• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGOpenCLRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "PatternInit.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/OSLog.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsNVPTX.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/IntrinsicsR600.h"
43 #include "llvm/IR/IntrinsicsS390.h"
44 #include "llvm/IR/IntrinsicsWebAssembly.h"
45 #include "llvm/IR/IntrinsicsX86.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/IR/MatrixBuilder.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/X86TargetParser.h"
51 #include <sstream>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 using namespace llvm;
56 
57 static
clamp(int64_t Value,int64_t Low,int64_t High)58 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
59   return std::min(High, std::max(Low, Value));
60 }
61 
initializeAlloca(CodeGenFunction & CGF,AllocaInst * AI,Value * Size,Align AlignmentInBytes)62 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
63                              Align AlignmentInBytes) {
64   ConstantInt *Byte;
65   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
66   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
67     // Nothing to initialize.
68     return;
69   case LangOptions::TrivialAutoVarInitKind::Zero:
70     Byte = CGF.Builder.getInt8(0x00);
71     break;
72   case LangOptions::TrivialAutoVarInitKind::Pattern: {
73     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
74     Byte = llvm::dyn_cast<llvm::ConstantInt>(
75         initializationPatternFor(CGF.CGM, Int8));
76     break;
77   }
78   }
79   if (CGF.CGM.stopAutoInit())
80     return;
81   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
82   I->addAnnotationMetadata("auto-init");
83 }
84 
85 /// getBuiltinLibFunction - Given a builtin id for a function like
86 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)87 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
88                                                      unsigned BuiltinID) {
89   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
90 
91   // Get the name, skip over the __builtin_ prefix (if necessary).
92   StringRef Name;
93   GlobalDecl D(FD);
94 
95   // If the builtin has been declared explicitly with an assembler label,
96   // use the mangled name. This differs from the plain label on platforms
97   // that prefix labels.
98   if (FD->hasAttr<AsmLabelAttr>())
99     Name = getMangledName(D);
100   else
101     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
102 
103   llvm::FunctionType *Ty =
104     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
105 
106   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
107 }
108 
109 /// Emit the conversions required to turn the given value into an
110 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)111 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
112                         QualType T, llvm::IntegerType *IntType) {
113   V = CGF.EmitToMemory(V, T);
114 
115   if (V->getType()->isPointerTy())
116     return CGF.Builder.CreatePtrToInt(V, IntType);
117 
118   assert(V->getType() == IntType);
119   return V;
120 }
121 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)122 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
123                           QualType T, llvm::Type *ResultType) {
124   V = CGF.EmitFromMemory(V, T);
125 
126   if (ResultType->isPointerTy())
127     return CGF.Builder.CreateIntToPtr(V, ResultType);
128 
129   assert(V->getType() == ResultType);
130   return V;
131 }
132 
133 /// Utility to insert an atomic instruction based on Intrinsic::ID
134 /// and the expression node.
MakeBinaryAtomicValue(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)135 static Value *MakeBinaryAtomicValue(
136     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
137     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
138   QualType T = E->getType();
139   assert(E->getArg(0)->getType()->isPointerType());
140   assert(CGF.getContext().hasSameUnqualifiedType(T,
141                                   E->getArg(0)->getType()->getPointeeType()));
142   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
143 
144   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
145   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
146 
147   llvm::IntegerType *IntType =
148     llvm::IntegerType::get(CGF.getLLVMContext(),
149                            CGF.getContext().getTypeSize(T));
150   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
151 
152   llvm::Value *Args[2];
153   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
154   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
155   llvm::Type *ValueType = Args[1]->getType();
156   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
157 
158   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
159       Kind, Args[0], Args[1], Ordering);
160   return EmitFromInt(CGF, Result, T, ValueType);
161 }
162 
EmitNontemporalStore(CodeGenFunction & CGF,const CallExpr * E)163 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
164   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
165   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
166 
167   // Convert the type of the pointer to a pointer to the stored type.
168   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
169   Value *BC = CGF.Builder.CreateBitCast(
170       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
171   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
172   LV.setNontemporal(true);
173   CGF.EmitStoreOfScalar(Val, LV, false);
174   return nullptr;
175 }
176 
EmitNontemporalLoad(CodeGenFunction & CGF,const CallExpr * E)177 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
178   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
179 
180   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
181   LV.setNontemporal(true);
182   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
183 }
184 
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)185 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
186                                llvm::AtomicRMWInst::BinOp Kind,
187                                const CallExpr *E) {
188   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
189 }
190 
191 /// Utility to insert an atomic instruction based Intrinsic::ID and
192 /// the expression node, where the return value is the result of the
193 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)194 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
195                                    llvm::AtomicRMWInst::BinOp Kind,
196                                    const CallExpr *E,
197                                    Instruction::BinaryOps Op,
198                                    bool Invert = false) {
199   QualType T = E->getType();
200   assert(E->getArg(0)->getType()->isPointerType());
201   assert(CGF.getContext().hasSameUnqualifiedType(T,
202                                   E->getArg(0)->getType()->getPointeeType()));
203   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
204 
205   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
206   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
207 
208   llvm::IntegerType *IntType =
209     llvm::IntegerType::get(CGF.getLLVMContext(),
210                            CGF.getContext().getTypeSize(T));
211   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
212 
213   llvm::Value *Args[2];
214   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
215   llvm::Type *ValueType = Args[1]->getType();
216   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
217   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
218 
219   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
220       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
221   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
222   if (Invert)
223     Result =
224         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
225                                 llvm::ConstantInt::getAllOnesValue(IntType));
226   Result = EmitFromInt(CGF, Result, T, ValueType);
227   return RValue::get(Result);
228 }
229 
230 /// Utility to insert an atomic cmpxchg instruction.
231 ///
232 /// @param CGF The current codegen function.
233 /// @param E   Builtin call expression to convert to cmpxchg.
234 ///            arg0 - address to operate on
235 ///            arg1 - value to compare with
236 ///            arg2 - new value
237 /// @param ReturnBool Specifies whether to return success flag of
238 ///                   cmpxchg result or the old value.
239 ///
240 /// @returns result of cmpxchg, according to ReturnBool
241 ///
242 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
243 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
MakeAtomicCmpXchgValue(CodeGenFunction & CGF,const CallExpr * E,bool ReturnBool)244 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
245                                      bool ReturnBool) {
246   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
247   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
248   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
249 
250   llvm::IntegerType *IntType = llvm::IntegerType::get(
251       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
252   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
253 
254   Value *Args[3];
255   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
256   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
257   llvm::Type *ValueType = Args[1]->getType();
258   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
259   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
260 
261   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
262       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
263       llvm::AtomicOrdering::SequentiallyConsistent);
264   if (ReturnBool)
265     // Extract boolean success flag and zext it to int.
266     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
267                                   CGF.ConvertType(E->getType()));
268   else
269     // Extract old value and emit it using the same type as compare value.
270     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
271                        ValueType);
272 }
273 
274 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
275 /// _InterlockedCompareExchange* intrinsics which have the following signature:
276 /// T _InterlockedCompareExchange(T volatile *Destination,
277 ///                               T Exchange,
278 ///                               T Comparand);
279 ///
280 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
281 /// cmpxchg *Destination, Comparand, Exchange.
282 /// So we need to swap Comparand and Exchange when invoking
283 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
284 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
285 /// already swapped.
286 
287 static
EmitAtomicCmpXchgForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering=AtomicOrdering::SequentiallyConsistent)288 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
289     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
290   assert(E->getArg(0)->getType()->isPointerType());
291   assert(CGF.getContext().hasSameUnqualifiedType(
292       E->getType(), E->getArg(0)->getType()->getPointeeType()));
293   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
294                                                  E->getArg(1)->getType()));
295   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
296                                                  E->getArg(2)->getType()));
297 
298   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
299   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
300   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
301 
302   // For Release ordering, the failure ordering should be Monotonic.
303   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
304                          AtomicOrdering::Monotonic :
305                          SuccessOrdering;
306 
307   // The atomic instruction is marked volatile for consistency with MSVC. This
308   // blocks the few atomics optimizations that LLVM has. If we want to optimize
309   // _Interlocked* operations in the future, we will have to remove the volatile
310   // marker.
311   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
312                    Destination, Comparand, Exchange,
313                    SuccessOrdering, FailureOrdering);
314   Result->setVolatile(true);
315   return CGF.Builder.CreateExtractValue(Result, 0);
316 }
317 
318 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
319 // prototyped like this:
320 //
321 // unsigned char _InterlockedCompareExchange128...(
322 //     __int64 volatile * _Destination,
323 //     __int64 _ExchangeHigh,
324 //     __int64 _ExchangeLow,
325 //     __int64 * _ComparandResult);
EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering)326 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
327                                               const CallExpr *E,
328                                               AtomicOrdering SuccessOrdering) {
329   assert(E->getNumArgs() == 4);
330   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
331   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
332   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
333   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
334 
335   assert(Destination->getType()->isPointerTy());
336   assert(!ExchangeHigh->getType()->isPointerTy());
337   assert(!ExchangeLow->getType()->isPointerTy());
338   assert(ComparandPtr->getType()->isPointerTy());
339 
340   // For Release ordering, the failure ordering should be Monotonic.
341   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
342                              ? AtomicOrdering::Monotonic
343                              : SuccessOrdering;
344 
345   // Convert to i128 pointers and values.
346   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
347   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
348   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
349   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
350                           CGF.getContext().toCharUnitsFromBits(128));
351 
352   // (((i128)hi) << 64) | ((i128)lo)
353   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
354   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
355   ExchangeHigh =
356       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
357   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
358 
359   // Load the comparand for the instruction.
360   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
361 
362   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
363                                               SuccessOrdering, FailureOrdering);
364 
365   // The atomic instruction is marked volatile for consistency with MSVC. This
366   // blocks the few atomics optimizations that LLVM has. If we want to optimize
367   // _Interlocked* operations in the future, we will have to remove the volatile
368   // marker.
369   CXI->setVolatile(true);
370 
371   // Store the result as an outparameter.
372   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
373                           ComparandResult);
374 
375   // Get the success boolean and zero extend it to i8.
376   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
377   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
378 }
379 
EmitAtomicIncrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)380 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
381     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
382   assert(E->getArg(0)->getType()->isPointerType());
383 
384   auto *IntTy = CGF.ConvertType(E->getType());
385   auto *Result = CGF.Builder.CreateAtomicRMW(
386                    AtomicRMWInst::Add,
387                    CGF.EmitScalarExpr(E->getArg(0)),
388                    ConstantInt::get(IntTy, 1),
389                    Ordering);
390   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
391 }
392 
EmitAtomicDecrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)393 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
394     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
395   assert(E->getArg(0)->getType()->isPointerType());
396 
397   auto *IntTy = CGF.ConvertType(E->getType());
398   auto *Result = CGF.Builder.CreateAtomicRMW(
399                    AtomicRMWInst::Sub,
400                    CGF.EmitScalarExpr(E->getArg(0)),
401                    ConstantInt::get(IntTy, 1),
402                    Ordering);
403   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
404 }
405 
406 // Build a plain volatile load.
EmitISOVolatileLoad(CodeGenFunction & CGF,const CallExpr * E)407 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
408   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
409   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
410   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
411   llvm::Type *ITy =
412       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
413   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
414   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
415   Load->setVolatile(true);
416   return Load;
417 }
418 
419 // Build a plain volatile store.
EmitISOVolatileStore(CodeGenFunction & CGF,const CallExpr * E)420 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
421   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
422   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
423   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
424   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
425   llvm::Type *ITy =
426       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
427   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
428   llvm::StoreInst *Store =
429       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
430   Store->setVolatile(true);
431   return Store;
432 }
433 
434 // Emit a simple mangled intrinsic that has 1 argument and a return type
435 // matching the argument type. Depending on mode, this may be a constrained
436 // floating-point intrinsic.
emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)437 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
438                                 const CallExpr *E, unsigned IntrinsicID,
439                                 unsigned ConstrainedIntrinsicID) {
440   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
441 
442   if (CGF.Builder.getIsFPConstrained()) {
443     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
444     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
445     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
446   } else {
447     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
448     return CGF.Builder.CreateCall(F, Src0);
449   }
450 }
451 
452 // Emit an intrinsic that has 2 operands of the same type as its result.
453 // Depending on mode, this may be a constrained floating-point intrinsic.
emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)454 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
455                                 const CallExpr *E, unsigned IntrinsicID,
456                                 unsigned ConstrainedIntrinsicID) {
457   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
458   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
459 
460   if (CGF.Builder.getIsFPConstrained()) {
461     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
462     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
463     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
464   } else {
465     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
466     return CGF.Builder.CreateCall(F, { Src0, Src1 });
467   }
468 }
469 
470 // Emit an intrinsic that has 3 operands of the same type as its result.
471 // Depending on mode, this may be a constrained floating-point intrinsic.
emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)472 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
473                                  const CallExpr *E, unsigned IntrinsicID,
474                                  unsigned ConstrainedIntrinsicID) {
475   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
476   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
477   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
478 
479   if (CGF.Builder.getIsFPConstrained()) {
480     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
481     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
482     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
483   } else {
484     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
485     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
486   }
487 }
488 
489 // Emit an intrinsic where all operands are of the same type as the result.
490 // Depending on mode, this may be a constrained floating-point intrinsic.
emitCallMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID,llvm::Type * Ty,ArrayRef<Value * > Args)491 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
492                                                 unsigned IntrinsicID,
493                                                 unsigned ConstrainedIntrinsicID,
494                                                 llvm::Type *Ty,
495                                                 ArrayRef<Value *> Args) {
496   Function *F;
497   if (CGF.Builder.getIsFPConstrained())
498     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
499   else
500     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
501 
502   if (CGF.Builder.getIsFPConstrained())
503     return CGF.Builder.CreateConstrainedFPCall(F, Args);
504   else
505     return CGF.Builder.CreateCall(F, Args);
506 }
507 
508 // Emit a simple mangled intrinsic that has 1 argument and a return type
509 // matching the argument type.
emitUnaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)510 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
511                                const CallExpr *E,
512                                unsigned IntrinsicID) {
513   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
514 
515   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
516   return CGF.Builder.CreateCall(F, Src0);
517 }
518 
519 // Emit an intrinsic that has 2 operands of the same type as its result.
emitBinaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)520 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
521                                 const CallExpr *E,
522                                 unsigned IntrinsicID) {
523   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
524   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
525 
526   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
527   return CGF.Builder.CreateCall(F, { Src0, Src1 });
528 }
529 
530 // Emit an intrinsic that has 3 operands of the same type as its result.
emitTernaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)531 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
532                                  const CallExpr *E,
533                                  unsigned IntrinsicID) {
534   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
535   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
536   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
537 
538   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
539   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
540 }
541 
542 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)543 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
544                                const CallExpr *E,
545                                unsigned IntrinsicID) {
546   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
547   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
548 
549   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
550   return CGF.Builder.CreateCall(F, {Src0, Src1});
551 }
552 
553 // Emit an intrinsic that has overloaded integer result and fp operand.
554 static Value *
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)555 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
556                                         unsigned IntrinsicID,
557                                         unsigned ConstrainedIntrinsicID) {
558   llvm::Type *ResultType = CGF.ConvertType(E->getType());
559   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
560 
561   if (CGF.Builder.getIsFPConstrained()) {
562     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
563     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
564                                        {ResultType, Src0->getType()});
565     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
566   } else {
567     Function *F =
568         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
569     return CGF.Builder.CreateCall(F, Src0);
570   }
571 }
572 
573 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)574 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
575   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
576   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
577   Call->setDoesNotAccessMemory();
578   return Call;
579 }
580 
581 /// Emit the computation of the sign bit for a floating point value. Returns
582 /// the i1 sign bit value.
EmitSignBit(CodeGenFunction & CGF,Value * V)583 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
584   LLVMContext &C = CGF.CGM.getLLVMContext();
585 
586   llvm::Type *Ty = V->getType();
587   int Width = Ty->getPrimitiveSizeInBits();
588   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
589   V = CGF.Builder.CreateBitCast(V, IntTy);
590   if (Ty->isPPC_FP128Ty()) {
591     // We want the sign bit of the higher-order double. The bitcast we just
592     // did works as if the double-double was stored to memory and then
593     // read as an i128. The "store" will put the higher-order double in the
594     // lower address in both little- and big-Endian modes, but the "load"
595     // will treat those bits as a different part of the i128: the low bits in
596     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
597     // we need to shift the high bits down to the low before truncating.
598     Width >>= 1;
599     if (CGF.getTarget().isBigEndian()) {
600       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
601       V = CGF.Builder.CreateLShr(V, ShiftCst);
602     }
603     // We are truncating value in order to extract the higher-order
604     // double, which we will be using to extract the sign from.
605     IntTy = llvm::IntegerType::get(C, Width);
606     V = CGF.Builder.CreateTrunc(V, IntTy);
607   }
608   Value *Zero = llvm::Constant::getNullValue(IntTy);
609   return CGF.Builder.CreateICmpSLT(V, Zero);
610 }
611 
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * FD,const CallExpr * E,llvm::Constant * calleeValue)612 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
613                               const CallExpr *E, llvm::Constant *calleeValue) {
614   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
615   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
616 }
617 
618 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
619 /// depending on IntrinsicID.
620 ///
621 /// \arg CGF The current codegen function.
622 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
623 /// \arg X The first argument to the llvm.*.with.overflow.*.
624 /// \arg Y The second argument to the llvm.*.with.overflow.*.
625 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
626 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)627 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
628                                           const llvm::Intrinsic::ID IntrinsicID,
629                                           llvm::Value *X, llvm::Value *Y,
630                                           llvm::Value *&Carry) {
631   // Make sure we have integers of the same width.
632   assert(X->getType() == Y->getType() &&
633          "Arguments must be the same type. (Did you forget to make sure both "
634          "arguments have the same integer width?)");
635 
636   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
637   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
638   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
639   return CGF.Builder.CreateExtractValue(Tmp, 0);
640 }
641 
emitRangedBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,int low,int high)642 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
643                                 unsigned IntrinsicID,
644                                 int low, int high) {
645     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
646     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
647     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
648     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
649     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
650     return Call;
651 }
652 
653 namespace {
654   struct WidthAndSignedness {
655     unsigned Width;
656     bool Signed;
657   };
658 }
659 
660 static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext & context,const clang::QualType Type)661 getIntegerWidthAndSignedness(const clang::ASTContext &context,
662                              const clang::QualType Type) {
663   assert(Type->isIntegerType() && "Given type is not an integer.");
664   unsigned Width = Type->isBooleanType()  ? 1
665                    : Type->isExtIntType() ? context.getIntWidth(Type)
666                                           : context.getTypeInfo(Type).Width;
667   bool Signed = Type->isSignedIntegerType();
668   return {Width, Signed};
669 }
670 
671 // Given one or more integer types, this function produces an integer type that
672 // encompasses them: any value in one of the given types could be expressed in
673 // the encompassing type.
674 static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types)675 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
676   assert(Types.size() > 0 && "Empty list of types.");
677 
678   // If any of the given types is signed, we must return a signed type.
679   bool Signed = false;
680   for (const auto &Type : Types) {
681     Signed |= Type.Signed;
682   }
683 
684   // The encompassing type must have a width greater than or equal to the width
685   // of the specified types.  Additionally, if the encompassing type is signed,
686   // its width must be strictly greater than the width of any unsigned types
687   // given.
688   unsigned Width = 0;
689   for (const auto &Type : Types) {
690     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
691     if (Width < MinWidth) {
692       Width = MinWidth;
693     }
694   }
695 
696   return {Width, Signed};
697 }
698 
EmitVAStartEnd(Value * ArgValue,bool IsStart)699 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
700   llvm::Type *DestType = Int8PtrTy;
701   if (ArgValue->getType() != DestType)
702     ArgValue =
703         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
704 
705   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
706   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
707 }
708 
709 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
710 /// __builtin_object_size(p, @p To) is correct
areBOSTypesCompatible(int From,int To)711 static bool areBOSTypesCompatible(int From, int To) {
712   // Note: Our __builtin_object_size implementation currently treats Type=0 and
713   // Type=2 identically. Encoding this implementation detail here may make
714   // improving __builtin_object_size difficult in the future, so it's omitted.
715   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
716 }
717 
718 static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type,llvm::IntegerType * ResType)719 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
720   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
721 }
722 
723 llvm::Value *
evaluateOrEmitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)724 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
725                                                  llvm::IntegerType *ResType,
726                                                  llvm::Value *EmittedE,
727                                                  bool IsDynamic) {
728   uint64_t ObjectSize;
729   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
730     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
731   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
732 }
733 
734 /// Returns a Value corresponding to the size of the given expression.
735 /// This Value may be either of the following:
736 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
737 ///     it)
738 ///   - A call to the @llvm.objectsize intrinsic
739 ///
740 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
741 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
742 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
743 llvm::Value *
emitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)744 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
745                                        llvm::IntegerType *ResType,
746                                        llvm::Value *EmittedE, bool IsDynamic) {
747   // We need to reference an argument if the pointer is a parameter with the
748   // pass_object_size attribute.
749   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
750     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
751     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
752     if (Param != nullptr && PS != nullptr &&
753         areBOSTypesCompatible(PS->getType(), Type)) {
754       auto Iter = SizeArguments.find(Param);
755       assert(Iter != SizeArguments.end());
756 
757       const ImplicitParamDecl *D = Iter->second;
758       auto DIter = LocalDeclMap.find(D);
759       assert(DIter != LocalDeclMap.end());
760 
761       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
762                               getContext().getSizeType(), E->getBeginLoc());
763     }
764   }
765 
766   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
767   // evaluate E for side-effects. In either case, we shouldn't lower to
768   // @llvm.objectsize.
