undefined. The following patch to line 87 of silk/LPC_inv_pred_gain.c
245        detects values that do not fit in a 32-bit integer and considers the corresponding filters unstable:
246      </t>
247<figure>
248<artwork><![CDATA[
249<CODE BEGINS>
250         /* Update AR coefficient */
251         for( n = 0; n < k; n++ ) {
252-            tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( \
253Aold_QA[ k - n - 1 ], rc_Q31, 31 );
254-            Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q );
255+            opus_int64 tmp64;
256+            tmp_QA = silk_SUB_SAT32( Aold_QA[ n ], MUL32_FRAC_Q( \
257Aold_QA[ k - n - 1 ], rc_Q31, 31 ) );
258+            tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( tmp_QA, \
259rc_mult2 ), mult2Q);
260+            if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
261+               return 0;
262+            }
263+            Anew_QA[ n ] = ( opus_int32 )tmp64;
264         }
265<CODE ENDS>
266]]></artwork>
267</figure>
268    </section>
269
270    <section title="Integer wrap-around in LSF decoding" anchor="lsf_overflow">
271      <t>
272        It was discovered -- also from decoder fuzzing -- that an integer wrap-around could
273        occur when decoding bitstreams with extremely large values for the high LSF parameters.
274        The end result of the wrap-around is an illegal read access on the stack, which
275        the authors do not believe is exploitable but should nonetheless be fixed. The following
276        patch to line 137 of silk/NLSF_stabilize.c prevents the problem:
277      </t>
278<figure>
279<artwork><![CDATA[
280<CODE BEGINS>
281           /* Keep delta_min distance between the NLSFs */
282         for( i = 1; i < L; i++ )
283-            NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
284NLSF_Q15[i-1] + NDeltaMin_Q15[i] );
285+            NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
286silk_ADD_SAT16( NLSF_Q15[i-1], NDeltaMin_Q15[i] ) );
287
288         /* Last NLSF should be no higher than 1 - NDeltaMin[L] */
289<CODE ENDS>
290]]></artwork>
291</figure>
292
293    </section>
294
295    <section title="Cap on Band Energy">
296      <t>On extreme bit-streams, it is possible for log-domain band energy levels
297        to exceed the maximum single-precision floating point value once converted
298        to a linear scale. This would later cause the decoded values to be NaN (not a number),
299        possibly causing problems in the software using the PCM values. This can be
300        avoided with the following patch to line 552 of celt/quant_bands.c:
301      </t>
302<figure>
303<artwork><![CDATA[
304<CODE BEGINS>
305       {
306          opus_val16 lg = ADD16(oldEBands[i+c*m->nbEBands],
307                          SHL16((opus_val16)eMeans[i],6));
308+         lg = MIN32(QCONST32(32.f, 16), lg);
309          eBands[i+c*m->nbEBands] = PSHR32(celt_exp2(lg),4);
310       }
311       for (;i<m->nbEBands;i++)
312<CODE ENDS>
313]]></artwork>
314</figure>
315    </section>
316
317    <section title="Hybrid Folding" anchor="folding">
318      <t>When encoding in hybrid mode at low bitrate, we sometimes only have
319        enough bits to code a single CELT band (8 - 9.6 kHz). When that happens,
320        the second band (CELT band 18, from 9.6 to 12 kHz) cannot use folding
321        because it is wider than the amount already coded, and falls back to
322        white noise. Because it can also happen on transients (e.g. stops), it
323        can cause audible pre-echo.
324      </t>
325      <t>
326        To address the issue, we change the folding behavior so that it is
327        never forced to fall back to LCG due to the first band not containing
328        enough coefficients to fold onto the second band. This
329        is achieved by simply repeating part of the first band in the folding
330        of the second band. This changes the code in celt/bands.c around line 1237:
331      </t>
332<figure>
333<artwork><![CDATA[
334<CODE BEGINS>
335          b = 0;
336       }
337
338-      if (resynth && M*eBands[i]-N >= M*eBands[start] && \
339(update_lowband || lowband_offset==0))
340+      if (resynth && (M*eBands[i]-N >= M*eBands[start] || \
341i==start+1) && (update_lowband || lowband_offset==0))
342             lowband_offset = i;
343
344+      if (i == start+1)
345+      {
346+         int n1, n2;
347+         int offset;
348+         n1 = M*(eBands[start+1]-eBands[start]);
349+         n2 = M*(eBands[start+2]-eBands[start+1]);
350+         offset = M*eBands[start];
351+         /* Duplicate enough of the first band folding data to \
352be able to fold the second band.
