1 /*
2 * sha1.c
3 *
4 * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
5 * specified in FIPS 180-1
6 *
7 * David A. McGrew
8 * Cisco Systems, Inc.
9 */
10
11 /*
12 *
13 * Copyright (c) 2001-2017, Cisco Systems, Inc.
14 * All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 *
23 * Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials provided
26 * with the distribution.
27 *
28 * Neither the name of the Cisco Systems, Inc. nor the names of its
29 * contributors may be used to endorse or promote products derived
30 * from this software without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
37 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
38 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
39 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 * OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 */
46
47 #ifdef HAVE_CONFIG_H
48 #include <config.h>
49 #endif
50
51 #include "sha1.h"
52
53 srtp_debug_module_t srtp_mod_sha1 = {
54 0, /* debugging is off by default */
55 "sha-1" /* printable module name */
56 };
57
58 /* SN == Rotate left N bits */
59 #define S1(X) ((X << 1) | (X >> 31))
60 #define S5(X) ((X << 5) | (X >> 27))
61 #define S30(X) ((X << 30) | (X >> 2))
62
63 #define f0(B, C, D) ((B & C) | (~B & D))
64 #define f1(B, C, D) (B ^ C ^ D)
65 #define f2(B, C, D) ((B & C) | (B & D) | (C & D))
66 #define f3(B, C, D) (B ^ C ^ D)
67
68 /*
69 * nota bene: the variable K0 appears in the curses library, so we
70 * give longer names to these variables to avoid spurious warnings
71 * on systems that uses curses
72 */
73
74 uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */
75 uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
76 uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
77 uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
78
srtp_sha1(const uint8_t * msg,int octets_in_msg,uint32_t hash_value[5])79 void srtp_sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5])
80 {
81 srtp_sha1_ctx_t ctx;
82
83 srtp_sha1_init(&ctx);
84 srtp_sha1_update(&ctx, msg, octets_in_msg);
85 srtp_sha1_final(&ctx, hash_value);
86 }
87
88 /*
89 * srtp_sha1_core(M, H) computes the core compression function, where M is
90 * the next part of the message (in network byte order) and H is the
91 * intermediate state { H0, H1, ...} (in host byte order)
92 *
93 * this function does not do any of the padding required in the
94 * complete SHA1 function
95 *
96 * this function is used in the SEAL 3.0 key setup routines
97 * (crypto/cipher/seal.c)
98 */
99
srtp_sha1_core(const uint32_t M[16],uint32_t hash_value[5])100 void srtp_sha1_core(const uint32_t M[16], uint32_t hash_value[5])
101 {
102 uint32_t H0;
103 uint32_t H1;
104 uint32_t H2;
105 uint32_t H3;
106 uint32_t H4;
107 uint32_t W[80];
108 uint32_t A, B, C, D, E, TEMP;
109 int t;
110
111 /* copy hash_value into H0, H1, H2, H3, H4 */
112 H0 = hash_value[0];
113 H1 = hash_value[1];
114 H2 = hash_value[2];
115 H3 = hash_value[3];
116 H4 = hash_value[4];
117
118 /* copy/xor message into array */
119
120 W[0] = be32_to_cpu(M[0]);
121 W[1] = be32_to_cpu(M[1]);
122 W[2] = be32_to_cpu(M[2]);
123 W[3] = be32_to_cpu(M[3]);
124 W[4] = be32_to_cpu(M[4]);
125 W[5] = be32_to_cpu(M[5]);
126 W[6] = be32_to_cpu(M[6]);
127 W[7] = be32_to_cpu(M[7]);
128 W[8] = be32_to_cpu(M[8]);
129 W[9] = be32_to_cpu(M[9]);
130 W[10] = be32_to_cpu(M[10]);
131 W[11] = be32_to_cpu(M[11]);
132 W[12] = be32_to_cpu(M[12]);
133 W[13] = be32_to_cpu(M[13]);
134 W[14] = be32_to_cpu(M[14]);
135 W[15] = be32_to_cpu(M[15]);
136 TEMP = W[13] ^ W[8] ^ W[2] ^ W[0];
137 W[16] = S1(TEMP);
138 TEMP = W[14] ^ W[9] ^ W[3] ^ W[1];
139 W[17] = S1(TEMP);
140 TEMP = W[15] ^ W[10] ^ W[4] ^ W[2];
141 W[18] = S1(TEMP);
142 TEMP = W[16] ^ W[11] ^ W[5] ^ W[3];
143 W[19] = S1(TEMP);
144 TEMP = W[17] ^ W[12] ^ W[6] ^ W[4];
145 W[20] = S1(TEMP);
146 TEMP = W[18] ^ W[13] ^ W[7] ^ W[5];
147 W[21] = S1(TEMP);
148 TEMP = W[19] ^ W[14] ^ W[8] ^ W[6];
149 W[22] = S1(TEMP);
150 TEMP = W[20] ^ W[15] ^ W[9] ^ W[7];
151 W[23] = S1(TEMP);
152 TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];
153 W[24] = S1(TEMP);
154 TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];
155 W[25] = S1(TEMP);
156 TEMP = W[23] ^ W[18] ^ W[12] ^ W[10];
157 W[26] = S1(TEMP);
158 TEMP = W[24] ^ W[19] ^ W[13] ^ W[11];
159 W[27] = S1(TEMP);
160 TEMP = W[25] ^ W[20] ^ W[14] ^ W[12];