769   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
770     return getDefaultBuiltinObjectSizeResult(Type, ResType);
771 
772   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
773   assert(Ptr->getType()->isPointerTy() &&
774          "Non-pointer passed to __builtin_object_size?");
775 
776   Function *F =
777       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
778 
779   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
780   Value *Min = Builder.getInt1((Type & 2) != 0);
781   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
782   Value *NullIsUnknown = Builder.getTrue();
783   Value *Dynamic = Builder.getInt1(IsDynamic);
784   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
785 }
786 
787 namespace {
788 /// A struct to generically describe a bit test intrinsic.
789 struct BitTest {
790   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
791   enum InterlockingKind : uint8_t {
792     Unlocked,
793     Sequential,
794     Acquire,
795     Release,
796     NoFence
797   };
798 
799   ActionKind Action;
800   InterlockingKind Interlocking;
801   bool Is64Bit;
802 
803   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
804 };
805 } // namespace
806 
decodeBitTestBuiltin(unsigned BuiltinID)807 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
808   switch (BuiltinID) {
809     // Main portable variants.
810   case Builtin::BI_bittest:
811     return {TestOnly, Unlocked, false};
812   case Builtin::BI_bittestandcomplement:
813     return {Complement, Unlocked, false};
814   case Builtin::BI_bittestandreset:
815     return {Reset, Unlocked, false};
816   case Builtin::BI_bittestandset:
817     return {Set, Unlocked, false};
818   case Builtin::BI_interlockedbittestandreset:
819     return {Reset, Sequential, false};
820   case Builtin::BI_interlockedbittestandset:
821     return {Set, Sequential, false};
822 
823     // X86-specific 64-bit variants.
824   case Builtin::BI_bittest64:
825     return {TestOnly, Unlocked, true};
826   case Builtin::BI_bittestandcomplement64:
827     return {Complement, Unlocked, true};
828   case Builtin::BI_bittestandreset64:
829     return {Reset, Unlocked, true};
830   case Builtin::BI_bittestandset64:
831     return {Set, Unlocked, true};
832   case Builtin::BI_interlockedbittestandreset64:
833     return {Reset, Sequential, true};
834   case Builtin::BI_interlockedbittestandset64:
835     return {Set, Sequential, true};
836 
837     // ARM/AArch64-specific ordering variants.
838   case Builtin::BI_interlockedbittestandset_acq:
839     return {Set, Acquire, false};
840   case Builtin::BI_interlockedbittestandset_rel:
841     return {Set, Release, false};
842   case Builtin::BI_interlockedbittestandset_nf:
843     return {Set, NoFence, false};
844   case Builtin::BI_interlockedbittestandreset_acq:
845     return {Reset, Acquire, false};
846   case Builtin::BI_interlockedbittestandreset_rel:
847     return {Reset, Release, false};
848   case Builtin::BI_interlockedbittestandreset_nf:
849     return {Reset, NoFence, false};
850   }
851   llvm_unreachable("expected only bittest intrinsics");
852 }
853 
bitActionToX86BTCode(BitTest::ActionKind A)854 static char bitActionToX86BTCode(BitTest::ActionKind A) {
855   switch (A) {
856   case BitTest::TestOnly:   return '\0';
857   case BitTest::Complement: return 'c';
858   case BitTest::Reset:      return 'r';
859   case BitTest::Set:        return 's';
860   }
861   llvm_unreachable("invalid action");
862 }
863 
EmitX86BitTestIntrinsic(CodeGenFunction & CGF,BitTest BT,const CallExpr * E,Value * BitBase,Value * BitPos)864 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
865                                             BitTest BT,
866                                             const CallExpr *E, Value *BitBase,
867                                             Value *BitPos) {
868   char Action = bitActionToX86BTCode(BT.Action);
869   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
870 
871   // Build the assembly.
872   SmallString<64> Asm;
873   raw_svector_ostream AsmOS(Asm);
874   if (BT.Interlocking != BitTest::Unlocked)
875     AsmOS << "lock ";
876   AsmOS << "bt";
877   if (Action)
878     AsmOS << Action;
879   AsmOS << SizeSuffix << " $2, ($1)";
880 
881   // Build the constraints. FIXME: We should support immediates when possible.
882   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
883   std::string MachineClobbers = CGF.getTarget().getClobbers();
884   if (!MachineClobbers.empty()) {
885     Constraints += ',';
886     Constraints += MachineClobbers;
887   }
888   llvm::IntegerType *IntType = llvm::IntegerType::get(
889       CGF.getLLVMContext(),
890       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
891   llvm::Type *IntPtrType = IntType->getPointerTo();
892   llvm::FunctionType *FTy =
893       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
894 
895   llvm::InlineAsm *IA =
896       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
897   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
898 }
899 
900 static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I)901 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
902   switch (I) {
903   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
904   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
905   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
906   case BitTest::Release:    return llvm::AtomicOrdering::Release;
907   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
908   }
909   llvm_unreachable("invalid interlocking");
910 }
911 
912 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
913 /// bits and a bit position and read and optionally modify the bit at that
914 /// position. The position index can be arbitrarily large, i.e. it can be larger
915 /// than 31 or 63, so we need an indexed load in the general case.
EmitBitTestIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)916 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
917                                          unsigned BuiltinID,
918                                          const CallExpr *E) {
919   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
920   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
921 
922   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
923 
924   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
925   // indexing operation internally. Use them if possible.
926   if (CGF.getTarget().getTriple().isX86())
927     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
928 
929   // Otherwise, use generic code to load one byte and test the bit. Use all but
930   // the bottom three bits as the array index, and the bottom three bits to form
931   // a mask.
932   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
933   Value *ByteIndex = CGF.Builder.CreateAShr(
934       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
935   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
936   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
937                                                  ByteIndex, "bittest.byteaddr"),
938                    CharUnits::One());
939   Value *PosLow =
940       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
941                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
942 
943   // The updating instructions will need a mask.
944   Value *Mask = nullptr;
945   if (BT.Action != BitTest::TestOnly) {
946     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
947                                  "bittest.mask");
948   }
949 
950   // Check the action and ordering of the interlocked intrinsics.
951   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
952 
953   Value *OldByte = nullptr;
954   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
955     // Emit a combined atomicrmw load/store operation for the interlocked
956     // intrinsics.
957     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
958     if (BT.Action == BitTest::Reset) {
959       Mask = CGF.Builder.CreateNot(Mask);
960       RMWOp = llvm::AtomicRMWInst::And;
961     }
962     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
963                                           Ordering);
964   } else {
965     // Emit a plain load for the non-interlocked intrinsics.
966     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
967     Value *NewByte = nullptr;
968     switch (BT.Action) {
969     case BitTest::TestOnly:
970       // Don't store anything.
971       break;
972     case BitTest::Complement:
973       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
974       break;
975     case BitTest::Reset:
976       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
977       break;
978     case BitTest::Set:
979       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
980       break;
981     }
982     if (NewByte)
983       CGF.Builder.CreateStore(NewByte, ByteAddr);
984   }
985 
986   // However we loaded the old byte, either by plain load or atomicrmw, shift
987   // the bit into the low position and mask it to 0 or 1.
988   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
989   return CGF.Builder.CreateAnd(
990       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
991 }
992 
993 namespace {
994 enum class MSVCSetJmpKind {
995   _setjmpex,
996   _setjmp3,
997   _setjmp
998 };
999 }
1000 
1001 /// MSVC handles setjmp a bit differently on different platforms. On every
1002 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1003 /// parameters can be passed as variadic arguments, but we always pass none.
EmitMSVCRTSetJmp(CodeGenFunction & CGF,MSVCSetJmpKind SJKind,const CallExpr * E)1004 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1005                                const CallExpr *E) {
1006   llvm::Value *Arg1 = nullptr;
1007   llvm::Type *Arg1Ty = nullptr;
1008   StringRef Name;
1009   bool IsVarArg = false;
1010   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1011     Name = "_setjmp3";
1012     Arg1Ty = CGF.Int32Ty;
1013     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1014     IsVarArg = true;
1015   } else {
1016     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1017     Arg1Ty = CGF.Int8PtrTy;
1018     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1019       Arg1 = CGF.Builder.CreateCall(
1020           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1021     } else
1022       Arg1 = CGF.Builder.CreateCall(
1023           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1024           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1025   }
1026 
1027   // Mark the call site and declaration with ReturnsTwice.
1028   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1029   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1030       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1031       llvm::Attribute::ReturnsTwice);
1032   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1033       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1034       ReturnsTwiceAttr, /*Local=*/true);
1035 
1036   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1037       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1038   llvm::Value *Args[] = {Buf, Arg1};
1039   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1040   CB->setAttributes(ReturnsTwiceAttr);
1041   return RValue::get(CB);
1042 }
1043 
1044 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1045 // we handle them here.
1046 enum class CodeGenFunction::MSVCIntrin {
1047   _BitScanForward,
1048   _BitScanReverse,
1049   _InterlockedAnd,
1050   _InterlockedDecrement,
1051   _InterlockedExchange,
1052   _InterlockedExchangeAdd,
1053   _InterlockedExchangeSub,
1054   _InterlockedIncrement,
1055   _InterlockedOr,
1056   _InterlockedXor,
1057   _InterlockedExchangeAdd_acq,
1058   _InterlockedExchangeAdd_rel,
1059   _InterlockedExchangeAdd_nf,
1060   _InterlockedExchange_acq,
1061   _InterlockedExchange_rel,
1062   _InterlockedExchange_nf,
1063   _InterlockedCompareExchange_acq,
1064   _InterlockedCompareExchange_rel,
1065   _InterlockedCompareExchange_nf,
1066   _InterlockedCompareExchange128,
1067   _InterlockedCompareExchange128_acq,
1068   _InterlockedCompareExchange128_rel,
1069   _InterlockedCompareExchange128_nf,
1070   _InterlockedOr_acq,
1071   _InterlockedOr_rel,
1072   _InterlockedOr_nf,
1073   _InterlockedXor_acq,
1074   _InterlockedXor_rel,
1075   _InterlockedXor_nf,
1076   _InterlockedAnd_acq,
1077   _InterlockedAnd_rel,
1078   _InterlockedAnd_nf,
1079   _InterlockedIncrement_acq,
1080   _InterlockedIncrement_rel,
1081   _InterlockedIncrement_nf,
1082   _InterlockedDecrement_acq,
1083   _InterlockedDecrement_rel,
1084   _InterlockedDecrement_nf,
1085   __fastfail,
1086 };
1087 
1088 static Optional<CodeGenFunction::MSVCIntrin>
translateArmToMsvcIntrin(unsigned BuiltinID)1089 translateArmToMsvcIntrin(unsigned BuiltinID) {
1090   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1091   switch (BuiltinID) {
1092   default:
1093     return None;
1094   case ARM::BI_BitScanForward:
1095   case ARM::BI_BitScanForward64:
1096     return MSVCIntrin::_BitScanForward;
1097   case ARM::BI_BitScanReverse:
1098   case ARM::BI_BitScanReverse64:
1099     return MSVCIntrin::_BitScanReverse;
1100   case ARM::BI_InterlockedAnd64:
1101     return MSVCIntrin::_InterlockedAnd;
1102   case ARM::BI_InterlockedExchange64:
1103     return MSVCIntrin::_InterlockedExchange;
1104   case ARM::BI_InterlockedExchangeAdd64:
1105     return MSVCIntrin::_InterlockedExchangeAdd;
1106   case ARM::BI_InterlockedExchangeSub64:
1107     return MSVCIntrin::_InterlockedExchangeSub;
1108   case ARM::BI_InterlockedOr64:
1109     return MSVCIntrin::_InterlockedOr;
1110   case ARM::BI_InterlockedXor64:
1111     return MSVCIntrin::_InterlockedXor;
1112   case ARM::BI_InterlockedDecrement64:
1113     return MSVCIntrin::_InterlockedDecrement;
1114   case ARM::BI_InterlockedIncrement64:
1115     return MSVCIntrin::_InterlockedIncrement;
1116   case ARM::BI_InterlockedExchangeAdd8_acq:
1117   case ARM::BI_InterlockedExchangeAdd16_acq:
1118   case ARM::BI_InterlockedExchangeAdd_acq:
1119   case ARM::BI_InterlockedExchangeAdd64_acq:
1120     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1121   case ARM::BI_InterlockedExchangeAdd8_rel:
1122   case ARM::BI_InterlockedExchangeAdd16_rel:
1123   case ARM::BI_InterlockedExchangeAdd_rel:
1124   case ARM::BI_InterlockedExchangeAdd64_rel:
1125     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1126   case ARM::BI_InterlockedExchangeAdd8_nf:
1127   case ARM::BI_InterlockedExchangeAdd16_nf:
1128   case ARM::BI_InterlockedExchangeAdd_nf:
1129   case ARM::BI_InterlockedExchangeAdd64_nf:
1130     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1131   case ARM::BI_InterlockedExchange8_acq:
1132   case ARM::BI_InterlockedExchange16_acq:
1133   case ARM::BI_InterlockedExchange_acq:
1134   case ARM::BI_InterlockedExchange64_acq:
1135     return MSVCIntrin::_InterlockedExchange_acq;
1136   case ARM::BI_InterlockedExchange8_rel:
1137   case ARM::BI_InterlockedExchange16_rel:
1138   case ARM::BI_InterlockedExchange_rel:
1139   case ARM::BI_InterlockedExchange64_rel:
1140     return MSVCIntrin::_InterlockedExchange_rel;
1141   case ARM::BI_InterlockedExchange8_nf:
1142   case ARM::BI_InterlockedExchange16_nf:
1143   case ARM::BI_InterlockedExchange_nf:
1144   case ARM::BI_InterlockedExchange64_nf:
1145     return MSVCIntrin::_InterlockedExchange_nf;
1146   case ARM::BI_InterlockedCompareExchange8_acq:
1147   case ARM::BI_InterlockedCompareExchange16_acq:
1148   case ARM::BI_InterlockedCompareExchange_acq:
1149   case ARM::BI_InterlockedCompareExchange64_acq:
1150     return MSVCIntrin::_InterlockedCompareExchange_acq;
1151   case ARM::BI_InterlockedCompareExchange8_rel:
1152   case ARM::BI_InterlockedCompareExchange16_rel:
1153   case ARM::BI_InterlockedCompareExchange_rel:
1154   case ARM::BI_InterlockedCompareExchange64_rel:
1155     return MSVCIntrin::_InterlockedCompareExchange_rel;
1156   case ARM::BI_InterlockedCompareExchange8_nf:
1157   case ARM::BI_InterlockedCompareExchange16_nf:
1158   case ARM::BI_InterlockedCompareExchange_nf:
1159   case ARM::BI_InterlockedCompareExchange64_nf:
1160     return MSVCIntrin::_InterlockedCompareExchange_nf;
1161   case ARM::BI_InterlockedOr8_acq:
1162   case ARM::BI_InterlockedOr16_acq:
1163   case ARM::BI_InterlockedOr_acq:
1164   case ARM::BI_InterlockedOr64_acq:
1165     return MSVCIntrin::_InterlockedOr_acq;
1166   case ARM::BI_InterlockedOr8_rel:
1167   case ARM::BI_InterlockedOr16_rel:
1168   case ARM::BI_InterlockedOr_rel:
1169   case ARM::BI_InterlockedOr64_rel:
1170     return MSVCIntrin::_InterlockedOr_rel;
1171   case ARM::BI_InterlockedOr8_nf:
1172   case ARM::BI_InterlockedOr16_nf:
1173   case ARM::BI_InterlockedOr_nf:
1174   case ARM::BI_InterlockedOr64_nf:
1175     return MSVCIntrin::_InterlockedOr_nf;
1176   case ARM::BI_InterlockedXor8_acq:
1177   case ARM::BI_InterlockedXor16_acq:
1178   case ARM::BI_InterlockedXor_acq:
1179   case ARM::BI_InterlockedXor64_acq:
1180     return MSVCIntrin::_InterlockedXor_acq;
1181   case ARM::BI_InterlockedXor8_rel:
1182   case ARM::BI_InterlockedXor16_rel:
1183   case ARM::BI_InterlockedXor_rel:
1184   case ARM::BI_InterlockedXor64_rel:
1185     return MSVCIntrin::_InterlockedXor_rel;
1186   case ARM::BI_InterlockedXor8_nf:
1187   case ARM::BI_InterlockedXor16_nf:
1188   case ARM::BI_InterlockedXor_nf:
1189   case ARM::BI_InterlockedXor64_nf:
1190     return MSVCIntrin::_InterlockedXor_nf;
1191   case ARM::BI_InterlockedAnd8_acq:
1192   case ARM::BI_InterlockedAnd16_acq:
1193   case ARM::BI_InterlockedAnd_acq:
1194   case ARM::BI_InterlockedAnd64_acq:
1195     return MSVCIntrin::_InterlockedAnd_acq;
1196   case ARM::BI_InterlockedAnd8_rel:
1197   case ARM::BI_InterlockedAnd16_rel:
1198   case ARM::BI_InterlockedAnd_rel:
1199   case ARM::BI_InterlockedAnd64_rel:
1200     return MSVCIntrin::_InterlockedAnd_rel;
1201   case ARM::BI_InterlockedAnd8_nf:
1202   case ARM::BI_InterlockedAnd16_nf:
1203   case ARM::BI_InterlockedAnd_nf:
1204   case ARM::BI_InterlockedAnd64_nf:
1205     return MSVCIntrin::_InterlockedAnd_nf;
1206   case ARM::BI_InterlockedIncrement16_acq:
1207   case ARM::BI_InterlockedIncrement_acq:
1208   case ARM::BI_InterlockedIncrement64_acq:
1209     return MSVCIntrin::_InterlockedIncrement_acq;
1210   case ARM::BI_InterlockedIncrement16_rel:
1211   case ARM::BI_InterlockedIncrement_rel:
1212   case ARM::BI_InterlockedIncrement64_rel:
1213     return MSVCIntrin::_InterlockedIncrement_rel;
1214   case ARM::BI_InterlockedIncrement16_nf:
1215   case ARM::BI_InterlockedIncrement_nf:
1216   case ARM::BI_InterlockedIncrement64_nf:
1217     return MSVCIntrin::_InterlockedIncrement_nf;
1218   case ARM::BI_InterlockedDecrement16_acq:
1219   case ARM::BI_InterlockedDecrement_acq:
1220   case ARM::BI_InterlockedDecrement64_acq:
1221     return MSVCIntrin::_InterlockedDecrement_acq;
1222   case ARM::BI_InterlockedDecrement16_rel:
1223   case ARM::BI_InterlockedDecrement_rel:
1224   case ARM::BI_InterlockedDecrement64_rel:
1225     return MSVCIntrin::_InterlockedDecrement_rel;
1226   case ARM::BI_InterlockedDecrement16_nf:
1227   case ARM::BI_InterlockedDecrement_nf:
1228   case ARM::BI_InterlockedDecrement64_nf:
1229     return MSVCIntrin::_InterlockedDecrement_nf;
1230   }
1231   llvm_unreachable("must return from switch");
1232 }
1233 
1234 static Optional<CodeGenFunction::MSVCIntrin>
translateAarch64ToMsvcIntrin(unsigned BuiltinID)1235 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1236   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1237   switch (BuiltinID) {
1238   default:
1239     return None;
1240   case AArch64::BI_BitScanForward:
1241   case AArch64::BI_BitScanForward64:
1242     return MSVCIntrin::_BitScanForward;
1243   case AArch64::BI_BitScanReverse:
1244   case AArch64::BI_BitScanReverse64:
1245     return MSVCIntrin::_BitScanReverse;
1246   case AArch64::BI_InterlockedAnd64:
1247     return MSVCIntrin::_InterlockedAnd;
1248   case AArch64::BI_InterlockedExchange64:
1249     return MSVCIntrin::_InterlockedExchange;
1250   case AArch64::BI_InterlockedExchangeAdd64:
1251     return MSVCIntrin::_InterlockedExchangeAdd;
1252   case AArch64::BI_InterlockedExchangeSub64:
1253     return MSVCIntrin::_InterlockedExchangeSub;
1254   case AArch64::BI_InterlockedOr64:
1255     return MSVCIntrin::_InterlockedOr;
1256   case AArch64::BI_InterlockedXor64:
1257     return MSVCIntrin::_InterlockedXor;
1258   case AArch64::BI_InterlockedDecrement64:
1259     return MSVCIntrin::_InterlockedDecrement;
1260   case AArch64::BI_InterlockedIncrement64:
1261     return MSVCIntrin::_InterlockedIncrement;
1262   case AArch64::BI_InterlockedExchangeAdd8_acq:
1263   case AArch64::BI_InterlockedExchangeAdd16_acq:
1264   case AArch64::BI_InterlockedExchangeAdd_acq:
1265   case AArch64::BI_InterlockedExchangeAdd64_acq:
1266     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1267   case AArch64::BI_InterlockedExchangeAdd8_rel:
1268   case AArch64::BI_InterlockedExchangeAdd16_rel:
1269   case AArch64::BI_InterlockedExchangeAdd_rel:
1270   case AArch64::BI_InterlockedExchangeAdd64_rel:
1271     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1272   case AArch64::BI_InterlockedExchangeAdd8_nf:
1273   case AArch64::BI_InterlockedExchangeAdd16_nf:
1274   case AArch64::BI_InterlockedExchangeAdd_nf:
1275   case AArch64::BI_InterlockedExchangeAdd64_nf:
1276     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1277   case AArch64::BI_InterlockedExchange8_acq:
1278   case AArch64::BI_InterlockedExchange16_acq:
1279   case AArch64::BI_InterlockedExchange_acq:
1280   case AArch64::BI_InterlockedExchange64_acq:
1281     return MSVCIntrin::_InterlockedExchange_acq;
1282   case AArch64::BI_InterlockedExchange8_rel:
1283   case AArch64::BI_InterlockedExchange16_rel:
1284   case AArch64::BI_InterlockedExchange_rel:
1285   case AArch64::BI_InterlockedExchange64_rel:
1286     return MSVCIntrin::_InterlockedExchange_rel;
1287   case AArch64::BI_InterlockedExchange8_nf:
1288   case AArch64::BI_InterlockedExchange16_nf:
1289   case AArch64::BI_InterlockedExchange_nf:
1290   case AArch64::BI_InterlockedExchange64_nf:
1291     return MSVCIntrin::_InterlockedExchange_nf;
1292   case AArch64::BI_InterlockedCompareExchange8_acq:
1293   case AArch64::BI_InterlockedCompareExchange16_acq:
1294   case AArch64::BI_InterlockedCompareExchange_acq:
1295   case AArch64::BI_InterlockedCompareExchange64_acq:
1296     return MSVCIntrin::_InterlockedCompareExchange_acq;
1297   case AArch64::BI_InterlockedCompareExchange8_rel:
1298   case AArch64::BI_InterlockedCompareExchange16_rel:
1299   case AArch64::BI_InterlockedCompareExchange_rel:
1300   case AArch64::BI_InterlockedCompareExchange64_rel:
1301     return MSVCIntrin::_InterlockedCompareExchange_rel;
1302   case AArch64::BI_InterlockedCompareExchange8_nf:
1303   case AArch64::BI_InterlockedCompareExchange16_nf:
1304   case AArch64::BI_InterlockedCompareExchange_nf:
1305   case AArch64::BI_InterlockedCompareExchange64_nf:
1306     return MSVCIntrin::_InterlockedCompareExchange_nf;
1307   case AArch64::BI_InterlockedCompareExchange128:
1308     return MSVCIntrin::_InterlockedCompareExchange128;
1309   case AArch64::BI_InterlockedCompareExchange128_acq:
1310     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1311   case AArch64::BI_InterlockedCompareExchange128_nf:
1312     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1313   case AArch64::BI_InterlockedCompareExchange128_rel:
1314     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1315   case AArch64::BI_InterlockedOr8_acq:
1316   case AArch64::BI_InterlockedOr16_acq:
1317   case AArch64::BI_InterlockedOr_acq:
1318   case AArch64::BI_InterlockedOr64_acq:
1319     return MSVCIntrin::_InterlockedOr_acq;
1320   case AArch64::BI_InterlockedOr8_rel:
1321   case AArch64::BI_InterlockedOr16_rel:
1322   case AArch64::BI_InterlockedOr_rel:
1323   case AArch64::BI_InterlockedOr64_rel:
1324     return MSVCIntrin::_InterlockedOr_rel;
1325   case AArch64::BI_InterlockedOr8_nf:
1326   case AArch64::BI_InterlockedOr16_nf:
1327   case AArch64::BI_InterlockedOr_nf:
1328   case AArch64::BI_InterlockedOr64_nf:
1329     return MSVCIntrin::_InterlockedOr_nf;
1330   case AArch64::BI_InterlockedXor8_acq:
1331   case AArch64::BI_InterlockedXor16_acq:
1332   case AArch64::BI_InterlockedXor_acq:
1333   case AArch64::BI_InterlockedXor64_acq:
1334     return MSVCIntrin::_InterlockedXor_acq;
1335   case AArch64::BI_InterlockedXor8_rel:
1336   case AArch64::BI_InterlockedXor16_rel:
1337   case AArch64::BI_InterlockedXor_rel:
1338   case AArch64::BI_InterlockedXor64_rel:
1339     return MSVCIntrin::_InterlockedXor_rel;
1340   case AArch64::BI_InterlockedXor8_nf:
1341   case AArch64::BI_InterlockedXor16_nf:
1342   case AArch64::BI_InterlockedXor_nf:
1343   case AArch64::BI_InterlockedXor64_nf:
1344     return MSVCIntrin::_InterlockedXor_nf;
1345   case AArch64::BI_InterlockedAnd8_acq:
1346   case AArch64::BI_InterlockedAnd16_acq:
1347   case AArch64::BI_InterlockedAnd_acq:
1348   case AArch64::BI_InterlockedAnd64_acq:
1349     return MSVCIntrin::_InterlockedAnd_acq;
1350   case AArch64::BI_InterlockedAnd8_rel:
1351   case AArch64::BI_InterlockedAnd16_rel:
1352   case AArch64::BI_InterlockedAnd_rel:
1353   case AArch64::BI_InterlockedAnd64_rel:
1354     return MSVCIntrin::_InterlockedAnd_rel;
1355   case AArch64::BI_InterlockedAnd8_nf:
1356   case AArch64::BI_InterlockedAnd16_nf:
1357   case AArch64::BI_InterlockedAnd_nf:
1358   case AArch64::BI_InterlockedAnd64_nf:
1359     return MSVCIntrin::_InterlockedAnd_nf;
1360   case AArch64::BI_InterlockedIncrement16_acq:
1361   case AArch64::BI_InterlockedIncrement_acq:
1362   case AArch64::BI_InterlockedIncrement64_acq:
1363     return MSVCIntrin::_InterlockedIncrement_acq;
1364   case AArch64::BI_InterlockedIncrement16_rel:
1365   case AArch64::BI_InterlockedIncrement_rel:
1366   case AArch64::BI_InterlockedIncrement64_rel:
1367     return MSVCIntrin::_InterlockedIncrement_rel;
1368   case AArch64::BI_InterlockedIncrement16_nf:
1369   case AArch64::BI_InterlockedIncrement_nf:
1370   case AArch64::BI_InterlockedIncrement64_nf:
1371     return MSVCIntrin::_InterlockedIncrement_nf;
1372   case AArch64::BI_InterlockedDecrement16_acq:
1373   case AArch64::BI_InterlockedDecrement_acq:
1374   case AArch64::BI_InterlockedDecrement64_acq:
1375     return MSVCIntrin::_InterlockedDecrement_acq;
1376   case AArch64::BI_InterlockedDecrement16_rel:
1377   case AArch64::BI_InterlockedDecrement_rel:
1378   case AArch64::BI_InterlockedDecrement64_rel:
1379     return MSVCIntrin::_InterlockedDecrement_rel;
1380   case AArch64::BI_InterlockedDecrement16_nf:
1381   case AArch64::BI_InterlockedDecrement_nf:
1382   case AArch64::BI_InterlockedDecrement64_nf:
1383     return MSVCIntrin::_InterlockedDecrement_nf;
1384   }
1385   llvm_unreachable("must return from switch");
1386 }
1387 
1388 static Optional<CodeGenFunction::MSVCIntrin>
translateX86ToMsvcIntrin(unsigned BuiltinID)1389 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1390   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1391   switch (BuiltinID) {
1392   default:
1393     return None;
1394   case clang::X86::BI_BitScanForward:
1395   case clang::X86::BI_BitScanForward64:
1396     return MSVCIntrin::_BitScanForward;
1397   case clang::X86::BI_BitScanReverse:
1398   case clang::X86::BI_BitScanReverse64:
1399     return MSVCIntrin::_BitScanReverse;
1400   case clang::X86::BI_InterlockedAnd64:
1401     return MSVCIntrin::_InterlockedAnd;
1402   case clang::X86::BI_InterlockedCompareExchange128:
1403     return MSVCIntrin::_InterlockedCompareExchange128;
1404   case clang::X86::BI_InterlockedExchange64:
1405     return MSVCIntrin::_InterlockedExchange;
1406   case clang::X86::BI_InterlockedExchangeAdd64:
1407     return MSVCIntrin::_InterlockedExchangeAdd;
1408   case clang::X86::BI_InterlockedExchangeSub64:
1409     return MSVCIntrin::_InterlockedExchangeSub;
1410   case clang::X86::BI_InterlockedOr64:
1411     return MSVCIntrin::_InterlockedOr;
1412   case clang::X86::BI_InterlockedXor64:
1413     return MSVCIntrin::_InterlockedXor;
1414   case clang::X86::BI_InterlockedDecrement64:
1415     return MSVCIntrin::_InterlockedDecrement;
1416   case clang::X86::BI_InterlockedIncrement64:
1417     return MSVCIntrin::_InterlockedIncrement;
1418   }
1419   llvm_unreachable("must return from switch");
1420 }
1421 
1422 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,const CallExpr * E)1423 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1424                                             const CallExpr *E) {
1425   switch (BuiltinID) {
1426   case MSVCIntrin::_BitScanForward:
1427   case MSVCIntrin::_BitScanReverse: {
1428     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1429     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1430 
1431     llvm::Type *ArgType = ArgValue->getType();
1432     llvm::Type *IndexType =
1433         IndexAddress.getPointer()->getType()->getPointerElementType();
1434     llvm::Type *ResultType = ConvertType(E->getType());
1435 
1436     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1437     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1438     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1439 
1440     BasicBlock *Begin = Builder.GetInsertBlock();
1441     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1442     Builder.SetInsertPoint(End);
1443     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1444 
1445     Builder.SetInsertPoint(Begin);
1446     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1447     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1448     Builder.CreateCondBr(IsZero, End, NotZero);
1449     Result->addIncoming(ResZero, Begin);
1450 
1451     Builder.SetInsertPoint(NotZero);
1452 
1453     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1454       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1455       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1456       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1457       Builder.CreateStore(ZeroCount, IndexAddress, false);
1458     } else {
1459       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1460       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1461 
1462       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1463       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1464       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1465       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1466       Builder.CreateStore(Index, IndexAddress, false);
1467     }
1468     Builder.CreateBr(End);
1469     Result->addIncoming(ResOne, NotZero);
1470 
1471     Builder.SetInsertPoint(End);
1472     return Result;
1473   }
1474   case MSVCIntrin::_InterlockedAnd:
1475     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1476   case MSVCIntrin::_InterlockedExchange:
1477     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1478   case MSVCIntrin::_InterlockedExchangeAdd:
1479     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1480   case MSVCIntrin::_InterlockedExchangeSub:
1481     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1482   case MSVCIntrin::_InterlockedOr:
1483     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1484   case MSVCIntrin::_InterlockedXor:
1485     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1486   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1487     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1488                                  AtomicOrdering::Acquire);
1489   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1490     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1491                                  AtomicOrdering::Release);
1492   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1493     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1494                                  AtomicOrdering::Monotonic);
1495   case MSVCIntrin::_InterlockedExchange_acq:
1496     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1497                                  AtomicOrdering::Acquire);
1498   case MSVCIntrin::_InterlockedExchange_rel:
1499     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1500                                  AtomicOrdering::Release);
1501   case MSVCIntrin::_InterlockedExchange_nf:
1502     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1503                                  AtomicOrdering::Monotonic);
1504   case MSVCIntrin::_InterlockedCompareExchange_acq:
1505     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1506   case MSVCIntrin::_InterlockedCompareExchange_rel:
1507     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1508   case MSVCIntrin::_InterlockedCompareExchange_nf:
1509     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1510   case MSVCIntrin::_InterlockedCompareExchange128:
1511     return EmitAtomicCmpXchg128ForMSIntrin(
1512         *this, E, AtomicOrdering::SequentiallyConsistent);
1513   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1514     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1515   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1516     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1517   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1518     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1519   case MSVCIntrin::_InterlockedOr_acq:
1520     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1521                                  AtomicOrdering::Acquire);
1522   case MSVCIntrin::_InterlockedOr_rel:
1523     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1524                                  AtomicOrdering::Release);
1525   case MSVCIntrin::_InterlockedOr_nf:
1526     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1527                                  AtomicOrdering::Monotonic);
1528   case MSVCIntrin::_InterlockedXor_acq:
1529     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1530                                  AtomicOrdering::Acquire);
1531   case MSVCIntrin::_InterlockedXor_rel:
1532     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1533                                  AtomicOrdering::Release);
1534   case MSVCIntrin::_InterlockedXor_nf:
1535     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1536                                  AtomicOrdering::Monotonic);
1537   case MSVCIntrin::_InterlockedAnd_acq:
1538     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1539                                  AtomicOrdering::Acquire);
1540   case MSVCIntrin::_InterlockedAnd_rel:
1541     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1542                                  AtomicOrdering::Release);
1543   case MSVCIntrin::_InterlockedAnd_nf:
1544     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1545                                  AtomicOrdering::Monotonic);
1546   case MSVCIntrin::_InterlockedIncrement_acq:
1547     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1548   case MSVCIntrin::_InterlockedIncrement_rel:
1549     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1550   case MSVCIntrin::_InterlockedIncrement_nf:
1551     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1552   case MSVCIntrin::_InterlockedDecrement_acq:
1553     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1554   case MSVCIntrin::_InterlockedDecrement_rel:
1555     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1556   case MSVCIntrin::_InterlockedDecrement_nf:
1557     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1558 
1559   case MSVCIntrin::_InterlockedDecrement:
1560     return EmitAtomicDecrementValue(*this, E);
1561   case MSVCIntrin::_InterlockedIncrement:
1562     return EmitAtomicIncrementValue(*this, E);
1563 
1564   case MSVCIntrin::__fastfail: {
1565     // Request immediate process termination from the kernel. The instruction
1566     // sequences to do this are documented on MSDN:
1567     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1568     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1569     StringRef Asm, Constraints;
1570     switch (ISA) {
1571     default:
1572       ErrorUnsupported(E, "__fastfail call for this architecture");
1573       break;
1574     case llvm::Triple::x86:
1575     case llvm::Triple::x86_64:
1576       Asm = "int $$0x29";
1577       Constraints = "{cx}";
1578       break;
1579     case llvm::Triple::thumb:
1580       Asm = "udf #251";
1581       Constraints = "{r0}";
1582       break;
1583     case llvm::Triple::aarch64:
1584       Asm = "brk #0xF003";
1585       Constraints = "{w0}";
1586     }
1587     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1588     llvm::InlineAsm *IA =
1589         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1590     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1591         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1592         llvm::Attribute::NoReturn);
1593     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1594     CI->setAttributes(NoReturnAttr);
1595     return CI;
1596   }
1597   }
1598   llvm_unreachable("Incorrect MSVC intrinsic!");
1599 }
1600 
1601 namespace {
1602 // ARC cleanup for __builtin_os_log_format
1603 struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse__anon777ffcf60411::CallObjCArcUse1604   CallObjCArcUse(llvm::Value *object) : object(object) {}
1605   llvm::Value *object;
1606 
Emit__anon777ffcf60411::CallObjCArcUse1607   void Emit(CodeGenFunction &CGF, Flags flags) override {
1608     CGF.EmitARCIntrinsicUse(object);
1609   }
1610 };
1611 }
1612 
EmitCheckedArgForBuiltin(const Expr * E,BuiltinCheckKind Kind)1613 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1614                                                  BuiltinCheckKind Kind) {
1615   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1616           && "Unsupported builtin check kind");
1617 
1618   Value *ArgValue = EmitScalarExpr(E);
1619   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1620     return ArgValue;
1621 
1622   SanitizerScope SanScope(this);
1623   Value *Cond = Builder.CreateICmpNE(
1624       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1625   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1626             SanitizerHandler::InvalidBuiltin,
1627             {EmitCheckSourceLocation(E->getExprLoc()),
1628              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1629             None);
1630   return ArgValue;
1631 }
1632 
1633 /// Get the argument type for arguments to os_log_helper.
getOSLogArgType(ASTContext & C,int Size)1634 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1635   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1636   return C.getCanonicalType(UnsignedTy);
1637 }
1638 
generateBuiltinOSLogHelperFunction(const analyze_os_log::OSLogBufferLayout & Layout,CharUnits BufferAlignment)1639 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1640     const analyze_os_log::OSLogBufferLayout &Layout,
1641     CharUnits BufferAlignment) {
1642   ASTContext &Ctx = getContext();
1643 
1644   llvm::SmallString<64> Name;
1645   {
1646     raw_svector_ostream OS(Name);
1647     OS << "__os_log_helper";
1648     OS << "_" << BufferAlignment.getQuantity();
1649     OS << "_" << int(Layout.getSummaryByte());
1650     OS << "_" << int(Layout.getNumArgsByte());
1651     for (const auto &Item : Layout.Items)
1652       OS << "_" << int(Item.getSizeByte()) << "_"
1653          << int(Item.getDescriptorByte());
1654   }
1655 
1656   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1657     return F;
1658 
1659   llvm::SmallVector<QualType, 4> ArgTys;
1660   FunctionArgList Args;
1661   Args.push_back(ImplicitParamDecl::Create(
1662       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1663       ImplicitParamDecl::Other));
1664   ArgTys.emplace_back(Ctx.VoidPtrTy);
1665 
1666   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1667     char Size = Layout.Items[I].getSizeByte();
1668     if (!Size)
1669       continue;
1670 
1671     QualType ArgTy = getOSLogArgType(Ctx, Size);
1672     Args.push_back(ImplicitParamDecl::Create(
1673         Ctx, nullptr, SourceLocation(),
1674         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1675         ImplicitParamDecl::Other));
1676     ArgTys.emplace_back(ArgTy);
1677   }
1678 
1679   QualType ReturnTy = Ctx.VoidTy;
1680   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1681 
1682   // The helper function has linkonce_odr linkage to enable the linker to merge
1683   // identical functions. To ensure the merging always happens, 'noinline' is
1684   // attached to the function when compiling with -Oz.
1685   const CGFunctionInfo &FI =
1686       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1687   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1688   llvm::Function *Fn = llvm::Function::Create(
1689       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1690   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1691   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1692   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1693   Fn->setDoesNotThrow();
1694 
1695   // Attach 'noinline' at -Oz.
1696   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1697     Fn->addFnAttr(llvm::Attribute::NoInline);
1698 
1699   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1700   IdentifierInfo *II = &Ctx.Idents.get(Name);
1701   FunctionDecl *FD = FunctionDecl::Create(
1702       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1703       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1704   // Avoid generating debug location info for the function.
1705   FD->setImplicit();
1706 
1707   StartFunction(FD, ReturnTy, Fn, FI, Args);
1708 
1709   // Create a scope with an artificial location for the body of this function.
1710   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1711 
1712   CharUnits Offset;
1713   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1714                   BufferAlignment);
1715   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1716                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1717   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1718                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1719 
1720   unsigned I = 1;
1721   for (const auto &Item : Layout.Items) {
1722     Builder.CreateStore(
1723         Builder.getInt8(Item.getDescriptorByte()),
1724         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1725     Builder.CreateStore(
1726         Builder.getInt8(Item.getSizeByte()),
1727         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1728 
1729     CharUnits Size = Item.size();
1730     if (!Size.getQuantity())
1731       continue;
1732 
1733     Address Arg = GetAddrOfLocalVar(Args[I]);
1734     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1735     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1736                                  "argDataCast");
1737     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1738     Offset += Size;
1739     ++I;
1740   }
1741 
1742   FinishFunction();
1743 
1744   return Fn;
1745 }
1746 
emitBuiltinOSLogFormat(const CallExpr & E)1747 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1748   assert(E.getNumArgs() >= 2 &&
1749          "__builtin_os_log_format takes at least 2 arguments");
1750   ASTContext &Ctx = getContext();
1751   analyze_os_log::OSLogBufferLayout Layout;
1752   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1753   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1754   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1755 
1756   // Ignore argument 1, the format string. It is not currently used.
1757   CallArgList Args;
1758   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1759 
1760   for (const auto &Item : Layout.Items) {
1761     int Size = Item.getSizeByte();
1762     if (!Size)
1763       continue;
1764 
1765     llvm::Value *ArgVal;
1766 
1767     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1768       uint64_t Val = 0;
1769       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1770         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1771       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1772     } else if (const Expr *TheExpr = Item.getExpr()) {
1773       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1774 
1775       // If a temporary object that requires destruction after the full
1776       // expression is passed, push a lifetime-extended cleanup to extend its
1777       // lifetime to the end of the enclosing block scope.
1778       auto LifetimeExtendObject = [&](const Expr *E) {
1779         E = E->IgnoreParenCasts();
1780         // Extend lifetimes of objects returned by function calls and message
1781         // sends.
1782 
1783         // FIXME: We should do this in other cases in which temporaries are
1784         //        created including arguments of non-ARC types (e.g., C++
1785         //        temporaries).
1786         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1787           return true;
1788         return false;
1789       };
1790 
1791       if (TheExpr->getType()->isObjCRetainableType() &&
1792           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1793         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1794                "Only scalar can be a ObjC retainable type");
1795         if (!isa<Constant>(ArgVal)) {
1796           CleanupKind Cleanup = getARCCleanupKind();
1797           QualType Ty = TheExpr->getType();
1798           Address Alloca = Address::invalid();
1799           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1800           ArgVal = EmitARCRetain(Ty, ArgVal);
1801           Builder.CreateStore(ArgVal, Addr);
1802           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1803                                       CodeGenFunction::destroyARCStrongPrecise,
1804                                       Cleanup & EHCleanup);
1805 
1806           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1807           // argument has to be alive.
1808           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1809             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1810         }
1811       }
1812     } else {
1813       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1814     }
1815 
1816     unsigned ArgValSize =
1817         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1818     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1819                                                      ArgValSize);
1820     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1821     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1822     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1823     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1824     Args.add(RValue::get(ArgVal), ArgTy);
1825   }
1826 
1827   const CGFunctionInfo &FI =
1828       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1829   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1830       Layout, BufAddr.getAlignment());
1831   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1832   return RValue::get(BufAddr.getPointer());
1833 }
1834 
1835 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
isSpecialMixedSignMultiply(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1836 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1837                                        WidthAndSignedness Op1Info,
1838                                        WidthAndSignedness Op2Info,
1839                                        WidthAndSignedness ResultInfo) {
1840   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1841          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1842          Op1Info.Signed != Op2Info.Signed;
1843 }
1844 
1845 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1846 /// the generic checked-binop irgen.
1847 static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1848 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1849                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1850                              WidthAndSignedness Op2Info,
1851                              const clang::Expr *ResultArg, QualType ResultQTy,
1852                              WidthAndSignedness ResultInfo) {
1853   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1854                                     Op2Info, ResultInfo) &&
1855          "Not a mixed-sign multipliction we can specialize");
1856 
1857   // Emit the signed and unsigned operands.
1858   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1859   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1860   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1861   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1862   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1863   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1864 
1865   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1866   if (SignedOpWidth < UnsignedOpWidth)
1867     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1868   if (UnsignedOpWidth < SignedOpWidth)
1869     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1870 
1871   llvm::Type *OpTy = Signed->getType();
1872   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1873   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1874   llvm::Type *ResTy = ResultPtr.getElementType();
1875   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1876 
1877   // Take the absolute value of the signed operand.