353+            Copies no data for CELT-only mode. */
354+         OPUS_COPY(&norm[offset+n1], &norm[offset+2*n1 - n2], n2-n1);
355+         if (C==2)
356+            OPUS_COPY(&norm2[offset+n1], &norm2[offset+2*n1 - n2], \
357n2-n1);
358+      }
359+
360       tf_change = tf_res[i];
361       if (i>=m->effEBands)
362       {
363<CODE ENDS>
364]]></artwork>
365</figure>
366
367      <t>
368       as well as line 1260:
369      </t>
370
371<figure>
372<artwork><![CDATA[
373<CODE BEGINS>
374          fold_start = lowband_offset;
375          while(M*eBands[--fold_start] > effective_lowband);
376          fold_end = lowband_offset-1;
377-         while(M*eBands[++fold_end] < effective_lowband+N);
378+         while(++fold_end < i && M*eBands[fold_end] < \
379effective_lowband+N);
380          x_cm = y_cm = 0;
381          fold_i = fold_start; do {
382            x_cm |= collapse_masks[fold_i*C+0];
383
384<CODE ENDS>
385]]></artwork>
386</figure>
387      <t>
388        The fix does not impact compatibility, because the improvement does
389        not depend on the encoder doing anything special. There is also no
390        reasonable way for an encoder to use the original behavior to
391        improve quality over the proposed change.
392      </t>
393    </section>
394
395    <section title="Downmix to Mono" anchor="stereo">
396      <t>The last issue is not strictly a bug, but it is an issue that has been reported
397      when downmixing an Opus decoded stream to mono, whether this is done inside the decoder
398      or as a post-processing step on the stereo decoder output. Opus intensity stereo allows
399      optionally coding the two channels 180-degrees out of phase on a per-band basis.
400      This provides better stereo quality than forcing the two channels to be in phase,
401      but when the output is downmixed to mono, the energy in the affected bands is cancelled
402      sometimes resulting in audible artifacts.
403      </t>
404      <t>As a work-around for this issue, the decoder MAY choose not to apply the 180-degree
405      phase shift. This can be useful when downmixing to mono inside or
406      outside of the decoder (e.g. user-controllable).
407      </t>
408    </section>
409
410
411    <section title="New Test Vectors">
412      <t>Changes in <xref target="folding"/> and <xref target="stereo"/> have
413        sufficient impact on the testvectors to make them fail. For this reason,
414        this document also updates the Opus test vectors. The new test vectors now
415        include two decoded outputs for the same bitstream. The outputs with
416        suffix 'm' do not apply the CELT 180-degree phase shift as allowed in
417        <xref target="stereo"/>, while the outputs without the suffix do. An
418        implementation is compliant as long as it passes either set of vectors.
419      </t>
420      <t>
421        Any Opus implementation
422        that passes either the original test vectors from <xref target="RFC6716">RFC 6716</xref>
423        or one of the new sets of test vectors is compliant with the Opus specification. However, newer implementations
424        SHOULD be based on the new test vectors rather than the old ones.
425      </t>
426      <t>The new test vectors are located at
427        <eref target="https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-newvectors-00.tar.gz"/>.