161 W[28] = S1(TEMP);
162 TEMP = W[26] ^ W[21] ^ W[15] ^ W[13];
163 W[29] = S1(TEMP);
164 TEMP = W[27] ^ W[22] ^ W[16] ^ W[14];
165 W[30] = S1(TEMP);
166 TEMP = W[28] ^ W[23] ^ W[17] ^ W[15];
167 W[31] = S1(TEMP);
168
169 /* process the remainder of the array */
170 for (t = 32; t < 80; t++) {
171 TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
172 W[t] = S1(TEMP);
173 }
174
175 A = H0;
176 B = H1;
177 C = H2;
178 D = H3;
179 E = H4;
180
181 for (t = 0; t < 20; t++) {
182 TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
183 E = D;
184 D = C;
185 C = S30(B);
186 B = A;
187 A = TEMP;
188 }
189 for (; t < 40; t++) {
190 TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
191 E = D;
192 D = C;
193 C = S30(B);
194 B = A;
195 A = TEMP;
196 }
197 for (; t < 60; t++) {
198 TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
199 E = D;
200 D = C;
201 C = S30(B);
202 B = A;
203 A = TEMP;
204 }
205 for (; t < 80; t++) {
206 TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
207 E = D;
208 D = C;
209 C = S30(B);
210 B = A;
211 A = TEMP;
212 }
213
214 hash_value[0] = H0 + A;
215 hash_value[1] = H1 + B;
216 hash_value[2] = H2 + C;
217 hash_value[3] = H3 + D;
218 hash_value[4] = H4 + E;
219
220 return;
221 }
222
srtp_sha1_init(srtp_sha1_ctx_t * ctx)223 void srtp_sha1_init(srtp_sha1_ctx_t *ctx)
224 {
225 /* initialize state vector */
226 ctx->H[0] = 0x67452301;
227 ctx->H[1] = 0xefcdab89;
228 ctx->H[2] = 0x98badcfe;
229 ctx->H[3] = 0x10325476;
230 ctx->H[4] = 0xc3d2e1f0;
231
232 /* indicate that message buffer is empty */
233 ctx->octets_in_buffer = 0;
234
235 /* reset message bit-count to zero */
236 ctx->num_bits_in_msg = 0;
237 }
238
srtp_sha1_update(srtp_sha1_ctx_t * ctx,const uint8_t * msg,int octets_in_msg)239 void srtp_sha1_update(srtp_sha1_ctx_t *ctx,
240 const uint8_t *msg,
241 int octets_in_msg)
242 {
243 int i;
244 uint8_t *buf = (uint8_t *)ctx->M;
245
246 /* update message bit-count */
247 ctx->num_bits_in_msg += octets_in_msg * 8;
248
249 /* loop over 16-word blocks of M */
250 while (octets_in_msg > 0) {
251 if (octets_in_msg + ctx->octets_in_buffer >= 64) {
252 /*
253 * copy words of M into msg buffer until that buffer is full,
254 * converting them into host byte order as needed
255 */
256 octets_in_msg -= (64 - ctx->octets_in_buffer);
257 for (i = ctx->octets_in_buffer; i < 64; i++) {
258 buf[i] = *msg++;
259 }
260 ctx->octets_in_buffer = 0;
261
262 /* process a whole block */
263
264 debug_print(srtp_mod_sha1, "(update) running srtp_sha1_core()",
265 NULL);
266
267 srtp_sha1_core(ctx->M, ctx->H);
268
269 } else {
270 debug_print(srtp_mod_sha1, "(update) not running srtp_sha1_core()",
271 NULL);
272
273 for (i = ctx->octets_in_buffer;
274 i < (ctx->octets_in_buffer + octets_in_msg); i++) {
275 buf[i] = *msg++;
276 }
277 ctx->octets_in_buffer += octets_in_msg;
278 octets_in_msg = 0;
279 }
280 }
281 }
282
283 /*
284 * srtp_sha1_final(ctx, output) computes the result for ctx and copies it
285 * into the twenty octets located at *output
286 */
287
srtp_sha1_final(srtp_sha1_ctx_t * ctx,uint32_t * output)288 void srtp_sha1_final(srtp_sha1_ctx_t *ctx, uint32_t *output)
289 {
290 uint32_t A, B, C, D, E, TEMP;
291 uint32_t W[80];
292 int i, t;
293
294 /*
295 * process the remaining octets_in_buffer, padding and terminating as
296 * necessary
297 */
298 {
299 int tail = ctx->octets_in_buffer % 4;
300
301 /* copy/xor message into array */
302 for (i = 0; i < (ctx->octets_in_buffer + 3) / 4; i++) {
303 W[i] = be32_to_cpu(ctx->M[i]);
304 }
305
306 /* set the high bit of the octet immediately following the message */
307 switch (tail) {
308 case (3):
309 W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffffff00) | 0x80;
310 W[i] = 0x0;
311 break;
312 case (2):
313 W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffff0000) | 0x8000;
314 W[i] = 0x0;
315 break;
316 case (1):
317 W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xff000000) | 0x800000;
318 W[i] = 0x0;
319 break;
320 case (0):
321 W[i] = 0x80000000;
322 break;
323 }
324
325 /* zeroize remaining words */
326 for (i++; i < 15; i++) {
327 W[i] = 0x0;
328 }
329
330 /*
331 * if there is room at the end of the word array, then set the
332 * last word to the bit-length of the message; otherwise, set that
333 * word to zero and then we need to do one more run of the
334 * compression algo.