1878   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1879   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1880   llvm::Value *AbsSigned =
1881       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1882 
1883   // Perform a checked unsigned multiplication.
1884   llvm::Value *UnsignedOverflow;
1885   llvm::Value *UnsignedResult =
1886       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1887                             Unsigned, UnsignedOverflow);
1888 
1889   llvm::Value *Overflow, *Result;
1890   if (ResultInfo.Signed) {
1891     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1892     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1893     auto IntMax =
1894         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1895     llvm::Value *MaxResult =
1896         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1897                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1898     llvm::Value *SignedOverflow =
1899         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1900     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1901 
1902     // Prepare the signed result (possibly by negating it).
1903     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1904     llvm::Value *SignedResult =
1905         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1906     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1907   } else {
1908     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1909     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1910         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1911     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1912     if (ResultInfo.Width < OpWidth) {
1913       auto IntMax =
1914           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1915       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1916           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1917       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1918     }
1919 
1920     // Negate the product if it would be negative in infinite precision.
1921     Result = CGF.Builder.CreateSelect(
1922         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1923 
1924     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1925   }
1926   assert(Overflow && Result && "Missing overflow or result");
1927 
1928   bool isVolatile =
1929       ResultArg->getType()->getPointeeType().isVolatileQualified();
1930   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1931                           isVolatile);
1932   return RValue::get(Overflow);
1933 }
1934 
dumpRecord(CodeGenFunction & CGF,QualType RType,Value * & RecordPtr,CharUnits Align,llvm::FunctionCallee Func,int Lvl)1935 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1936                                Value *&RecordPtr, CharUnits Align,
1937                                llvm::FunctionCallee Func, int Lvl) {
1938   ASTContext &Context = CGF.getContext();
1939   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1940   std::string Pad = std::string(Lvl * 4, ' ');
1941 
1942   Value *GString =
1943       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1944   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1945 
1946   static llvm::DenseMap<QualType, const char *> Types;
1947   if (Types.empty()) {
1948     Types[Context.CharTy] = "%c";
1949     Types[Context.BoolTy] = "%d";
1950     Types[Context.SignedCharTy] = "%hhd";
1951     Types[Context.UnsignedCharTy] = "%hhu";
1952     Types[Context.IntTy] = "%d";
1953     Types[Context.UnsignedIntTy] = "%u";
1954     Types[Context.LongTy] = "%ld";
1955     Types[Context.UnsignedLongTy] = "%lu";
1956     Types[Context.LongLongTy] = "%lld";
1957     Types[Context.UnsignedLongLongTy] = "%llu";
1958     Types[Context.ShortTy] = "%hd";
1959     Types[Context.UnsignedShortTy] = "%hu";
1960     Types[Context.VoidPtrTy] = "%p";
1961     Types[Context.FloatTy] = "%f";
1962     Types[Context.DoubleTy] = "%f";
1963     Types[Context.LongDoubleTy] = "%Lf";
1964     Types[Context.getPointerType(Context.CharTy)] = "%s";
1965     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1966   }
1967 
1968   for (const auto *FD : RD->fields()) {
1969     Value *FieldPtr = RecordPtr;
1970     if (RD->isUnion())
1971       FieldPtr = CGF.Builder.CreatePointerCast(
1972           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1973     else
1974       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1975                                              FD->getFieldIndex());
1976 
1977     GString = CGF.Builder.CreateGlobalStringPtr(
1978         llvm::Twine(Pad)
1979             .concat(FD->getType().getAsString())
1980             .concat(llvm::Twine(' '))
1981             .concat(FD->getNameAsString())
1982             .concat(" : ")
1983             .str());
1984     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1985     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1986 
1987     QualType CanonicalType =
1988         FD->getType().getUnqualifiedType().getCanonicalType();
1989 
1990     // We check whether we are in a recursive type
1991     if (CanonicalType->isRecordType()) {
1992       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1993       Res = CGF.Builder.CreateAdd(TmpRes, Res);
1994       continue;
1995     }
1996 
1997     // We try to determine the best format to print the current field
1998     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1999                              ? Types[Context.VoidPtrTy]
2000                              : Types[CanonicalType];
2001 
2002     Address FieldAddress = Address(FieldPtr, Align);
2003     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2004 
2005     // FIXME Need to handle bitfield here
2006     GString = CGF.Builder.CreateGlobalStringPtr(
2007         Format.concat(llvm::Twine('\n')).str());
2008     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2009     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2010   }
2011 
2012   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2013   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2014   Res = CGF.Builder.CreateAdd(Res, TmpRes);
2015   return Res;
2016 }
2017 
2018 static bool
TypeRequiresBuiltinLaunderImp(const ASTContext & Ctx,QualType Ty,llvm::SmallPtrSetImpl<const Decl * > & Seen)2019 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2020                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2021   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2022     Ty = Ctx.getBaseElementType(Arr);
2023 
2024   const auto *Record = Ty->getAsCXXRecordDecl();
2025   if (!Record)
2026     return false;
2027 
2028   // We've already checked this type, or are in the process of checking it.
2029   if (!Seen.insert(Record).second)
2030     return false;
2031 
2032   assert(Record->hasDefinition() &&
2033          "Incomplete types should already be diagnosed");
2034 
2035   if (Record->isDynamicClass())
2036     return true;
2037 
2038   for (FieldDecl *F : Record->fields()) {
2039     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2040       return true;
2041   }
2042   return false;
2043 }
2044 
2045 /// Determine if the specified type requires laundering by checking if it is a
2046 /// dynamic class type or contains a subobject which is a dynamic class type.
TypeRequiresBuiltinLaunder(CodeGenModule & CGM,QualType Ty)2047 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2048   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2049     return false;
2050   llvm::SmallPtrSet<const Decl *, 16> Seen;
2051   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2052 }
2053 
emitRotate(const CallExpr * E,bool IsRotateRight)2054 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2055   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2056   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2057 
2058   // The builtin's shift arg may have a different type than the source arg and
2059   // result, but the LLVM intrinsic uses the same type for all values.
2060   llvm::Type *Ty = Src->getType();
2061   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2062 
2063   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2064   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2065   Function *F = CGM.getIntrinsic(IID, Ty);
2066   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2067 }
2068 
EmitBuiltinExpr(const GlobalDecl GD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)2069 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2070                                         const CallExpr *E,
2071                                         ReturnValueSlot ReturnValue) {
2072   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2073   // See if we can constant fold this builtin.  If so, don't emit it at all.
2074   Expr::EvalResult Result;
2075   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2076       !Result.hasSideEffects()) {
2077     if (Result.Val.isInt())
2078       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2079                                                 Result.Val.getInt()));
2080     if (Result.Val.isFloat())
2081       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2082                                                Result.Val.getFloat()));
2083   }
2084 
2085   // If the builtin has been declared explicitly with an assembler label,
2086   // disable the specialized emitting below. Ideally we should communicate the
2087   // rename in IR, or at least avoid generating the intrinsic calls that are
2088   // likely to get lowered to the renamed library functions.
2089   const unsigned BuiltinIDIfNoAsmLabel =
2090       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2091 
2092   // There are LLVM math intrinsics/instructions corresponding to math library
2093   // functions except the LLVM op will never set errno while the math library
2094   // might. Also, math builtins have the same semantics as their math library
2095   // twins. Thus, we can transform math library and builtin calls to their
2096   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2097   if (FD->hasAttr<ConstAttr>()) {
2098     switch (BuiltinIDIfNoAsmLabel) {
2099     case Builtin::BIceil:
2100     case Builtin::BIceilf:
2101     case Builtin::BIceill:
2102     case Builtin::BI__builtin_ceil:
2103     case Builtin::BI__builtin_ceilf:
2104     case Builtin::BI__builtin_ceilf16:
2105     case Builtin::BI__builtin_ceill:
2106     case Builtin::BI__builtin_ceilf128:
2107       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2108                                    Intrinsic::ceil,
2109                                    Intrinsic::experimental_constrained_ceil));
2110 
2111     case Builtin::BIcopysign:
2112     case Builtin::BIcopysignf:
2113     case Builtin::BIcopysignl:
2114     case Builtin::BI__builtin_copysign:
2115     case Builtin::BI__builtin_copysignf:
2116     case Builtin::BI__builtin_copysignf16:
2117     case Builtin::BI__builtin_copysignl:
2118     case Builtin::BI__builtin_copysignf128:
2119       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2120 
2121     case Builtin::BIcos:
2122     case Builtin::BIcosf:
2123     case Builtin::BIcosl:
2124     case Builtin::BI__builtin_cos:
2125     case Builtin::BI__builtin_cosf:
2126     case Builtin::BI__builtin_cosf16:
2127     case Builtin::BI__builtin_cosl:
2128     case Builtin::BI__builtin_cosf128:
2129       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2130                                    Intrinsic::cos,
2131                                    Intrinsic::experimental_constrained_cos));
2132 
2133     case Builtin::BIexp:
2134     case Builtin::BIexpf:
2135     case Builtin::BIexpl:
2136     case Builtin::BI__builtin_exp:
2137     case Builtin::BI__builtin_expf:
2138     case Builtin::BI__builtin_expf16:
2139     case Builtin::BI__builtin_expl:
2140     case Builtin::BI__builtin_expf128:
2141       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2142                                    Intrinsic::exp,
2143                                    Intrinsic::experimental_constrained_exp));
2144 
2145     case Builtin::BIexp2:
2146     case Builtin::BIexp2f:
2147     case Builtin::BIexp2l:
2148     case Builtin::BI__builtin_exp2:
2149     case Builtin::BI__builtin_exp2f:
2150     case Builtin::BI__builtin_exp2f16:
2151     case Builtin::BI__builtin_exp2l:
2152     case Builtin::BI__builtin_exp2f128:
2153       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2154                                    Intrinsic::exp2,
2155                                    Intrinsic::experimental_constrained_exp2));
2156 
2157     case Builtin::BIfabs:
2158     case Builtin::BIfabsf:
2159     case Builtin::BIfabsl:
2160     case Builtin::BI__builtin_fabs:
2161     case Builtin::BI__builtin_fabsf:
2162     case Builtin::BI__builtin_fabsf16:
2163     case Builtin::BI__builtin_fabsl:
2164     case Builtin::BI__builtin_fabsf128:
2165       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2166 
2167     case Builtin::BIfloor:
2168     case Builtin::BIfloorf:
2169     case Builtin::BIfloorl:
2170     case Builtin::BI__builtin_floor:
2171     case Builtin::BI__builtin_floorf:
2172     case Builtin::BI__builtin_floorf16:
2173     case Builtin::BI__builtin_floorl:
2174     case Builtin::BI__builtin_floorf128:
2175       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2176                                    Intrinsic::floor,
2177                                    Intrinsic::experimental_constrained_floor));
2178 
2179     case Builtin::BIfma:
2180     case Builtin::BIfmaf:
2181     case Builtin::BIfmal:
2182     case Builtin::BI__builtin_fma:
2183     case Builtin::BI__builtin_fmaf:
2184     case Builtin::BI__builtin_fmaf16:
2185     case Builtin::BI__builtin_fmal:
2186     case Builtin::BI__builtin_fmaf128:
2187       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2188                                    Intrinsic::fma,
2189                                    Intrinsic::experimental_constrained_fma));
2190 
2191     case Builtin::BIfmax:
2192     case Builtin::BIfmaxf:
2193     case Builtin::BIfmaxl:
2194     case Builtin::BI__builtin_fmax:
2195     case Builtin::BI__builtin_fmaxf:
2196     case Builtin::BI__builtin_fmaxf16:
2197     case Builtin::BI__builtin_fmaxl:
2198     case Builtin::BI__builtin_fmaxf128:
2199       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2200                                    Intrinsic::maxnum,
2201                                    Intrinsic::experimental_constrained_maxnum));
2202 
2203     case Builtin::BIfmin:
2204     case Builtin::BIfminf:
2205     case Builtin::BIfminl:
2206     case Builtin::BI__builtin_fmin:
2207     case Builtin::BI__builtin_fminf:
2208     case Builtin::BI__builtin_fminf16:
2209     case Builtin::BI__builtin_fminl:
2210     case Builtin::BI__builtin_fminf128:
2211       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2212                                    Intrinsic::minnum,
2213                                    Intrinsic::experimental_constrained_minnum));
2214 
2215     // fmod() is a special-case. It maps to the frem instruction rather than an
2216     // LLVM intrinsic.
2217     case Builtin::BIfmod:
2218     case Builtin::BIfmodf:
2219     case Builtin::BIfmodl:
2220     case Builtin::BI__builtin_fmod:
2221     case Builtin::BI__builtin_fmodf:
2222     case Builtin::BI__builtin_fmodf16:
2223     case Builtin::BI__builtin_fmodl:
2224     case Builtin::BI__builtin_fmodf128: {
2225       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2226       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2227       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2228       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2229     }
2230 
2231     case Builtin::BIlog:
2232     case Builtin::BIlogf:
2233     case Builtin::BIlogl:
2234     case Builtin::BI__builtin_log:
2235     case Builtin::BI__builtin_logf:
2236     case Builtin::BI__builtin_logf16:
2237     case Builtin::BI__builtin_logl:
2238     case Builtin::BI__builtin_logf128:
2239       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2240                                    Intrinsic::log,
2241                                    Intrinsic::experimental_constrained_log));
2242 
2243     case Builtin::BIlog10:
2244     case Builtin::BIlog10f:
2245     case Builtin::BIlog10l:
2246     case Builtin::BI__builtin_log10:
2247     case Builtin::BI__builtin_log10f:
2248     case Builtin::BI__builtin_log10f16:
2249     case Builtin::BI__builtin_log10l:
2250     case Builtin::BI__builtin_log10f128:
2251       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2252                                    Intrinsic::log10,
2253                                    Intrinsic::experimental_constrained_log10));
2254 
2255     case Builtin::BIlog2:
2256     case Builtin::BIlog2f:
2257     case Builtin::BIlog2l:
2258     case Builtin::BI__builtin_log2:
2259     case Builtin::BI__builtin_log2f:
2260     case Builtin::BI__builtin_log2f16:
2261     case Builtin::BI__builtin_log2l:
2262     case Builtin::BI__builtin_log2f128:
2263       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2264                                    Intrinsic::log2,
2265                                    Intrinsic::experimental_constrained_log2));
2266 
2267     case Builtin::BInearbyint:
2268     case Builtin::BInearbyintf:
2269     case Builtin::BInearbyintl:
2270     case Builtin::BI__builtin_nearbyint:
2271     case Builtin::BI__builtin_nearbyintf:
2272     case Builtin::BI__builtin_nearbyintl:
2273     case Builtin::BI__builtin_nearbyintf128:
2274       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2275                                 Intrinsic::nearbyint,
2276                                 Intrinsic::experimental_constrained_nearbyint));
2277 
2278     case Builtin::BIpow:
2279     case Builtin::BIpowf:
2280     case Builtin::BIpowl:
2281     case Builtin::BI__builtin_pow:
2282     case Builtin::BI__builtin_powf:
2283     case Builtin::BI__builtin_powf16:
2284     case Builtin::BI__builtin_powl:
2285     case Builtin::BI__builtin_powf128:
2286       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2287                                    Intrinsic::pow,
2288                                    Intrinsic::experimental_constrained_pow));
2289 
2290     case Builtin::BIrint:
2291     case Builtin::BIrintf:
2292     case Builtin::BIrintl:
2293     case Builtin::BI__builtin_rint:
2294     case Builtin::BI__builtin_rintf:
2295     case Builtin::BI__builtin_rintf16:
2296     case Builtin::BI__builtin_rintl:
2297     case Builtin::BI__builtin_rintf128:
2298       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2299                                    Intrinsic::rint,
2300                                    Intrinsic::experimental_constrained_rint));
2301 
2302     case Builtin::BIround:
2303     case Builtin::BIroundf:
2304     case Builtin::BIroundl:
2305     case Builtin::BI__builtin_round:
2306     case Builtin::BI__builtin_roundf:
2307     case Builtin::BI__builtin_roundf16:
2308     case Builtin::BI__builtin_roundl:
2309     case Builtin::BI__builtin_roundf128:
2310       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2311                                    Intrinsic::round,
2312                                    Intrinsic::experimental_constrained_round));
2313 
2314     case Builtin::BIsin:
2315     case Builtin::BIsinf:
2316     case Builtin::BIsinl:
2317     case Builtin::BI__builtin_sin:
2318     case Builtin::BI__builtin_sinf:
2319     case Builtin::BI__builtin_sinf16:
2320     case Builtin::BI__builtin_sinl:
2321     case Builtin::BI__builtin_sinf128:
2322       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2323                                    Intrinsic::sin,
2324                                    Intrinsic::experimental_constrained_sin));
2325 
2326     case Builtin::BIsqrt:
2327     case Builtin::BIsqrtf:
2328     case Builtin::BIsqrtl:
2329     case Builtin::BI__builtin_sqrt:
2330     case Builtin::BI__builtin_sqrtf:
2331     case Builtin::BI__builtin_sqrtf16:
2332     case Builtin::BI__builtin_sqrtl:
2333     case Builtin::BI__builtin_sqrtf128:
2334       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2335                                    Intrinsic::sqrt,
2336                                    Intrinsic::experimental_constrained_sqrt));
2337 
2338     case Builtin::BItrunc:
2339     case Builtin::BItruncf:
2340     case Builtin::BItruncl:
2341     case Builtin::BI__builtin_trunc:
2342     case Builtin::BI__builtin_truncf:
2343     case Builtin::BI__builtin_truncf16:
2344     case Builtin::BI__builtin_truncl:
2345     case Builtin::BI__builtin_truncf128:
2346       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2347                                    Intrinsic::trunc,
2348                                    Intrinsic::experimental_constrained_trunc));
2349 
2350     case Builtin::BIlround:
2351     case Builtin::BIlroundf:
2352     case Builtin::BIlroundl:
2353     case Builtin::BI__builtin_lround:
2354     case Builtin::BI__builtin_lroundf:
2355     case Builtin::BI__builtin_lroundl:
2356     case Builtin::BI__builtin_lroundf128:
2357       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2358           *this, E, Intrinsic::lround,
2359           Intrinsic::experimental_constrained_lround));
2360 
2361     case Builtin::BIllround:
2362     case Builtin::BIllroundf:
2363     case Builtin::BIllroundl:
2364     case Builtin::BI__builtin_llround:
2365     case Builtin::BI__builtin_llroundf:
2366     case Builtin::BI__builtin_llroundl:
2367     case Builtin::BI__builtin_llroundf128:
2368       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2369           *this, E, Intrinsic::llround,
2370           Intrinsic::experimental_constrained_llround));
2371 
2372     case Builtin::BIlrint:
2373     case Builtin::BIlrintf:
2374     case Builtin::BIlrintl:
2375     case Builtin::BI__builtin_lrint:
2376     case Builtin::BI__builtin_lrintf:
2377     case Builtin::BI__builtin_lrintl:
2378     case Builtin::BI__builtin_lrintf128:
2379       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2380           *this, E, Intrinsic::lrint,
2381           Intrinsic::experimental_constrained_lrint));
2382 
2383     case Builtin::BIllrint:
2384     case Builtin::BIllrintf:
2385     case Builtin::BIllrintl:
2386     case Builtin::BI__builtin_llrint:
2387     case Builtin::BI__builtin_llrintf:
2388     case Builtin::BI__builtin_llrintl:
2389     case Builtin::BI__builtin_llrintf128:
2390       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2391           *this, E, Intrinsic::llrint,
2392           Intrinsic::experimental_constrained_llrint));
2393 
2394     default:
2395       break;
2396     }
2397   }
2398 
2399   switch (BuiltinIDIfNoAsmLabel) {
2400   default: break;
2401   case Builtin::BI__builtin___CFStringMakeConstantString:
2402   case Builtin::BI__builtin___NSStringMakeConstantString:
2403     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2404   case Builtin::BI__builtin_stdarg_start:
2405   case Builtin::BI__builtin_va_start:
2406   case Builtin::BI__va_start:
2407   case Builtin::BI__builtin_va_end:
2408     return RValue::get(
2409         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2410                            ? EmitScalarExpr(E->getArg(0))
2411                            : EmitVAListRef(E->getArg(0)).getPointer(),
2412                        BuiltinID != Builtin::BI__builtin_va_end));
2413   case Builtin::BI__builtin_va_copy: {
2414     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2415     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2416 
2417     llvm::Type *Type = Int8PtrTy;
2418 
2419     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2420     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2421     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2422                                           {DstPtr, SrcPtr}));
2423   }
2424   case Builtin::BI__builtin_abs:
2425   case Builtin::BI__builtin_labs:
2426   case Builtin::BI__builtin_llabs: {
2427     // X < 0 ? -X : X
2428     // The negation has 'nsw' because abs of INT_MIN is undefined.
2429     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2430     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2431     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2432     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2433     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2434     return RValue::get(Result);
2435   }
2436   case Builtin::BI__builtin_complex: {
2437     Value *Real = EmitScalarExpr(E->getArg(0));
2438     Value *Imag = EmitScalarExpr(E->getArg(1));
2439     return RValue::getComplex({Real, Imag});
2440   }
2441   case Builtin::BI__builtin_conj:
2442   case Builtin::BI__builtin_conjf:
2443   case Builtin::BI__builtin_conjl:
2444   case Builtin::BIconj:
2445   case Builtin::BIconjf:
2446   case Builtin::BIconjl: {
2447     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2448     Value *Real = ComplexVal.first;
2449     Value *Imag = ComplexVal.second;
2450     Imag = Builder.CreateFNeg(Imag, "neg");
2451     return RValue::getComplex(std::make_pair(Real, Imag));
2452   }
2453   case Builtin::BI__builtin_creal:
2454   case Builtin::BI__builtin_crealf:
2455   case Builtin::BI__builtin_creall:
2456   case Builtin::BIcreal:
2457   case Builtin::BIcrealf:
2458   case Builtin::BIcreall: {
2459     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2460     return RValue::get(ComplexVal.first);
2461   }
2462 
2463   case Builtin::BI__builtin_dump_struct: {
2464     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2465     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2466         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2467 
2468     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2469     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2470 
2471     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2472     QualType Arg0Type = Arg0->getType()->getPointeeType();
2473 
2474     Value *RecordPtr = EmitScalarExpr(Arg0);
2475     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2476                             {LLVMFuncType, Func}, 0);
2477     return RValue::get(Res);
2478   }
2479 
2480   case Builtin::BI__builtin_preserve_access_index: {
2481     // Only enabled preserved access index region when debuginfo
2482     // is available as debuginfo is needed to preserve user-level
2483     // access pattern.