428        The SHA-1 hashes of the test vectors are:
429<figure>
430<artwork>
431<![CDATA[
432e49b2862ceec7324790ed8019eb9744596d5be01  testvector01.bit
433b809795ae1bcd606049d76de4ad24236257135e0  testvector02.bit
434e0c4ecaeab44d35a2f5b6575cd996848e5ee2acc  testvector03.bit
435a0f870cbe14ebb71fa9066ef3ee96e59c9a75187  testvector04.bit
4369b3d92b48b965dfe9edf7b8a85edd4309f8cf7c8  testvector05.bit
43728e66769ab17e17f72875283c14b19690cbc4e57  testvector06.bit
438bacf467be3215fc7ec288f29e2477de1192947a6  testvector07.bit
439ddbe08b688bbf934071f3893cd0030ce48dba12f  testvector08.bit
4403932d9d61944dab1201645b8eeaad595d5705ecb  testvector09.bit
441521eb2a1e0cc9c31b8b740673307c2d3b10c1900  testvector10.bit
4426bc8f3146fcb96450c901b16c3d464ccdf4d5d96  testvector11.bit
443338c3f1b4b97226bc60bc41038becbc6de06b28f  testvector12.bit
444f5ef93884da6a814d311027918e9afc6f2e5c2c8  testvector01.dec
44548ac1ff1995250a756e1e17bd32acefa8cd2b820  testvector02.dec
446d15567e919db2d0e818727092c0af8dd9df23c95  testvector03.dec
4471249dd28f5bd1e39a66fd6d99449dca7a8316342  testvector04.dec
448b85675d81deef84a112c466cdff3b7aaa1d2fc76  testvector05.dec
44955f0b191e90bfa6f98b50d01a64b44255cb4813e  testvector06.dec
45061e8b357ab090b1801eeb578a28a6ae935e25b7b  testvector07.dec
451a58539ee5321453b2ddf4c0f2500e856b3966862  testvector08.dec
452bb96aad2cde188555862b7bbb3af6133851ef8f4  testvector09.dec
4531b6cdf0413ac9965b16184b1bea129b5c0b2a37a  testvector10.dec
454b1fff72b74666e3027801b29dbc48b31f80dee0d  testvector11.dec
45598e09bbafed329e341c3b4052e9c4ba5fc83f9b1  testvector12.dec
4561e7d984ea3fbb16ba998aea761f4893fbdb30157  testvector01m.dec
45748ac1ff1995250a756e1e17bd32acefa8cd2b820  testvector02m.dec
458d15567e919db2d0e818727092c0af8dd9df23c95  testvector03m.dec
4591249dd28f5bd1e39a66fd6d99449dca7a8316342  testvector04m.dec
460d70b0bad431e7d463bc3da49bd2d49f1c6d0a530  testvector05m.dec
4616ac1648c3174c95fada565161a6c78bdbe59c77d  testvector06m.dec
462fc5e2f709693738324fb4c8bdc0dad6dda04e713  testvector07m.dec
463aad2ba397bf1b6a18e8e09b50e4b19627d479f00  testvector08m.dec
4646feb7a7b9d7cdc1383baf8d5739e2a514bd0ba08  testvector09m.dec
4651b6cdf0413ac9965b16184b1bea129b5c0b2a37a  testvector10m.dec
466fd3d3a7b0dfbdab98d37ed9aa04b659b9fefbd18  testvector11m.dec
46798e09bbafed329e341c3b4052e9c4ba5fc83f9b1  testvector12m.dec
468]]>
469</artwork>
470</figure>
471      Note that the decoder input bitstream files (.bit) are unchanged.
472      </t>
473    </section>
474
475    <section anchor="security" title="Security Considerations">
476      <t>This document fixes two security issues reported on Opus and that affect the
477        reference implementation in <xref target="RFC6716">RFC 6716</xref>: CVE-2013-0899
478        <eref target="https://nvd.nist.gov/vuln/detail/CVE-2013-0899"/>
479        and CVE-2017-0381 <eref target="https://nvd.nist.gov/vuln/detail/CVE-2017-0381"/>.
480        CVE- 2013-0899 theoretically could have caused an information leak. The leaked
481        information would have gone through the decoder process before being accessible
482        to the attacker. It is fixed by <xref target="padding"/>.
483        CVE-2017-0381 could have resulted in a 16-bit out-of-bounds read from a fixed
484        location.  It is fixed in <xref target="lsf_overflow"/>.
485        Beyond the two fixed CVEs, this document adds no new security considerations on top of
486        <xref target="RFC6716">RFC 6716</xref>.
487      </t>
488    </section>
489
490    <section anchor="IANA" title="IANA Considerations">
491      <t>This document makes no request of IANA.</t>
492
493      <t>Note to RFC Editor: this section may be removed on publication as an
494      RFC.</t>
495    </section>
496
497    <section anchor="Acknowledgements" title="Acknowledgements">
498      <t>We would like to thank Juri Aedla for reporting the issue with the parsing of
499      the Opus padding. Thanks to Felicia Lim for reporting the LSF integer overflow issue.
500      Also, thanks to Tina le Grand, Jonathan Lennox, and Mark Harris for their
501      feedback on this document.</t>
502    </section>
503  </middle>
504
505  <back>
506    <references title="Normative References">
507      <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"?>
508      <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.6716.xml"?>
509
510
511    </references>
512  </back>
513</rfc>
514