335 */
336 if (ctx->octets_in_buffer < 56) {
337 W[15] = ctx->num_bits_in_msg;
338 } else if (ctx->octets_in_buffer < 60) {
339 W[15] = 0x0;
340 }
341
342 /* process the word array */
343 for (t = 16; t < 80; t++) {
344 TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
345 W[t] = S1(TEMP);
346 }
347
348 A = ctx->H[0];
349 B = ctx->H[1];
350 C = ctx->H[2];
351 D = ctx->H[3];
352 E = ctx->H[4];
353
354 for (t = 0; t < 20; t++) {
355 TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
356 E = D;
357 D = C;
358 C = S30(B);
359 B = A;
360 A = TEMP;
361 }
362 for (; t < 40; t++) {
363 TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
364 E = D;
365 D = C;
366 C = S30(B);
367 B = A;
368 A = TEMP;
369 }
370 for (; t < 60; t++) {
371 TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
372 E = D;
373 D = C;
374 C = S30(B);
375 B = A;
376 A = TEMP;
377 }
378 for (; t < 80; t++) {
379 TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
380 E = D;
381 D = C;
382 C = S30(B);
383 B = A;
384 A = TEMP;
385 }
386
387 ctx->H[0] += A;
388 ctx->H[1] += B;
389 ctx->H[2] += C;
390 ctx->H[3] += D;
391 ctx->H[4] += E;
392 }
393
394 debug_print(srtp_mod_sha1, "(final) running srtp_sha1_core()", NULL);
395
396 if (ctx->octets_in_buffer >= 56) {
397 debug_print(srtp_mod_sha1, "(final) running srtp_sha1_core() again",
398 NULL);
399
400 /* we need to do one final run of the compression algo */
401
402 /*
403 * set initial part of word array to zeros, and set the
404 * final part to the number of bits in the message
405 */
406 for (i = 0; i < 15; i++) {
407 W[i] = 0x0;
408 }
409 W[15] = ctx->num_bits_in_msg;
410
411 /* process the word array */
412 for (t = 16; t < 80; t++) {
413 TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
414 W[t] = S1(TEMP);
415 }
416
417 A = ctx->H[0];
418 B = ctx->H[1];
419 C = ctx->H[2];
420 D = ctx->H[3];
421 E = ctx->H[4];
422
423 for (t = 0; t < 20; t++) {
424 TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
425 E = D;
426 D = C;
427 C = S30(B);
428 B = A;
429 A = TEMP;
430 }
431 for (; t < 40; t++) {
432 TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
433 E = D;
434 D = C;
435 C = S30(B);
436 B = A;
437 A = TEMP;
438 }
439 for (; t < 60; t++) {
440 TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
441 E = D;
442 D = C;
443 C = S30(B);
444 B = A;
445 A = TEMP;
446 }
447 for (; t < 80; t++) {
448 TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
449 E = D;
450 D = C;
451 C = S30(B);
452 B = A;
453 A = TEMP;
454 }
455
456 ctx->H[0] += A;
457 ctx->H[1] += B;
458 ctx->H[2] += C;
459 ctx->H[3] += D;
460 ctx->H[4] += E;
461 }
462
463 /* copy result into output buffer */
464 output[0] = be32_to_cpu(ctx->H[0]);
465 output[1] = be32_to_cpu(ctx->H[1]);
466 output[2] = be32_to_cpu(ctx->H[2]);
467 output[3] = be32_to_cpu(ctx->H[3]);
468 output[4] = be32_to_cpu(ctx->H[4]);
469
470 /* indicate that message buffer in context is empty */
471 ctx->octets_in_buffer = 0;
472
473 return;
474 }
475