2484     if (!getDebugInfo()) {
2485       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2486       return RValue::get(EmitScalarExpr(E->getArg(0)));
2487     }
2488 
2489     // Nested builtin_preserve_access_index() not supported
2490     if (IsInPreservedAIRegion) {
2491       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2492       return RValue::get(EmitScalarExpr(E->getArg(0)));
2493     }
2494 
2495     IsInPreservedAIRegion = true;
2496     Value *Res = EmitScalarExpr(E->getArg(0));
2497     IsInPreservedAIRegion = false;
2498     return RValue::get(Res);
2499   }
2500 
2501   case Builtin::BI__builtin_cimag:
2502   case Builtin::BI__builtin_cimagf:
2503   case Builtin::BI__builtin_cimagl:
2504   case Builtin::BIcimag:
2505   case Builtin::BIcimagf:
2506   case Builtin::BIcimagl: {
2507     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2508     return RValue::get(ComplexVal.second);
2509   }
2510 
2511   case Builtin::BI__builtin_clrsb:
2512   case Builtin::BI__builtin_clrsbl:
2513   case Builtin::BI__builtin_clrsbll: {
2514     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2515     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2516 
2517     llvm::Type *ArgType = ArgValue->getType();
2518     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2519 
2520     llvm::Type *ResultType = ConvertType(E->getType());
2521     Value *Zero = llvm::Constant::getNullValue(ArgType);
2522     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2523     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2524     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2525     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2526     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2527     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2528                                    "cast");
2529     return RValue::get(Result);
2530   }
2531   case Builtin::BI__builtin_ctzs:
2532   case Builtin::BI__builtin_ctz:
2533   case Builtin::BI__builtin_ctzl:
2534   case Builtin::BI__builtin_ctzll: {
2535     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2536 
2537     llvm::Type *ArgType = ArgValue->getType();
2538     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2539 
2540     llvm::Type *ResultType = ConvertType(E->getType());
2541     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2542     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2543     if (Result->getType() != ResultType)
2544       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2545                                      "cast");
2546     return RValue::get(Result);
2547   }
2548   case Builtin::BI__builtin_clzs:
2549   case Builtin::BI__builtin_clz:
2550   case Builtin::BI__builtin_clzl:
2551   case Builtin::BI__builtin_clzll: {
2552     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2553 
2554     llvm::Type *ArgType = ArgValue->getType();
2555     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2556 
2557     llvm::Type *ResultType = ConvertType(E->getType());
2558     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2559     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2560     if (Result->getType() != ResultType)
2561       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2562                                      "cast");
2563     return RValue::get(Result);
2564   }
2565   case Builtin::BI__builtin_ffs:
2566   case Builtin::BI__builtin_ffsl:
2567   case Builtin::BI__builtin_ffsll: {
2568     // ffs(x) -> x ? cttz(x) + 1 : 0
2569     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2570 
2571     llvm::Type *ArgType = ArgValue->getType();
2572     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2573 
2574     llvm::Type *ResultType = ConvertType(E->getType());
2575     Value *Tmp =
2576         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2577                           llvm::ConstantInt::get(ArgType, 1));
2578     Value *Zero = llvm::Constant::getNullValue(ArgType);
2579     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2580     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2581     if (Result->getType() != ResultType)
2582       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2583                                      "cast");
2584     return RValue::get(Result);
2585   }
2586   case Builtin::BI__builtin_parity:
2587   case Builtin::BI__builtin_parityl:
2588   case Builtin::BI__builtin_parityll: {
2589     // parity(x) -> ctpop(x) & 1
2590     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2591 
2592     llvm::Type *ArgType = ArgValue->getType();
2593     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2594 
2595     llvm::Type *ResultType = ConvertType(E->getType());
2596     Value *Tmp = Builder.CreateCall(F, ArgValue);
2597     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2598     if (Result->getType() != ResultType)
2599       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2600                                      "cast");
2601     return RValue::get(Result);
2602   }
2603   case Builtin::BI__lzcnt16:
2604   case Builtin::BI__lzcnt:
2605   case Builtin::BI__lzcnt64: {
2606     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2607 
2608     llvm::Type *ArgType = ArgValue->getType();
2609     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2610 
2611     llvm::Type *ResultType = ConvertType(E->getType());
2612     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2613     if (Result->getType() != ResultType)
2614       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2615                                      "cast");
2616     return RValue::get(Result);
2617   }
2618   case Builtin::BI__popcnt16:
2619   case Builtin::BI__popcnt:
2620   case Builtin::BI__popcnt64:
2621   case Builtin::BI__builtin_popcount:
2622   case Builtin::BI__builtin_popcountl:
2623   case Builtin::BI__builtin_popcountll: {
2624     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2625 
2626     llvm::Type *ArgType = ArgValue->getType();
2627     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2628 
2629     llvm::Type *ResultType = ConvertType(E->getType());
2630     Value *Result = Builder.CreateCall(F, ArgValue);
2631     if (Result->getType() != ResultType)
2632       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2633                                      "cast");
2634     return RValue::get(Result);
2635   }
2636   case Builtin::BI__builtin_unpredictable: {
2637     // Always return the argument of __builtin_unpredictable. LLVM does not
2638     // handle this builtin. Metadata for this builtin should be added directly
2639     // to instructions such as branches or switches that use it.
2640     return RValue::get(EmitScalarExpr(E->getArg(0)));
2641   }
2642   case Builtin::BI__builtin_expect: {
2643     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2644     llvm::Type *ArgType = ArgValue->getType();
2645 
2646     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2647     // Don't generate llvm.expect on -O0 as the backend won't use it for
2648     // anything.
2649     // Note, we still IRGen ExpectedValue because it could have side-effects.
2650     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2651       return RValue::get(ArgValue);
2652 
2653     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2654     Value *Result =
2655         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2656     return RValue::get(Result);
2657   }
2658   case Builtin::BI__builtin_expect_with_probability: {
2659     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2660     llvm::Type *ArgType = ArgValue->getType();
2661 
2662     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2663     llvm::APFloat Probability(0.0);
2664     const Expr *ProbArg = E->getArg(2);
2665     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2666     assert(EvalSucceed && "probability should be able to evaluate as float");
2667     (void)EvalSucceed;
2668     bool LoseInfo = false;
2669     Probability.convert(llvm::APFloat::IEEEdouble(),
2670                         llvm::RoundingMode::Dynamic, &LoseInfo);
2671     llvm::Type *Ty = ConvertType(ProbArg->getType());
2672     Constant *Confidence = ConstantFP::get(Ty, Probability);
2673     // Don't generate llvm.expect.with.probability on -O0 as the backend
2674     // won't use it for anything.
2675     // Note, we still IRGen ExpectedValue because it could have side-effects.
2676     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2677       return RValue::get(ArgValue);
2678 
2679     Function *FnExpect =
2680         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2681     Value *Result = Builder.CreateCall(
2682         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2683     return RValue::get(Result);
2684   }
2685   case Builtin::BI__builtin_assume_aligned: {
2686     const Expr *Ptr = E->getArg(0);
2687     Value *PtrValue = EmitScalarExpr(Ptr);
2688     Value *OffsetValue =
2689       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2690 
2691     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2692     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2693     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2694       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2695                                      llvm::Value::MaximumAlignment);
2696 
2697     emitAlignmentAssumption(PtrValue, Ptr,
2698                             /*The expr loc is sufficient.*/ SourceLocation(),
2699                             AlignmentCI, OffsetValue);
2700     return RValue::get(PtrValue);
2701   }
2702   case Builtin::BI__assume:
2703   case Builtin::BI__builtin_assume: {
2704     if (E->getArg(0)->HasSideEffects(getContext()))
2705       return RValue::get(nullptr);
2706 
2707     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2708     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2709     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2710   }
2711   case Builtin::BI__builtin_bswap16:
2712   case Builtin::BI__builtin_bswap32:
2713   case Builtin::BI__builtin_bswap64: {
2714     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2715   }
2716   case Builtin::BI__builtin_bitreverse8:
2717   case Builtin::BI__builtin_bitreverse16:
2718   case Builtin::BI__builtin_bitreverse32:
2719   case Builtin::BI__builtin_bitreverse64: {
2720     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2721   }
2722   case Builtin::BI__builtin_rotateleft8:
2723   case Builtin::BI__builtin_rotateleft16:
2724   case Builtin::BI__builtin_rotateleft32:
2725   case Builtin::BI__builtin_rotateleft64:
2726   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2727   case Builtin::BI_rotl16:
2728   case Builtin::BI_rotl:
2729   case Builtin::BI_lrotl:
2730   case Builtin::BI_rotl64:
2731     return emitRotate(E, false);
2732 
2733   case Builtin::BI__builtin_rotateright8:
2734   case Builtin::BI__builtin_rotateright16:
2735   case Builtin::BI__builtin_rotateright32:
2736   case Builtin::BI__builtin_rotateright64:
2737   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2738   case Builtin::BI_rotr16:
2739   case Builtin::BI_rotr:
2740   case Builtin::BI_lrotr:
2741   case Builtin::BI_rotr64:
2742     return emitRotate(E, true);
2743 
2744   case Builtin::BI__builtin_constant_p: {
2745     llvm::Type *ResultType = ConvertType(E->getType());
2746 
2747     const Expr *Arg = E->getArg(0);
2748     QualType ArgType = Arg->getType();
2749     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2750     // and likely a mistake.
2751     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2752         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2753       // Per the GCC documentation, only numeric constants are recognized after
2754       // inlining.
2755       return RValue::get(ConstantInt::get(ResultType, 0));
2756 
2757     if (Arg->HasSideEffects(getContext()))
2758       // The argument is unevaluated, so be conservative if it might have
2759       // side-effects.
2760       return RValue::get(ConstantInt::get(ResultType, 0));
2761 
2762     Value *ArgValue = EmitScalarExpr(Arg);
2763     if (ArgType->isObjCObjectPointerType()) {
2764       // Convert Objective-C objects to id because we cannot distinguish between
2765       // LLVM types for Obj-C classes as they are opaque.
2766       ArgType = CGM.getContext().getObjCIdType();
2767       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2768     }
2769     Function *F =
2770         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2771     Value *Result = Builder.CreateCall(F, ArgValue);
2772     if (Result->getType() != ResultType)
2773       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2774     return RValue::get(Result);
2775   }
2776   case Builtin::BI__builtin_dynamic_object_size:
2777   case Builtin::BI__builtin_object_size: {
2778     unsigned Type =
2779         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2780     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2781 
2782     // We pass this builtin onto the optimizer so that it can figure out the
2783     // object size in more complex cases.
2784     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2785     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2786                                              /*EmittedE=*/nullptr, IsDynamic));
2787   }
2788   case Builtin::BI__builtin_prefetch: {
2789     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2790     // FIXME: Technically these constants should of type 'int', yes?
2791     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2792       llvm::ConstantInt::get(Int32Ty, 0);
2793     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2794       llvm::ConstantInt::get(Int32Ty, 3);
2795     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2796     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2797     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2798   }
2799   case Builtin::BI__builtin_readcyclecounter: {
2800     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2801     return RValue::get(Builder.CreateCall(F));
2802   }
2803   case Builtin::BI__builtin___clear_cache: {
2804     Value *Begin = EmitScalarExpr(E->getArg(0));
2805     Value *End = EmitScalarExpr(E->getArg(1));
2806     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2807     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2808   }
2809   case Builtin::BI__builtin_trap:
2810     return RValue::get(EmitTrapCall(Intrinsic::trap));
2811   case Builtin::BI__debugbreak:
2812     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2813   case Builtin::BI__builtin_unreachable: {
2814     EmitUnreachable(E->getExprLoc());
2815 
2816     // We do need to preserve an insertion point.
2817     EmitBlock(createBasicBlock("unreachable.cont"));
2818 
2819     return RValue::get(nullptr);
2820   }
2821 
2822   case Builtin::BI__builtin_powi:
2823   case Builtin::BI__builtin_powif:
2824   case Builtin::BI__builtin_powil:
2825     return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2826         *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2827 
2828   case Builtin::BI__builtin_isgreater:
2829   case Builtin::BI__builtin_isgreaterequal:
2830   case Builtin::BI__builtin_isless:
2831   case Builtin::BI__builtin_islessequal:
2832   case Builtin::BI__builtin_islessgreater:
2833   case Builtin::BI__builtin_isunordered: {
2834     // Ordered comparisons: we know the arguments to these are matching scalar
2835     // floating point values.
2836     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2837     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2838     Value *LHS = EmitScalarExpr(E->getArg(0));
2839     Value *RHS = EmitScalarExpr(E->getArg(1));
2840 
2841     switch (BuiltinID) {
2842     default: llvm_unreachable("Unknown ordered comparison");
2843     case Builtin::BI__builtin_isgreater:
2844       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2845       break;
2846     case Builtin::BI__builtin_isgreaterequal:
2847       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2848       break;
2849     case Builtin::BI__builtin_isless:
2850       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2851       break;
2852     case Builtin::BI__builtin_islessequal:
2853       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2854       break;
2855     case Builtin::BI__builtin_islessgreater:
2856       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2857       break;
2858     case Builtin::BI__builtin_isunordered:
2859       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2860       break;
2861     }
2862     // ZExt bool to int type.
2863     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2864   }
2865   case Builtin::BI__builtin_isnan: {
2866     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2867     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2868     Value *V = EmitScalarExpr(E->getArg(0));
2869     V = Builder.CreateFCmpUNO(V, V, "cmp");
2870     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2871   }
2872 
2873   case Builtin::BI__builtin_matrix_transpose: {
2874     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2875     Value *MatValue = EmitScalarExpr(E->getArg(0));
2876     MatrixBuilder<CGBuilderTy> MB(Builder);
2877     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
2878                                              MatrixTy->getNumColumns());
2879     return RValue::get(Result);
2880   }
2881 
2882   case Builtin::BI__builtin_matrix_column_major_load: {
2883     MatrixBuilder<CGBuilderTy> MB(Builder);
2884     // Emit everything that isn't dependent on the first parameter type
2885     Value *Stride = EmitScalarExpr(E->getArg(3));
2886     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
2887     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
2888     assert(PtrTy && "arg0 must be of pointer type");
2889     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2890 
2891     Address Src = EmitPointerWithAlignment(E->getArg(0));
2892     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
2893                         E->getArg(0)->getExprLoc(), FD, 0);
2894     Value *Result = MB.CreateColumnMajorLoad(
2895         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
2896         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
2897         "matrix");
2898     return RValue::get(Result);
2899   }
2900 
2901   case Builtin::BI__builtin_matrix_column_major_store: {
2902     MatrixBuilder<CGBuilderTy> MB(Builder);
2903     Value *Matrix = EmitScalarExpr(E->getArg(0));
2904     Address Dst = EmitPointerWithAlignment(E->getArg(1));
2905     Value *Stride = EmitScalarExpr(E->getArg(2));
2906 
2907     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2908     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
2909     assert(PtrTy && "arg1 must be of pointer type");
2910     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2911 
2912     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
2913                         E->getArg(1)->getExprLoc(), FD, 0);
2914     Value *Result = MB.CreateColumnMajorStore(
2915         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
2916         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
2917     return RValue::get(Result);
2918   }
2919 
2920   case Builtin::BIfinite:
2921   case Builtin::BI__finite:
2922   case Builtin::BIfinitef:
2923   case Builtin::BI__finitef:
2924   case Builtin::BIfinitel:
2925   case Builtin::BI__finitel:
2926   case Builtin::BI__builtin_isinf:
2927   case Builtin::BI__builtin_isfinite: {
2928     // isinf(x)    --> fabs(x) == infinity
2929     // isfinite(x) --> fabs(x) != infinity
2930     // x != NaN via the ordered compare in either case.
2931     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2932     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2933     Value *V = EmitScalarExpr(E->getArg(0));
2934     Value *Fabs = EmitFAbs(*this, V);
2935     Constant *Infinity = ConstantFP::getInfinity(V->getType());
2936     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2937                                   ? CmpInst::FCMP_OEQ
2938                                   : CmpInst::FCMP_ONE;
2939     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2940     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2941   }
2942 
2943   case Builtin::BI__builtin_isinf_sign: {
2944     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2945     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2946     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2947     Value *Arg = EmitScalarExpr(E->getArg(0));
2948     Value *AbsArg = EmitFAbs(*this, Arg);
2949     Value *IsInf = Builder.CreateFCmpOEQ(
2950         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2951     Value *IsNeg = EmitSignBit(*this, Arg);
2952 
2953     llvm::Type *IntTy = ConvertType(E->getType());
2954     Value *Zero = Constant::getNullValue(IntTy);
2955     Value *One = ConstantInt::get(IntTy, 1);
2956     Value *NegativeOne = ConstantInt::get(IntTy, -1);
2957     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2958     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2959     return RValue::get(Result);
2960   }
2961 
2962   case Builtin::BI__builtin_isnormal: {
2963     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2964     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2965     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2966     Value *V = EmitScalarExpr(E->getArg(0));
2967     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2968 
2969     Value *Abs = EmitFAbs(*this, V);
2970     Value *IsLessThanInf =
2971       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2972     APFloat Smallest = APFloat::getSmallestNormalized(
2973                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2974     Value *IsNormal =
2975       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2976                             "isnormal");
2977     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2978     V = Builder.CreateAnd(V, IsNormal, "and");
2979     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2980   }
2981 
2982   case Builtin::BI__builtin_flt_rounds: {
2983     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2984 
2985     llvm::Type *ResultType = ConvertType(E->getType());
2986     Value *Result = Builder.CreateCall(F);
2987     if (Result->getType() != ResultType)
2988       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2989                                      "cast");
2990     return RValue::get(Result);
2991   }
2992 
2993   case Builtin::BI__builtin_fpclassify: {
2994     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2995     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2996     Value *V = EmitScalarExpr(E->getArg(5));
2997     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2998 
2999     // Create Result
3000     BasicBlock *Begin = Builder.GetInsertBlock();
3001     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3002     Builder.SetInsertPoint(End);
3003     PHINode *Result =
3004       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3005                         "fpclassify_result");
3006 
3007     // if (V==0) return FP_ZERO
3008     Builder.SetInsertPoint(Begin);
3009     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3010                                           "iszero");
3011     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3012     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3013     Builder.CreateCondBr(IsZero, End, NotZero);
3014     Result->addIncoming(ZeroLiteral, Begin);
3015 
3016     // if (V != V) return FP_NAN
3017     Builder.SetInsertPoint(NotZero);
3018     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3019     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3020     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3021     Builder.CreateCondBr(IsNan, End, NotNan);
3022     Result->addIncoming(NanLiteral, NotZero);
3023 
3024     // if (fabs(V) == infinity) return FP_INFINITY
3025     Builder.SetInsertPoint(NotNan);
3026     Value *VAbs = EmitFAbs(*this, V);
3027     Value *IsInf =
3028       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3029                             "isinf");
3030     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3031     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3032     Builder.CreateCondBr(IsInf, End, NotInf);
3033     Result->addIncoming(InfLiteral, NotNan);
3034 
3035     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3036     Builder.SetInsertPoint(NotInf);
3037     APFloat Smallest = APFloat::getSmallestNormalized(
3038         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3039     Value *IsNormal =
3040       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3041                             "isnormal");
3042     Value *NormalResult =
3043       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3044                            EmitScalarExpr(E->getArg(3)));
3045     Builder.CreateBr(End);
3046     Result->addIncoming(NormalResult, NotInf);
3047 
3048     // return Result
3049     Builder.SetInsertPoint(End);
3050     return RValue::get(Result);
3051   }
3052 
3053   case Builtin::BIalloca:
3054   case Builtin::BI_alloca:
3055   case Builtin::BI__builtin_alloca: {
3056     Value *Size = EmitScalarExpr(E->getArg(0));
3057     const TargetInfo &TI = getContext().getTargetInfo();
3058     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3059     const Align SuitableAlignmentInBytes =
3060         CGM.getContext()
3061             .toCharUnitsFromBits(TI.getSuitableAlign())
3062             .getAsAlign();
3063     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3064     AI->setAlignment(SuitableAlignmentInBytes);
3065     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3066     return RValue::get(AI);
3067   }
3068 
3069   case Builtin::BI__builtin_alloca_with_align: {
3070     Value *Size = EmitScalarExpr(E->getArg(0));
3071     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3072     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3073     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3074     const Align AlignmentInBytes =
3075         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3076     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3077     AI->setAlignment(AlignmentInBytes);
3078     initializeAlloca(*this, AI, Size, AlignmentInBytes);
3079     return RValue::get(AI);
3080   }
3081 
3082   case Builtin::BIbzero:
3083   case Builtin::BI__builtin_bzero: {
3084     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3085     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3086     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3087                         E->getArg(0)->getExprLoc(), FD, 0);
3088     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3089     return RValue::get(nullptr);
3090   }
3091   case Builtin::BImemcpy:
3092   case Builtin::BI__builtin_memcpy:
3093   case Builtin::BImempcpy:
3094   case Builtin::BI__builtin_mempcpy: {
3095     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3096     Address Src = EmitPointerWithAlignment(E->getArg(1));
3097     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3098     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3099                         E->getArg(0)->getExprLoc(), FD, 0);
3100     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3101                         E->getArg(1)->getExprLoc(), FD, 1);
3102     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3103     if (BuiltinID == Builtin::BImempcpy ||
3104         BuiltinID == Builtin::BI__builtin_mempcpy)
3105       return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal));
3106     else
3107       return RValue::get(Dest.getPointer());
3108   }
3109 
3110   case Builtin::BI__builtin_memcpy_inline: {
3111     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3112     Address Src = EmitPointerWithAlignment(E->getArg(1));
3113     uint64_t Size =
3114         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3115     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3116                         E->getArg(0)->getExprLoc(), FD, 0);
3117     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3118                         E->getArg(1)->getExprLoc(), FD, 1);
3119     Builder.CreateMemCpyInline(Dest, Src, Size);
3120     return RValue::get(nullptr);
3121   }
3122 
3123   case Builtin::BI__builtin_char_memchr:
3124     BuiltinID = Builtin::BI__builtin_memchr;
3125     break;
3126 
3127   case Builtin::BI__builtin___memcpy_chk: {
3128     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3129     Expr::EvalResult SizeResult, DstSizeResult;
3130     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3131         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3132       break;
3133     llvm::APSInt Size = SizeResult.Val.getInt();
3134     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3135     if (Size.ugt(DstSize))
3136       break;
3137     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3138     Address Src = EmitPointerWithAlignment(E->getArg(1));
3139     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3140     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3141     return RValue::get(Dest.getPointer());
3142   }
3143 
3144   case Builtin::BI__builtin_objc_memmove_collectable: {
3145     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3146     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3147     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3148     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3149                                                   DestAddr, SrcAddr, SizeVal);
3150     return RValue::get(DestAddr.getPointer());
3151   }
3152 
3153   case Builtin::BI__builtin___memmove_chk: {
3154     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3155     Expr::EvalResult SizeResult, DstSizeResult;
3156     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3157         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3158       break;
3159     llvm::APSInt Size = SizeResult.Val.getInt();
3160     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3161     if (Size.ugt(DstSize))
3162       break;
3163     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3164     Address Src = EmitPointerWithAlignment(E->getArg(1));
3165     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3166     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3167     return RValue::get(Dest.getPointer());
3168   }
3169 
3170   case Builtin::BImemmove:
3171   case Builtin::BI__builtin_memmove: {
3172     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3173     Address Src = EmitPointerWithAlignment(E->getArg(1));
3174     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3175     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3176                         E->getArg(0)->getExprLoc(), FD, 0);
3177     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3178                         E->getArg(1)->getExprLoc(), FD, 1);
3179     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3180     return RValue::get(Dest.getPointer());
3181   }
3182   case Builtin::BImemset:
3183   case Builtin::BI__builtin_memset: {
3184     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3185     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3186                                          Builder.getInt8Ty());
3187     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3188     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3189                         E->getArg(0)->getExprLoc(), FD, 0);
3190     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3191     return RValue::get(Dest.getPointer());
3192   }
3193   case Builtin::BI__builtin___memset_chk: {
3194     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3195     Expr::EvalResult SizeResult, DstSizeResult;
3196     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3197         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3198       break;
3199     llvm::APSInt Size = SizeResult.Val.getInt();
3200     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3201     if (Size.ugt(DstSize))
3202       break;
3203     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3204     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3205                                          Builder.getInt8Ty());
3206     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3207     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3208     return RValue::get(Dest.getPointer());
3209   }
3210   case Builtin::BI__builtin_wmemcmp: {
3211     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3212     // need an inline implementation.
3213     if (!getTarget().getTriple().isOSMSVCRT())
3214       break;
3215 
3216     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3217 
3218     Value *Dst = EmitScalarExpr(E->getArg(0));
3219     Value *Src = EmitScalarExpr(E->getArg(1));
3220     Value *Size = EmitScalarExpr(E->getArg(2));
3221 
3222     BasicBlock *Entry = Builder.GetInsertBlock();
3223     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3224     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3225     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3226     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3227     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3228     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3229 
3230     EmitBlock(CmpGT);
3231     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3232     DstPhi->addIncoming(Dst, Entry);
3233     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3234     SrcPhi->addIncoming(Src, Entry);
3235     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3236     SizePhi->addIncoming(Size, Entry);
3237     CharUnits WCharAlign =
3238         getContext().getTypeAlignInChars(getContext().WCharTy);
3239     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3240     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3241     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3242     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3243 
3244     EmitBlock(CmpLT);
3245     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3246     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3247 
3248     EmitBlock(Next);
3249     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3250     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3251     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3252     Value *NextSizeEq0 =
3253         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3254     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3255     DstPhi->addIncoming(NextDst, Next);
3256     SrcPhi->addIncoming(NextSrc, Next);
3257     SizePhi->addIncoming(NextSize, Next);
3258 
3259     EmitBlock(Exit);
3260     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3261     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3262     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3263     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3264     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3265     return RValue::get(Ret);
3266   }
3267   case Builtin::BI__builtin_dwarf_cfa: {
3268     // The offset in bytes from the first argument to the CFA.
3269     //
3270     // Why on earth is this in the frontend?  Is there any reason at
3271     // all that the backend can't reasonably determine this while
3272     // lowering llvm.eh.dwarf.cfa()?
3273     //
3274     // TODO: If there's a satisfactory reason, add a target hook for
3275     // this instead of hard-coding 0, which is correct for most targets.
3276     int32_t Offset = 0;
3277 
3278     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3279     return RValue::get(Builder.CreateCall(F,
3280                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3281   }
3282   case Builtin::BI__builtin_return_address: {
3283     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3284                                                    getContext().UnsignedIntTy);
3285     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3286     return RValue::get(Builder.CreateCall(F, Depth));
3287   }
3288   case Builtin::BI_ReturnAddress: {
3289     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3290     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3291   }
3292   case Builtin::BI__builtin_frame_address: {
3293     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3294                                                    getContext().UnsignedIntTy);
3295     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3296     return RValue::get(Builder.CreateCall(F, Depth));
3297   }
3298   case Builtin::BI__builtin_extract_return_addr: {
3299     Value *Address = EmitScalarExpr(E->getArg(0));
3300     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3301     return RValue::get(Result);
3302   }
3303   case Builtin::BI__builtin_frob_return_addr: {
3304     Value *Address = EmitScalarExpr(E->getArg(0));
3305     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3306     return RValue::get(Result);
3307   }
3308   case Builtin::BI__builtin_dwarf_sp_column: {
3309     llvm::IntegerType *Ty
3310       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3311     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3312     if (Column == -1) {
3313       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3314       return RValue::get(llvm::UndefValue::get(Ty));
3315     }
3316     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3317   }
3318   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3319     Value *Address = EmitScalarExpr(E->getArg(0));
3320     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3321       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3322     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3323   }
3324   case Builtin::BI__builtin_eh_return: {
3325     Value *Int = EmitScalarExpr(E->getArg(0));
3326     Value *Ptr = EmitScalarExpr(E->getArg(1));
3327 
3328     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3329     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3330            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3331     Function *F =
3332         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3333                                                     : Intrinsic::eh_return_i64);
3334     Builder.CreateCall(F, {Int, Ptr});
3335     Builder.CreateUnreachable();
3336 
3337     // We do need to preserve an insertion point.
3338     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3339 
3340     return RValue::get(nullptr);
3341   }
3342   case Builtin::BI__builtin_unwind_init: {
3343     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3344     return RValue::get(Builder.CreateCall(F));
3345   }
3346   case Builtin::BI__builtin_extend_pointer: {
3347     // Extends a pointer to the size of an _Unwind_Word, which is
3348     // uint64_t on all platforms.  Generally this gets poked into a
3349     // register and eventually used as an address, so if the
3350     // addressing registers are wider than pointers and the platform
3351     // doesn't implicitly ignore high-order bits when doing
3352     // addressing, we need to make sure we zext / sext based on
3353     // the platform's expectations.
3354     //
3355     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3356 
3357     // Cast the pointer to intptr_t.
3358     Value *Ptr = EmitScalarExpr(E->getArg(0));
3359     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3360 
3361     // If that's 64 bits, we're done.
3362     if (IntPtrTy->getBitWidth() == 64)
3363       return RValue::get(Result);
3364 
3365     // Otherwise, ask the codegen data what to do.
3366     if (getTargetHooks().extendPointerWithSExt())
3367       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3368     else
3369       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3370   }
3371   case Builtin::BI__builtin_setjmp: {
3372     // Buffer is a void**.
3373     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3374 
3375     // Store the frame pointer to the setjmp buffer.
3376     Value *FrameAddr = Builder.CreateCall(
3377         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3378         ConstantInt::get(Int32Ty, 0));
3379     Builder.CreateStore(FrameAddr, Buf);
3380 
3381     // Store the stack pointer to the setjmp buffer.
3382     Value *StackAddr =
3383         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3384     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3385     Builder.CreateStore(StackAddr, StackSaveSlot);
3386 
3387     // Call LLVM's EH setjmp, which is lightweight.
3388     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3389     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3390     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3391   }
3392   case Builtin::BI__builtin_longjmp: {
3393     Value *Buf = EmitScalarExpr(E->getArg(0));
3394     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3395 
3396     // Call LLVM's EH longjmp, which is lightweight.
3397     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3398 
3399     // longjmp doesn't return; mark this as unreachable.
3400     Builder.CreateUnreachable();
3401 
3402     // We do need to preserve an insertion point.
3403     EmitBlock(createBasicBlock("longjmp.cont"));
3404 
3405     return RValue::get(nullptr);
3406   }
3407   case Builtin::BI__builtin_launder: {
3408     const Expr *Arg = E->getArg(0);
3409     QualType ArgTy = Arg->getType()->getPointeeType();
3410     Value *Ptr = EmitScalarExpr(Arg);
3411     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3412       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3413 
3414     return RValue::get(Ptr);
3415   }
3416   case Builtin::BI__sync_fetch_and_add:
3417   case Builtin::BI__sync_fetch_and_sub:
3418   case Builtin::BI__sync_fetch_and_or:
3419   case Builtin::BI__sync_fetch_and_and:
3420   case Builtin::BI__sync_fetch_and_xor:
3421   case Builtin::BI__sync_fetch_and_nand:
3422   case Builtin::BI__sync_add_and_fetch:
3423   case Builtin::BI__sync_sub_and_fetch:
3424   case Builtin::BI__sync_and_and_fetch:
3425   case Builtin::BI__sync_or_and_fetch:
3426   case Builtin::BI__sync_xor_and_fetch:
3427   case Builtin::BI__sync_nand_and_fetch:
3428   case Builtin::BI__sync_val_compare_and_swap:
3429   case Builtin::BI__sync_bool_compare_and_swap:
3430   case Builtin::BI__sync_lock_test_and_set:
3431   case Builtin::BI__sync_lock_release:
3432   case Builtin::BI__sync_swap:
3433     llvm_unreachable("Shouldn't make it through sema");
3434   case Builtin::BI__sync_fetch_and_add_1:
3435   case Builtin::BI__sync_fetch_and_add_2:
3436   case Builtin::BI__sync_fetch_and_add_4:
3437   case Builtin::BI__sync_fetch_and_add_8:
3438   case Builtin::BI__sync_fetch_and_add_16:
3439     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3440   case Builtin::BI__sync_fetch_and_sub_1:
3441   case Builtin::BI__sync_fetch_and_sub_2:
3442   case Builtin::BI__sync_fetch_and_sub_4:
3443   case Builtin::BI__sync_fetch_and_sub_8:
3444   case Builtin::BI__sync_fetch_and_sub_16:
3445     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3446   case Builtin::BI__sync_fetch_and_or_1:
3447   case Builtin::BI__sync_fetch_and_or_2:
3448   case Builtin::BI__sync_fetch_and_or_4:
3449   case Builtin::BI__sync_fetch_and_or_8:
3450   case Builtin::BI__sync_fetch_and_or_16:
3451     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3452   case Builtin::BI__sync_fetch_and_and_1:
3453   case Builtin::BI__sync_fetch_and_and_2:
3454   case Builtin::BI__sync_fetch_and_and_4:
3455   case Builtin::BI__sync_fetch_and_and_8:
3456   case Builtin::BI__sync_fetch_and_and_16:
3457     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3458   case Builtin::BI__sync_fetch_and_xor_1:
3459   case Builtin::BI__sync_fetch_and_xor_2:
3460   case Builtin::BI__sync_fetch_and_xor_4:
3461   case Builtin::BI__sync_fetch_and_xor_8:
3462   case Builtin::BI__sync_fetch_and_xor_16:
3463     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3464   case Builtin::BI__sync_fetch_and_nand_1:
3465   case Builtin::BI__sync_fetch_and_nand_2:
3466   case Builtin::BI__sync_fetch_and_nand_4:
3467   case Builtin::BI__sync_fetch_and_nand_8:
3468   case Builtin::BI__sync_fetch_and_nand_16:
3469     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3470 
3471   // Clang extensions: not overloaded yet.
3472   case Builtin::BI__sync_fetch_and_min:
3473     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3474   case Builtin::BI__sync_fetch_and_max:
3475     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3476   case Builtin::BI__sync_fetch_and_umin:
3477     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3478   case Builtin::BI__sync_fetch_and_umax:
3479     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3480 
3481   case Builtin::BI__sync_add_and_fetch_1:
3482   case Builtin::BI__sync_add_and_fetch_2:
3483   case Builtin::BI__sync_add_and_fetch_4:
3484   case Builtin::BI__sync_add_and_fetch_8:
3485   case Builtin::BI__sync_add_and_fetch_16:
3486     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3487                                 llvm::Instruction::Add);
3488   case Builtin::BI__sync_sub_and_fetch_1:
3489   case Builtin::BI__sync_sub_and_fetch_2:
3490   case Builtin::BI__sync_sub_and_fetch_4:
3491   case Builtin::BI__sync_sub_and_fetch_8:
3492   case Builtin::BI__sync_sub_and_fetch_16:
3493     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3494                                 llvm::Instruction::Sub);
3495   case Builtin::BI__sync_and_and_fetch_1:
3496   case Builtin::BI__sync_and_and_fetch_2:
3497   case Builtin::BI__sync_and_and_fetch_4:
3498   case Builtin::BI__sync_and_and_fetch_8:
3499   case Builtin::BI__sync_and_and_fetch_16:
3500     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3501                                 llvm::Instruction::And);
3502   case Builtin::BI__sync_or_and_fetch_1:
3503   case Builtin::BI__sync_or_and_fetch_2:
3504   case Builtin::BI__sync_or_and_fetch_4:
3505   case Builtin::BI__sync_or_and_fetch_8:
3506   case Builtin::BI__sync_or_and_fetch_16:
3507     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3508                                 llvm::Instruction::Or);
3509   case Builtin::BI__sync_xor_and_fetch_1:
3510   case Builtin::BI__sync_xor_and_fetch_2:
3511   case Builtin::BI__sync_xor_and_fetch_4:
3512   case Builtin::BI__sync_xor_and_fetch_8:
3513   case Builtin::BI__sync_xor_and_fetch_16:
3514     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3515                                 llvm::Instruction::Xor);
3516   case Builtin::BI__sync_nand_and_fetch_1:
3517   case Builtin::BI__sync_nand_and_fetch_2:
3518   case Builtin::BI__sync_nand_and_fetch_4:
3519   case Builtin::BI__sync_nand_and_fetch_8:
3520   case Builtin::BI__sync_nand_and_fetch_16:
3521     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3522                                 llvm::Instruction::And, true);
3523 
3524   case Builtin::BI__sync_val_compare_and_swap_1:
3525   case Builtin::BI__sync_val_compare_and_swap_2:
3526   case Builtin::BI__sync_val_compare_and_swap_4:
3527   case Builtin::BI__sync_val_compare_and_swap_8:
3528   case Builtin::BI__sync_val_compare_and_swap_16:
3529     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3530 
3531   case Builtin::BI__sync_bool_compare_and_swap_1:
3532   case Builtin::BI__sync_bool_compare_and_swap_2:
3533   case Builtin::BI__sync_bool_compare_and_swap_4:
3534   case Builtin::BI__sync_bool_compare_and_swap_8:
3535   case Builtin::BI__sync_bool_compare_and_swap_16:
3536     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3537 
3538   case Builtin::BI__sync_swap_1:
3539   case Builtin::BI__sync_swap_2:
3540   case Builtin::BI__sync_swap_4:
3541   case Builtin::BI__sync_swap_8:
3542   case Builtin::BI__sync_swap_16:
3543     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3544 
3545   case Builtin::BI__sync_lock_test_and_set_1:
3546   case Builtin::BI__sync_lock_test_and_set_2:
3547   case Builtin::BI__sync_lock_test_and_set_4:
3548   case Builtin::BI__sync_lock_test_and_set_8:
3549   case Builtin::BI__sync_lock_test_and_set_16:
3550     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3551 
3552   case Builtin::BI__sync_lock_release_1:
3553   case Builtin::BI__sync_lock_release_2:
3554   case Builtin::BI__sync_lock_release_4:
3555   case Builtin::BI__sync_lock_release_8:
3556   case Builtin::BI__sync_lock_release_16: {
3557     Value *Ptr = EmitScalarExpr(E->getArg(0));
3558     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3559     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3560     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3561                                              StoreSize.getQuantity() * 8);
3562     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3563     llvm::StoreInst *Store =
3564       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3565                                  StoreSize);
3566     Store->setAtomic(llvm::AtomicOrdering::Release);
3567     return RValue::get(nullptr);
3568   }
3569 
3570   case Builtin::BI__sync_synchronize: {
3571     // We assume this is supposed to correspond to a C++0x-style
3572     // sequentially-consistent fence (i.e. this is only usable for
3573     // synchronization, not device I/O or anything like that). This intrinsic
3574     // is really badly designed in the sense that in theory, there isn't
3575     // any way to safely use it... but in practice, it mostly works
3576     // to use it with non-atomic loads and stores to get acquire/release
3577     // semantics.
3578     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3579     return RValue::get(nullptr);
3580   }
3581 
3582   case Builtin::BI__builtin_nontemporal_load:
3583     return RValue::get(EmitNontemporalLoad(*this, E));
3584   case Builtin::BI__builtin_nontemporal_store:
3585     return RValue::get(EmitNontemporalStore(*this, E));
3586   case Builtin::BI__c11_atomic_is_lock_free:
3587   case Builtin::BI__atomic_is_lock_free: {
3588     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3589     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3590     // _Atomic(T) is always properly-aligned.
3591     const char *LibCallName = "__atomic_is_lock_free";
3592     CallArgList Args;
3593     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3594              getContext().getSizeType());
3595     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3596       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3597                getContext().VoidPtrTy);
3598     else
3599       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3600                getContext().VoidPtrTy);
3601     const CGFunctionInfo &FuncInfo =
3602         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3603     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3604     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3605     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3606                     ReturnValueSlot(), Args);
3607   }
3608 
3609   case Builtin::BI__atomic_test_and_set: {
3610     // Look at the argument type to determine whether this is a volatile
3611     // operation. The parameter type is always volatile.
3612     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3613     bool Volatile =
3614         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3615 
3616     Value *Ptr = EmitScalarExpr(E->getArg(0));
3617     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3618     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3619     Value *NewVal = Builder.getInt8(1);
3620     Value *Order = EmitScalarExpr(E->getArg(1));
3621     if (isa<llvm::ConstantInt>(Order)) {
3622       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3623       AtomicRMWInst *Result = nullptr;
3624       switch (ord) {
3625       case 0:  // memory_order_relaxed
3626       default: // invalid order
3627         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3628                                          llvm::AtomicOrdering::Monotonic);
3629         break;
3630       case 1: // memory_order_consume
3631       case 2: // memory_order_acquire
3632         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3633                                          llvm::AtomicOrdering::Acquire);
3634         break;
3635       case 3: // memory_order_release
3636         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3637                                          llvm::AtomicOrdering::Release);
3638         break;
3639       case 4: // memory_order_acq_rel
3640 
3641         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3642                                          llvm::AtomicOrdering::AcquireRelease);
3643         break;
3644       case 5: // memory_order_seq_cst
3645         Result = Builder.CreateAtomicRMW(
3646             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3647             llvm::AtomicOrdering::SequentiallyConsistent);
3648         break;
3649       }
3650       Result->setVolatile(Volatile);
3651       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3652     }
3653 
3654     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3655 
3656     llvm::BasicBlock *BBs[5] = {
3657       createBasicBlock("monotonic", CurFn),
3658       createBasicBlock("acquire", CurFn),
3659       createBasicBlock("release", CurFn),
3660       createBasicBlock("acqrel", CurFn),
3661       createBasicBlock("seqcst", CurFn)
3662     };
3663     llvm::AtomicOrdering Orders[5] = {
3664         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3665         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3666         llvm::AtomicOrdering::SequentiallyConsistent};
3667 
3668     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3669     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3670 
3671     Builder.SetInsertPoint(ContBB);
3672     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3673 
3674     for (unsigned i = 0; i < 5; ++i) {
3675       Builder.SetInsertPoint(BBs[i]);
3676       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3677                                                    Ptr, NewVal, Orders[i]);
3678       RMW->setVolatile(Volatile);
3679       Result->addIncoming(RMW, BBs[i]);
3680       Builder.CreateBr(ContBB);
3681     }
3682 
3683     SI->addCase(Builder.getInt32(0), BBs[0]);
3684     SI->addCase(Builder.getInt32(1), BBs[1]);
3685     SI->addCase(Builder.getInt32(2), BBs[1]);
3686     SI->addCase(Builder.getInt32(3), BBs[2]);
3687     SI->addCase(Builder.getInt32(4), BBs[3]);
3688     SI->addCase(Builder.getInt32(5), BBs[4]);
3689 
3690     Builder.SetInsertPoint(ContBB);
3691     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3692   }
3693 
3694   case Builtin::BI__atomic_clear: {
3695     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3696     bool Volatile =
3697         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3698 
3699     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3700     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3701     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3702     Value *NewVal = Builder.getInt8(0);
3703     Value *Order = EmitScalarExpr(E->getArg(1));
3704     if (isa<llvm::ConstantInt>(Order)) {
3705       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3706       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3707       switch (ord) {
3708       case 0:  // memory_order_relaxed
3709       default: // invalid order
3710         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3711         break;
3712       case 3:  // memory_order_release
3713         Store->setOrdering(llvm::AtomicOrdering::Release);
3714         break;
3715       case 5:  // memory_order_seq_cst
3716         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3717         break;
3718       }
3719       return RValue::get(nullptr);
3720     }
3721 
3722     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3723 
3724     llvm::BasicBlock *BBs[3] = {
3725       createBasicBlock("monotonic", CurFn),
3726       createBasicBlock("release", CurFn),
3727       createBasicBlock("seqcst", CurFn)
3728     };
3729     llvm::AtomicOrdering Orders[3] = {
3730         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3731         llvm::AtomicOrdering::SequentiallyConsistent};
3732 
3733     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3734     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3735 
3736     for (unsigned i = 0; i < 3; ++i) {
3737       Builder.SetInsertPoint(BBs[i]);
3738       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3739       Store->setOrdering(Orders[i]);
3740       Builder.CreateBr(ContBB);
3741     }
3742 
3743     SI->addCase(Builder.getInt32(0), BBs[0]);
3744     SI->addCase(Builder.getInt32(3), BBs[1]);
3745     SI->addCase(Builder.getInt32(5), BBs[2]);
3746 
3747     Builder.SetInsertPoint(ContBB);
3748     return RValue::get(nullptr);
3749   }
3750 
3751   case Builtin::BI__atomic_thread_fence:
3752   case Builtin::BI__atomic_signal_fence:
3753   case Builtin::BI__c11_atomic_thread_fence:
3754   case Builtin::BI__c11_atomic_signal_fence: {
3755     llvm::SyncScope::ID SSID;
3756     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3757         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3758       SSID = llvm::SyncScope::SingleThread;
3759     else
3760       SSID = llvm::SyncScope::System;
3761     Value *Order = EmitScalarExpr(E->getArg(0));
3762     if (isa<llvm::ConstantInt>(Order)) {
3763       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3764       switch (ord) {
3765       case 0:  // memory_order_relaxed
3766       default: // invalid order
3767         break;
3768       case 1:  // memory_order_consume
3769       case 2:  // memory_order_acquire
3770         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3771         break;
3772       case 3:  // memory_order_release
3773         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3774         break;
3775       case 4:  // memory_order_acq_rel
3776         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3777         break;
3778       case 5:  // memory_order_seq_cst
3779         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3780         break;
3781       }
3782       return RValue::get(nullptr);
3783     }
3784 
3785     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3786     AcquireBB = createBasicBlock("acquire", CurFn);
3787     ReleaseBB = createBasicBlock("release", CurFn);
3788     AcqRelBB = createBasicBlock("acqrel", CurFn);
3789     SeqCstBB = createBasicBlock("seqcst", CurFn);
3790     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3791 
3792     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3793     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3794 
3795     Builder.SetInsertPoint(AcquireBB);
3796     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3797     Builder.CreateBr(ContBB);
3798     SI->addCase(Builder.getInt32(1), AcquireBB);
3799     SI->addCase(Builder.getInt32(2), AcquireBB);
3800 
3801     Builder.SetInsertPoint(ReleaseBB);
3802     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3803     Builder.CreateBr(ContBB);
3804     SI->addCase(Builder.getInt32(3), ReleaseBB);
3805 
3806     Builder.SetInsertPoint(AcqRelBB);
3807     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3808     Builder.CreateBr(ContBB);
3809     SI->addCase(Builder.getInt32(4), AcqRelBB);
3810 
3811     Builder.SetInsertPoint(SeqCstBB);
3812     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3813     Builder.CreateBr(ContBB);
3814     SI->addCase(Builder.getInt32(5), SeqCstBB);
3815 
3816     Builder.SetInsertPoint(ContBB);
3817     return RValue::get(nullptr);
3818   }
3819 
3820   case Builtin::BI__builtin_signbit:
3821   case Builtin::BI__builtin_signbitf:
3822   case Builtin::BI__builtin_signbitl: {
3823     return RValue::get(
3824         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3825                            ConvertType(E->getType())));
3826   }
3827   case Builtin::BI__warn_memset_zero_len:
3828     return RValue::getIgnored();
3829   case Builtin::BI__annotation: {
3830     // Re-encode each wide string to UTF8 and make an MDString.
3831     SmallVector<Metadata *, 1> Strings;
3832     for (const Expr *Arg : E->arguments()) {
3833       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3834       assert(Str->getCharByteWidth() == 2);
3835       StringRef WideBytes = Str->getBytes();
3836       std::string StrUtf8;
3837       if (!convertUTF16ToUTF8String(
3838               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3839         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3840         continue;
3841       }
3842       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3843     }
3844 
3845     // Build and MDTuple of MDStrings and emit the intrinsic call.
3846     llvm::Function *F =
3847         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3848     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3849     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3850     return RValue::getIgnored();
3851   }
3852   case Builtin::BI__builtin_annotation: {
3853     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3854     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3855                                       AnnVal->getType());
3856 
3857     // Get the annotation string, go through casts. Sema requires this to be a
3858     // non-wide string literal, potentially casted, so the cast<> is safe.
3859     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3860     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3861     return RValue::get(
3862         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
3863   }
3864   case Builtin::BI__builtin_addcb:
3865   case Builtin::BI__builtin_addcs:
3866   case Builtin::BI__builtin_addc:
3867   case Builtin::BI__builtin_addcl:
3868   case Builtin::BI__builtin_addcll:
3869   case Builtin::BI__builtin_subcb:
3870   case Builtin::BI__builtin_subcs:
3871   case Builtin::BI__builtin_subc:
3872   case Builtin::BI__builtin_subcl:
3873   case Builtin::BI__builtin_subcll: {
3874 
3875     // We translate all of these builtins from expressions of the form:
3876     //   int x = ..., y = ..., carryin = ..., carryout, result;
3877     //   result = __builtin_addc(x, y, carryin, &carryout);
3878     //
3879     // to LLVM IR of the form:
3880     //
3881     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3882     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3883     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3884     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3885     //                                                       i32 %carryin)
3886     //   %result = extractvalue {i32, i1} %tmp2, 0
3887     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3888     //   %tmp3 = or i1 %carry1, %carry2
3889     //   %tmp4 = zext i1 %tmp3 to i32
3890     //   store i32 %tmp4, i32* %carryout
3891 
3892     // Scalarize our inputs.
3893     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3894     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3895     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3896     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3897 
3898     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3899     llvm::Intrinsic::ID IntrinsicId;
3900     switch (BuiltinID) {
3901     default: llvm_unreachable("Unknown multiprecision builtin id.");
3902     case Builtin::BI__builtin_addcb:
3903     case Builtin::BI__builtin_addcs:
3904     case Builtin::BI__builtin_addc:
3905     case Builtin::BI__builtin_addcl:
3906     case Builtin::BI__builtin_addcll:
3907       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3908       break;
3909     case Builtin::BI__builtin_subcb:
3910     case Builtin::BI__builtin_subcs:
3911     case Builtin::BI__builtin_subc:
3912     case Builtin::BI__builtin_subcl:
3913     case Builtin::BI__builtin_subcll:
3914       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3915       break;
3916     }
3917 
3918     // Construct our resulting LLVM IR expression.
3919     llvm::Value *Carry1;
3920     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3921                                               X, Y, Carry1);
3922     llvm::Value *Carry2;
3923     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3924                                               Sum1, Carryin, Carry2);
3925     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3926                                                X->getType());
3927     Builder.CreateStore(CarryOut, CarryOutPtr);
3928     return RValue::get(Sum2);
3929   }
3930 
3931   case Builtin::BI__builtin_add_overflow:
3932   case Builtin::BI__builtin_sub_overflow:
3933   case Builtin::BI__builtin_mul_overflow: {
3934     const clang::Expr *LeftArg = E->getArg(0);
3935     const clang::Expr *RightArg = E->getArg(1);
3936     const clang::Expr *ResultArg = E->getArg(2);
3937 
3938     clang::QualType ResultQTy =
3939         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3940 
3941     WidthAndSignedness LeftInfo =
3942         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3943     WidthAndSignedness RightInfo =
3944         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3945     WidthAndSignedness ResultInfo =
3946         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3947 
3948     // Handle mixed-sign multiplication as a special case, because adding
3949     // runtime or backend support for our generic irgen would be too expensive.
3950     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3951       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3952                                           RightInfo, ResultArg, ResultQTy,
3953                                           ResultInfo);
3954 
3955     WidthAndSignedness EncompassingInfo =
3956         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3957 
3958     llvm::Type *EncompassingLLVMTy =
3959         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3960 
3961     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3962 
3963     llvm::Intrinsic::ID IntrinsicId;
3964     switch (BuiltinID) {
3965     default:
3966       llvm_unreachable("Unknown overflow builtin id.");
3967     case Builtin::BI__builtin_add_overflow:
3968       IntrinsicId = EncompassingInfo.Signed
3969                         ? llvm::Intrinsic::sadd_with_overflow
3970                         : llvm::Intrinsic::uadd_with_overflow;
3971       break;
3972     case Builtin::BI__builtin_sub_overflow:
3973       IntrinsicId = EncompassingInfo.Signed
3974                         ? llvm::Intrinsic::ssub_with_overflow
3975                         : llvm::Intrinsic::usub_with_overflow;
3976       break;
3977     case Builtin::BI__builtin_mul_overflow:
3978       IntrinsicId = EncompassingInfo.Signed
3979                         ? llvm::Intrinsic::smul_with_overflow
3980                         : llvm::Intrinsic::umul_with_overflow;
3981       break;
3982     }
3983 
3984     llvm::Value *Left = EmitScalarExpr(LeftArg);
3985     llvm::Value *Right = EmitScalarExpr(RightArg);
3986     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3987 
3988     // Extend each operand to the encompassing type.
3989     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3990     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3991 
3992     // Perform the operation on the extended values.
3993     llvm::Value *Overflow, *Result;
3994     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3995 
3996     if (EncompassingInfo.Width > ResultInfo.Width) {
3997       // The encompassing type is wider than the result type, so we need to
3998       // truncate it.
3999       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4000 
4001       // To see if the truncation caused an overflow, we will extend
4002       // the result and then compare it to the original result.
4003       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4004           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4005       llvm::Value *TruncationOverflow =
4006           Builder.CreateICmpNE(Result, ResultTruncExt);
4007 
4008       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4009       Result = ResultTrunc;
4010     }
4011 
4012     // Finally, store the result using the pointer.
4013     bool isVolatile =
4014       ResultArg->getType()->getPointeeType().isVolatileQualified();
4015     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4016 
4017     return RValue::get(Overflow);
4018   }
4019 
4020   case Builtin::BI__builtin_uadd_overflow:
4021   case Builtin::BI__builtin_uaddl_overflow:
4022   case Builtin::BI__builtin_uaddll_overflow:
4023   case Builtin::BI__builtin_usub_overflow:
4024   case Builtin::BI__builtin_usubl_overflow:
4025   case Builtin::BI__builtin_usubll_overflow:
4026   case Builtin::BI__builtin_umul_overflow:
4027   case Builtin::BI__builtin_umull_overflow:
4028   case Builtin::BI__builtin_umulll_overflow:
4029   case Builtin::BI__builtin_sadd_overflow:
4030   case Builtin::BI__builtin_saddl_overflow:
4031   case Builtin::BI__builtin_saddll_overflow:
4032   case Builtin::BI__builtin_ssub_overflow:
4033   case Builtin::BI__builtin_ssubl_overflow:
4034   case Builtin::BI__builtin_ssubll_overflow:
4035   case Builtin::BI__builtin_smul_overflow:
4036   case Builtin::BI__builtin_smull_overflow:
4037   case Builtin::BI__builtin_smulll_overflow: {
4038 
4039     // We translate all of these builtins directly to the relevant llvm IR node.
4040 
4041     // Scalarize our inputs.
4042     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4043     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4044     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4045 
4046     // Decide which of the overflow intrinsics we are lowering to:
4047     llvm::Intrinsic::ID IntrinsicId;
4048     switch (BuiltinID) {
4049     default: llvm_unreachable("Unknown overflow builtin id.");
4050     case Builtin::BI__builtin_uadd_overflow:
4051     case Builtin::BI__builtin_uaddl_overflow:
4052     case Builtin::BI__builtin_uaddll_overflow:
4053       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4054       break;
4055     case Builtin::BI__builtin_usub_overflow:
4056     case Builtin::BI__builtin_usubl_overflow:
4057     case Builtin::BI__builtin_usubll_overflow:
4058       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4059       break;
4060     case Builtin::BI__builtin_umul_overflow:
4061     case Builtin::BI__builtin_umull_overflow:
4062     case Builtin::BI__builtin_umulll_overflow:
4063       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4064       break;
4065     case Builtin::BI__builtin_sadd_overflow:
4066     case Builtin::BI__builtin_saddl_overflow:
4067     case Builtin::BI__builtin_saddll_overflow:
4068       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4069       break;
4070     case Builtin::BI__builtin_ssub_overflow:
4071     case Builtin::BI__builtin_ssubl_overflow:
4072     case Builtin::BI__builtin_ssubll_overflow:
4073       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4074       break;
4075     case Builtin::BI__builtin_smul_overflow:
4076     case Builtin::BI__builtin_smull_overflow:
4077     case Builtin::BI__builtin_smulll_overflow:
4078       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4079       break;
4080     }
4081 
4082 
4083     llvm::Value *Carry;
4084     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4085     Builder.CreateStore(Sum, SumOutPtr);
4086 
4087     return RValue::get(Carry);
4088   }
4089   case Builtin::BI__builtin_addressof:
4090     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4091   case Builtin::BI__builtin_operator_new:
4092     return EmitBuiltinNewDeleteCall(
4093         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4094   case Builtin::BI__builtin_operator_delete:
4095     return EmitBuiltinNewDeleteCall(
4096         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4097 
4098   case Builtin::BI__builtin_is_aligned:
4099     return EmitBuiltinIsAligned(E);
4100   case Builtin::BI__builtin_align_up:
4101     return EmitBuiltinAlignTo(E, true);
4102   case Builtin::BI__builtin_align_down:
4103     return EmitBuiltinAlignTo(E, false);
4104 
4105   case Builtin::BI__noop:
4106     // __noop always evaluates to an integer literal zero.
4107     return RValue::get(ConstantInt::get(IntTy, 0));
4108   case Builtin::BI__builtin_call_with_static_chain: {
4109     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4110     const Expr *Chain = E->getArg(1);
4111     return EmitCall(Call->getCallee()->getType(),
4112                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4113                     EmitScalarExpr(Chain));
4114   }
4115   case Builtin::BI_InterlockedExchange8:
4116   case Builtin::BI_InterlockedExchange16:
4117   case Builtin::BI_InterlockedExchange:
4118   case Builtin::BI_InterlockedExchangePointer:
4119     return RValue::get(
4120         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4121   case Builtin::BI_InterlockedCompareExchangePointer:
4122   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4123     llvm::Type *RTy;
4124     llvm::IntegerType *IntType =
4125       IntegerType::get(getLLVMContext(),
4126                        getContext().getTypeSize(E->getType()));
4127     llvm::Type *IntPtrType = IntType->getPointerTo();
4128 
4129     llvm::Value *Destination =
4130       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4131 
4132     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4133     RTy = Exchange->getType();
4134     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4135 
4136     llvm::Value *Comparand =
4137       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4138 
4139     auto Ordering =
4140       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4141       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4142 
4143     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4144                                               Ordering, Ordering);
4145     Result->setVolatile(true);
4146 
4147     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4148                                                                          0),
4149                                               RTy));
4150   }
4151   case Builtin::BI_InterlockedCompareExchange8:
4152   case Builtin::BI_InterlockedCompareExchange16:
4153   case Builtin::BI_InterlockedCompareExchange:
4154   case Builtin::BI_InterlockedCompareExchange64:
4155     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4156   case Builtin::BI_InterlockedIncrement16:
4157   case Builtin::BI_InterlockedIncrement:
4158     return RValue::get(
4159         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4160   case Builtin::BI_InterlockedDecrement16:
4161   case Builtin::BI_InterlockedDecrement:
4162     return RValue::get(
4163         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4164   case Builtin::BI_InterlockedAnd8:
4165   case Builtin::BI_InterlockedAnd16:
4166   case Builtin::BI_InterlockedAnd:
4167     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4168   case Builtin::BI_InterlockedExchangeAdd8:
4169   case Builtin::BI_InterlockedExchangeAdd16:
4170   case Builtin::BI_InterlockedExchangeAdd:
4171     return RValue::get(
4172         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4173   case Builtin::BI_InterlockedExchangeSub8:
4174   case Builtin::BI_InterlockedExchangeSub16:
4175   case Builtin::BI_InterlockedExchangeSub:
4176     return RValue::get(
4177         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4178   case Builtin::BI_InterlockedOr8:
4179   case Builtin::BI_InterlockedOr16:
4180   case Builtin::BI_InterlockedOr:
4181     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4182   case Builtin::BI_InterlockedXor8:
4183   case Builtin::BI_InterlockedXor16:
4184   case Builtin::BI_InterlockedXor:
4185     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4186 
4187   case Builtin::BI_bittest64:
4188   case Builtin::BI_bittest:
4189   case Builtin::BI_bittestandcomplement64:
4190   case Builtin::BI_bittestandcomplement:
4191   case Builtin::BI_bittestandreset64:
4192   case Builtin::BI_bittestandreset:
4193   case Builtin::BI_bittestandset64:
4194   case Builtin::BI_bittestandset:
4195   case Builtin::BI_interlockedbittestandreset:
4196   case Builtin::BI_interlockedbittestandreset64:
4197   case Builtin::BI_interlockedbittestandset64:
4198   case Builtin::BI_interlockedbittestandset:
4199   case Builtin::BI_interlockedbittestandset_acq:
4200   case Builtin::BI_interlockedbittestandset_rel:
4201   case Builtin::BI_interlockedbittestandset_nf:
4202   case Builtin::BI_interlockedbittestandreset_acq:
4203   case Builtin::BI_interlockedbittestandreset_rel:
4204   case Builtin::BI_interlockedbittestandreset_nf:
4205     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4206 
4207     // These builtins exist to emit regular volatile loads and stores not
4208     // affected by the -fms-volatile setting.
4209   case Builtin::BI__iso_volatile_load8:
4210   case Builtin::BI__iso_volatile_load16:
4211   case Builtin::BI__iso_volatile_load32:
4212   case Builtin::BI__iso_volatile_load64:
4213     return RValue::get(EmitISOVolatileLoad(*this, E));
4214   case Builtin::BI__iso_volatile_store8:
4215   case Builtin::BI__iso_volatile_store16:
4216   case Builtin::BI__iso_volatile_store32:
4217   case Builtin::BI__iso_volatile_store64:
4218     return RValue::get(EmitISOVolatileStore(*this, E));
4219 
4220   case Builtin::BI__exception_code:
4221   case Builtin::BI_exception_code:
4222     return RValue::get(EmitSEHExceptionCode());
4223   case Builtin::BI__exception_info:
4224   case Builtin::BI_exception_info:
4225     return RValue::get(EmitSEHExceptionInfo());
4226   case Builtin::BI__abnormal_termination:
4227   case Builtin::BI_abnormal_termination:
4228     return RValue::get(EmitSEHAbnormalTermination());
4229   case Builtin::BI_setjmpex:
4230     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4231         E->getArg(0)->getType()->isPointerType())
4232       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4233     break;
4234   case Builtin::BI_setjmp:
4235     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4236         E->getArg(0)->getType()->isPointerType()) {
4237       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4238         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4239       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4240         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4241       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4242     }
4243     break;
4244 
4245   case Builtin::BI__GetExceptionInfo: {
4246     if (llvm::GlobalVariable *GV =
4247             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4248       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4249     break;
4250   }
4251 
4252   case Builtin::BI__fastfail:
4253     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4254 
4255   case Builtin::BI__builtin_coro_size: {
4256     auto & Context = getContext();
4257     auto SizeTy = Context.getSizeType();
4258     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4259     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4260     return RValue::get(Builder.CreateCall(F));
4261   }
4262 
4263   case Builtin::BI__builtin_coro_id:
4264     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4265   case Builtin::BI__builtin_coro_promise:
4266     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4267   case Builtin::BI__builtin_coro_resume:
4268     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4269   case Builtin::BI__builtin_coro_frame:
4270     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4271   case Builtin::BI__builtin_coro_noop:
4272     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4273   case Builtin::BI__builtin_coro_free:
4274     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4275   case Builtin::BI__builtin_coro_destroy:
4276     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4277   case Builtin::BI__builtin_coro_done:
4278     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4279   case Builtin::BI__builtin_coro_alloc:
4280     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4281   case Builtin::BI__builtin_coro_begin:
4282     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4283   case Builtin::BI__builtin_coro_end:
4284     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4285   case Builtin::BI__builtin_coro_suspend:
4286     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4287   case Builtin::BI__builtin_coro_param:
4288     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4289 
4290   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4291   case Builtin::BIread_pipe:
4292   case Builtin::BIwrite_pipe: {
4293     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4294           *Arg1 = EmitScalarExpr(E->getArg(1));
4295     CGOpenCLRuntime OpenCLRT(CGM);
4296     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4297     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4298 
4299     // Type of the generic packet parameter.
4300     unsigned GenericAS =
4301         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4302     llvm::Type *I8PTy = llvm::PointerType::get(
4303         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4304 
4305     // Testing which overloaded version we should generate the call for.
4306     if (2U == E->getNumArgs()) {
4307       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4308                                                              : "__write_pipe_2";
4309       // Creating a generic function type to be able to call with any builtin or
4310       // user defined type.
4311       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4312       llvm::FunctionType *FTy = llvm::FunctionType::get(
4313           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4314       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4315       return RValue::get(
4316           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4317                              {Arg0, BCast, PacketSize, PacketAlign}));
4318     } else {
4319       assert(4 == E->getNumArgs() &&
4320              "Illegal number of parameters to pipe function");
4321       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4322                                                              : "__write_pipe_4";
4323 
4324       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4325                               Int32Ty, Int32Ty};
4326       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4327             *Arg3 = EmitScalarExpr(E->getArg(3));
4328       llvm::FunctionType *FTy = llvm::FunctionType::get(
4329           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4330       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4331       // We know the third argument is an integer type, but we may need to cast
4332       // it to i32.
4333       if (Arg2->getType() != Int32Ty)
4334         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4335       return RValue::get(Builder.CreateCall(
4336           CGM.CreateRuntimeFunction(FTy, Name),
4337           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4338     }
4339   }
4340   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4341   // functions
4342   case Builtin::BIreserve_read_pipe:
4343   case Builtin::BIreserve_write_pipe:
4344   case Builtin::BIwork_group_reserve_read_pipe:
4345   case Builtin::BIwork_group_reserve_write_pipe:
4346   case Builtin::BIsub_group_reserve_read_pipe:
4347   case Builtin::BIsub_group_reserve_write_pipe: {
4348     // Composing the mangled name for the function.
4349     const char *Name;
4350     if (BuiltinID == Builtin::BIreserve_read_pipe)
4351       Name = "__reserve_read_pipe";
4352     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4353       Name = "__reserve_write_pipe";
4354     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4355       Name = "__work_group_reserve_read_pipe";
4356     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4357       Name = "__work_group_reserve_write_pipe";
4358     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4359       Name = "__sub_group_reserve_read_pipe";
4360     else
4361       Name = "__sub_group_reserve_write_pipe";
4362 
4363     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4364           *Arg1 = EmitScalarExpr(E->getArg(1));
4365     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4366     CGOpenCLRuntime OpenCLRT(CGM);
4367     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4368     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4369 
4370     // Building the generic function prototype.
4371     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4372     llvm::FunctionType *FTy = llvm::FunctionType::get(
4373         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4374     // We know the second argument is an integer type, but we may need to cast
4375     // it to i32.
4376     if (Arg1->getType() != Int32Ty)
4377       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4378     return RValue::get(
4379         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4380                            {Arg0, Arg1, PacketSize, PacketAlign}));
4381   }
4382   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4383   // functions
4384   case Builtin::BIcommit_read_pipe:
4385   case Builtin::BIcommit_write_pipe:
4386   case Builtin::BIwork_group_commit_read_pipe:
4387   case Builtin::BIwork_group_commit_write_pipe:
4388   case Builtin::BIsub_group_commit_read_pipe:
4389   case Builtin::BIsub_group_commit_write_pipe: {
4390     const char *Name;
4391     if (BuiltinID == Builtin::BIcommit_read_pipe)
4392       Name = "__commit_read_pipe";
4393     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4394       Name = "__commit_write_pipe";
4395     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4396       Name = "__work_group_commit_read_pipe";
4397     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4398       Name = "__work_group_commit_write_pipe";
4399     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4400       Name = "__sub_group_commit_read_pipe";
4401     else
4402       Name = "__sub_group_commit_write_pipe";
4403 
4404     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4405           *Arg1 = EmitScalarExpr(E->getArg(1));
4406     CGOpenCLRuntime OpenCLRT(CGM);
4407     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4408     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4409 
4410     // Building the generic function prototype.
4411     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4412     llvm::FunctionType *FTy =
4413         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4414                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4415 
4416     return RValue::get(
4417         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4418                            {Arg0, Arg1, PacketSize, PacketAlign}));
4419   }
4420   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4421   case Builtin::BIget_pipe_num_packets:
4422   case Builtin::BIget_pipe_max_packets: {
4423     const char *BaseName;
4424     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4425     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4426       BaseName = "__get_pipe_num_packets";
4427     else
4428       BaseName = "__get_pipe_max_packets";
4429     std::string Name = std::string(BaseName) +
4430                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4431 
4432     // Building the generic function prototype.
4433     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4434     CGOpenCLRuntime OpenCLRT(CGM);
4435     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4436     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4437     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4438     llvm::FunctionType *FTy = llvm::FunctionType::get(
4439         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4440 
4441     return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4442                                           {Arg0, PacketSize, PacketAlign}));
4443   }
4444 
4445   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4446   case Builtin::BIto_global:
4447   case Builtin::BIto_local:
4448   case Builtin::BIto_private: {
4449     auto Arg0 = EmitScalarExpr(E->getArg(0));
4450     auto NewArgT = llvm::PointerType::get(Int8Ty,
4451       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4452     auto NewRetT = llvm::PointerType::get(Int8Ty,
4453       CGM.getContext().getTargetAddressSpace(
4454         E->getType()->getPointeeType().getAddressSpace()));
4455     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4456     llvm::Value *NewArg;
4457     if (Arg0->getType()->getPointerAddressSpace() !=
4458         NewArgT->getPointerAddressSpace())
4459       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4460     else
4461       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4462     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4463     auto NewCall =
4464         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4465     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4466       ConvertType(E->getType())));
4467   }
4468 
4469   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4470   // It contains four different overload formats specified in Table 6.13.17.1.
4471   case Builtin::BIenqueue_kernel: {
4472     StringRef Name; // Generated function call name
4473     unsigned NumArgs = E->getNumArgs();
4474 
4475     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4476     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4477         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4478 
4479     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4480     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4481     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4482     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4483     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4484 
4485     if (NumArgs == 4) {
4486       // The most basic form of the call with parameters:
4487       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4488       Name = "__enqueue_kernel_basic";
4489       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4490                               GenericVoidPtrTy};
4491       llvm::FunctionType *FTy = llvm::FunctionType::get(
4492           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4493 
4494       auto Info =
4495           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4496       llvm::Value *Kernel =
4497           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4498       llvm::Value *Block =
4499           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4500 
4501       AttrBuilder B;
4502       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4503       llvm::AttributeList ByValAttrSet =
4504           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4505 
4506       auto RTCall =
4507           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4508                              {Queue, Flags, Range, Kernel, Block});
4509       RTCall->setAttributes(ByValAttrSet);
4510       return RValue::get(RTCall);
4511     }
4512     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4513 
4514     // Create a temporary array to hold the sizes of local pointer arguments
4515     // for the block. \p First is the position of the first size argument.
4516     auto CreateArrayForSizeVar = [=](unsigned First)
4517         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4518       llvm::APInt ArraySize(32, NumArgs - First);
4519       QualType SizeArrayTy = getContext().getConstantArrayType(
4520           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4521           /*IndexTypeQuals=*/0);
4522       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4523       llvm::Value *TmpPtr = Tmp.getPointer();
4524       llvm::Value *TmpSize = EmitLifetimeStart(
4525           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4526       llvm::Value *ElemPtr;
4527       // Each of the following arguments specifies the size of the corresponding
4528       // argument passed to the enqueued block.
4529       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4530       for (unsigned I = First; I < NumArgs; ++I) {
4531         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4532         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
4533         if (I == First)
4534           ElemPtr = GEP;
4535         auto *V =
4536             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4537         Builder.CreateAlignedStore(
4538             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4539       }
4540       return std::tie(ElemPtr, TmpSize, TmpPtr);
4541     };
4542 
4543     // Could have events and/or varargs.
4544     if (E->getArg(3)->getType()->isBlockPointerType()) {
4545       // No events passed, but has variadic arguments.
4546       Name = "__enqueue_kernel_varargs";
4547       auto Info =
4548           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4549       llvm::Value *Kernel =
4550           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4551       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4552       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4553       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4554 
4555       // Create a vector of the arguments, as well as a constant value to
4556       // express to the runtime the number of variadic arguments.
4557       llvm::Value *const Args[] = {Queue,  Flags,
4558                                    Range,  Kernel,
4559                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4560                                    ElemPtr};
4561       llvm::Type *const ArgTys[] = {
4562           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4563           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4564 
4565       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4566       auto Call = RValue::get(
4567           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4568       if (TmpSize)
4569         EmitLifetimeEnd(TmpSize, TmpPtr);
4570       return Call;
4571     }
4572     // Any calls now have event arguments passed.
4573     if (NumArgs >= 7) {
4574       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4575       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4576           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4577 
4578       llvm::Value *NumEvents =
4579           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4580 
4581       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4582       // to be a null pointer constant (including `0` literal), we can take it
4583       // into account and emit null pointer directly.
4584       llvm::Value *EventWaitList = nullptr;
4585       if (E->getArg(4)->isNullPointerConstant(
4586               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4587         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4588       } else {
4589         EventWaitList = E->getArg(4)->getType()->isArrayType()
4590                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4591                         : EmitScalarExpr(E->getArg(4));
4592         // Convert to generic address space.
4593         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4594       }
4595       llvm::Value *EventRet = nullptr;
4596       if (E->getArg(5)->isNullPointerConstant(
4597               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4598         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4599       } else {
4600         EventRet =
4601             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4602       }
4603 
4604       auto Info =
4605           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4606       llvm::Value *Kernel =
4607           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4608       llvm::Value *Block =
4609           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4610 
4611       std::vector<llvm::Type *> ArgTys = {
4612           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4613           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4614 
4615       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4616                                          NumEvents, EventWaitList, EventRet,
4617                                          Kernel,    Block};
4618 
4619       if (NumArgs == 7) {
4620         // Has events but no variadics.
4621         Name = "__enqueue_kernel_basic_events";
4622         llvm::FunctionType *FTy = llvm::FunctionType::get(
4623             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4624         return RValue::get(
4625             Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4626                                llvm::ArrayRef<llvm::Value *>(Args)));
4627       }
4628       // Has event info and variadics
4629       // Pass the number of variadics to the runtime function too.
4630       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4631       ArgTys.push_back(Int32Ty);
4632       Name = "__enqueue_kernel_events_varargs";
4633 
4634       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4635       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4636       Args.push_back(ElemPtr);
4637       ArgTys.push_back(ElemPtr->getType());
4638 
4639       llvm::FunctionType *FTy = llvm::FunctionType::get(
4640           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4641       auto Call =
4642           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4643                                          llvm::ArrayRef<llvm::Value *>(Args)));
4644       if (TmpSize)
4645         EmitLifetimeEnd(TmpSize, TmpPtr);
4646       return Call;
4647     }
4648     LLVM_FALLTHROUGH;
4649   }
4650   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4651   // parameter.
4652   case Builtin::BIget_kernel_work_group_size: {
4653     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4654         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4655     auto Info =
4656         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4657     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4658     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4659     return RValue::get(Builder.CreateCall(
4660         CGM.CreateRuntimeFunction(
4661             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4662                                     false),
4663             "__get_kernel_work_group_size_impl"),
4664         {Kernel, Arg}));
4665   }
4666   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4667     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4668         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4669     auto Info =
4670         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4671     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4672     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4673     return RValue::get(Builder.CreateCall(
4674         CGM.CreateRuntimeFunction(
4675             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4676                                     false),
4677             "__get_kernel_preferred_work_group_size_multiple_impl"),
4678         {Kernel, Arg}));
4679   }
4680   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4681   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4682     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4683         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4684     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4685     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4686     auto Info =
4687         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4688     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4689     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4690     const char *Name =
4691         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4692             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4693             : "__get_kernel_sub_group_count_for_ndrange_impl";
4694     return RValue::get(Builder.CreateCall(
4695         CGM.CreateRuntimeFunction(
4696             llvm::FunctionType::get(
4697                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4698                 false),
4699             Name),
4700         {NDRange, Kernel, Block}));
4701   }
4702 
4703   case Builtin::BI__builtin_store_half:
4704   case Builtin::BI__builtin_store_halff: {
4705     Value *Val = EmitScalarExpr(E->getArg(0));
4706     Address Address = EmitPointerWithAlignment(E->getArg(1));
4707     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4708     return RValue::get(Builder.CreateStore(HalfVal, Address));
4709   }
4710   case Builtin::BI__builtin_load_half: {
4711     Address Address = EmitPointerWithAlignment(E->getArg(0));
4712     Value *HalfVal = Builder.CreateLoad(Address);
4713     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4714   }
4715   case Builtin::BI__builtin_load_halff: {
4716     Address Address = EmitPointerWithAlignment(E->getArg(0));
4717     Value *HalfVal = Builder.CreateLoad(Address);
4718     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4719   }
4720   case Builtin::BIprintf:
4721     if (getTarget().getTriple().isNVPTX())
4722       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4723     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4724         getLangOpts().HIP)
4725       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4726     break;
4727   case Builtin::BI__builtin_canonicalize:
4728   case Builtin::BI__builtin_canonicalizef:
4729   case Builtin::BI__builtin_canonicalizef16:
4730   case Builtin::BI__builtin_canonicalizel:
4731     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4732 
4733   case Builtin::BI__builtin_thread_pointer: {
4734     if (!getContext().getTargetInfo().isTLSSupported())
4735       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4736     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4737     break;
4738   }
4739   case Builtin::BI__builtin_os_log_format:
4740     return emitBuiltinOSLogFormat(*E);
4741 
4742   case Builtin::BI__xray_customevent: {
4743     if (!ShouldXRayInstrumentFunction())
4744       return RValue::getIgnored();
4745 
4746     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4747             XRayInstrKind::Custom))
4748       return RValue::getIgnored();
4749 
4750     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4751       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4752         return RValue::getIgnored();
4753 
4754     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4755     auto FTy = F->getFunctionType();
4756     auto Arg0 = E->getArg(0);
4757     auto Arg0Val = EmitScalarExpr(Arg0);
4758     auto Arg0Ty = Arg0->getType();
4759     auto PTy0 = FTy->getParamType(0);
4760     if (PTy0 != Arg0Val->getType()) {
4761       if (Arg0Ty->isArrayType())
4762         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4763       else
4764         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4765     }
4766     auto Arg1 = EmitScalarExpr(E->getArg(1));
4767     auto PTy1 = FTy->getParamType(1);
4768     if (PTy1 != Arg1->getType())
4769       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4770     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4771   }
4772 
4773   case Builtin::BI__xray_typedevent: {
4774     // TODO: There should be a way to always emit events even if the current
4775     // function is not instrumented. Losing events in a stream can cripple
4776     // a trace.
4777     if (!ShouldXRayInstrumentFunction())
4778       return RValue::getIgnored();
4779 
4780     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4781             XRayInstrKind::Typed))
4782       return RValue::getIgnored();
4783 
4784     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4785       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4786         return RValue::getIgnored();
4787 
4788     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4789     auto FTy = F->getFunctionType();
4790     auto Arg0 = EmitScalarExpr(E->getArg(0));
4791     auto PTy0 = FTy->getParamType(0);
4792     if (PTy0 != Arg0->getType())
4793       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4794     auto Arg1 = E->getArg(1);
4795     auto Arg1Val = EmitScalarExpr(Arg1);
4796     auto Arg1Ty = Arg1->getType();
4797     auto PTy1 = FTy->getParamType(1);
4798     if (PTy1 != Arg1Val->getType()) {
4799       if (Arg1Ty->isArrayType())
4800         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4801       else
4802         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4803     }
4804     auto Arg2 = EmitScalarExpr(E->getArg(2));
4805     auto PTy2 = FTy->getParamType(2);
4806     if (PTy2 != Arg2->getType())
4807       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4808     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4809   }
4810 
4811   case Builtin::BI__builtin_ms_va_start:
4812   case Builtin::BI__builtin_ms_va_end:
4813     return RValue::get(
4814         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4815                        BuiltinID == Builtin::BI__builtin_ms_va_start));
4816 
4817   case Builtin::BI__builtin_ms_va_copy: {
4818     // Lower this manually. We can't reliably determine whether or not any
4819     // given va_copy() is for a Win64 va_list from the calling convention
4820     // alone, because it's legal to do this from a System V ABI function.
4821     // With opaque pointer types, we won't have enough information in LLVM
4822     // IR to determine this from the argument types, either. Best to do it
4823     // now, while we have enough information.
4824     Address DestAddr = EmitMSVAListRef(E->getArg(0));
4825     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4826 
4827     llvm::Type *BPP = Int8PtrPtrTy;
4828 
4829     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4830                        DestAddr.getAlignment());
4831     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4832                       SrcAddr.getAlignment());
4833 
4834     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4835     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4836   }
4837   }
4838 
4839   // If this is an alias for a lib function (e.g. __builtin_sin), emit
4840   // the call using the normal call path, but using the unmangled
4841   // version of the function name.
4842   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4843     return emitLibraryCall(*this, FD, E,
4844                            CGM.getBuiltinLibFunction(FD, BuiltinID));
4845 
4846   // If this is a predefined lib function (e.g. malloc), emit the call
4847   // using exactly the normal call path.
4848   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4849     return emitLibraryCall(*this, FD, E,
4850                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4851 
4852   // Check that a call to a target specific builtin has the correct target
4853   // features.
4854   // This is down here to avoid non-target specific builtins, however, if
4855   // generic builtins start to require generic target features then we
4856   // can move this up to the beginning of the function.
4857   checkTargetFeatures(E, FD);
4858 
4859   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4860     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4861 
4862   // See if we have a target specific intrinsic.
4863   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4864   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4865   StringRef Prefix =
4866       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4867   if (!Prefix.empty()) {
4868     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4869     // NOTE we don't need to perform a compatibility flag check here since the
4870     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4871     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4872     if (IntrinsicID == Intrinsic::not_intrinsic)
4873       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4874   }
4875 
4876   if (IntrinsicID != Intrinsic::not_intrinsic) {
4877     SmallVector<Value*, 16> Args;
4878 
4879     // Find out if any arguments are required to be integer constant
4880     // expressions.
4881     unsigned ICEArguments = 0;
4882     ASTContext::GetBuiltinTypeError Error;
4883     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4884     assert(Error == ASTContext::GE_None && "Should not codegen an error");
4885 
4886     Function *F = CGM.getIntrinsic(IntrinsicID);
4887     llvm::FunctionType *FTy = F->getFunctionType();
4888 
4889     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4890       Value *ArgValue;
4891       // If this is a normal argument, just emit it as a scalar.
4892       if ((ICEArguments & (1 << i)) == 0) {
4893         ArgValue = EmitScalarExpr(E->getArg(i));
4894       } else {
4895         // If this is required to be a constant, constant fold it so that we
4896         // know that the generated intrinsic gets a ConstantInt.
4897         ArgValue = llvm::ConstantInt::get(
4898             getLLVMContext(),
4899             *E->getArg(i)->getIntegerConstantExpr(getContext()));
4900       }
4901 
4902       // If the intrinsic arg type is different from the builtin arg type
4903       // we need to do a bit cast.
4904       llvm::Type *PTy = FTy->getParamType(i);
4905       if (PTy != ArgValue->getType()) {
4906         // XXX - vector of pointers?
4907         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4908           if (PtrTy->getAddressSpace() !=
4909               ArgValue->getType()->getPointerAddressSpace()) {
4910             ArgValue = Builder.CreateAddrSpaceCast(
4911               ArgValue,
4912               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4913           }
4914         }
4915 
4916         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4917                "Must be able to losslessly bit cast to param");
4918         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4919       }
4920 
4921       Args.push_back(ArgValue);
4922     }
4923 
4924     Value *V = Builder.CreateCall(F, Args);
4925     QualType BuiltinRetType = E->getType();
4926 
4927     llvm::Type *RetTy = VoidTy;
4928     if (!BuiltinRetType->isVoidType())
4929       RetTy = ConvertType(BuiltinRetType);
4930 
4931     if (RetTy != V->getType()) {
4932       // XXX - vector of pointers?
4933       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4934         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4935           V = Builder.CreateAddrSpaceCast(
4936             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4937         }
4938       }
4939 
4940       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4941              "Must be able to losslessly bit cast result type");
4942       V = Builder.CreateBitCast(V, RetTy);
4943     }
4944 
4945     return RValue::get(V);
4946   }
4947 
4948   // Some target-specific builtins can have aggregate return values, e.g.
4949   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
4950   // ReturnValue to be non-null, so that the target-specific emission code can
4951   // always just emit into it.
4952   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
4953   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
4954     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
4955     ReturnValue = ReturnValueSlot(DestPtr, false);
4956   }
4957 
4958   // Now see if we can emit a target-specific builtin.
4959   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
4960     switch (EvalKind) {
4961     case TEK_Scalar:
4962       return RValue::get(V);
4963     case TEK_Aggregate:
4964       return RValue::getAggregate(ReturnValue.getValue(),
4965                                   ReturnValue.isVolatile());
4966     case TEK_Complex:
4967       llvm_unreachable("No current target builtin returns complex");
4968     }
4969     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
4970   }
4971 
4972   ErrorUnsupported(E, "builtin function");
4973 
4974   // Unknown builtin, for now just dump it out and return undef.
4975   return GetUndefRValue(E->getType());
4976 }
4977 
EmitTargetArchBuiltinExpr(CodeGenFunction * CGF,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)4978 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4979                                         unsigned BuiltinID, const CallExpr *E,
4980                                         ReturnValueSlot ReturnValue,
4981                                         llvm::Triple::ArchType Arch) {
4982   switch (Arch) {
4983   case llvm::Triple::arm:
4984   case llvm::Triple::armeb:
4985   case llvm::Triple::thumb:
4986   case llvm::Triple::thumbeb:
4987     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
4988   case llvm::Triple::aarch64:
4989   case llvm::Triple::aarch64_32:
4990   case llvm::Triple::aarch64_be:
4991     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4992   case llvm::Triple::bpfeb:
4993   case llvm::Triple::bpfel:
4994     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4995   case llvm::Triple::x86:
4996   case llvm::Triple::x86_64:
4997     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4998   case llvm::Triple::ppc:
4999   case llvm::Triple::ppc64:
5000   case llvm::Triple::ppc64le:
5001     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5002   case llvm::Triple::r600:
5003   case llvm::Triple::amdgcn:
5004     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5005   case llvm::Triple::systemz:
5006     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5007   case llvm::Triple::nvptx:
5008   case llvm::Triple::nvptx64:
5009     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5010   case llvm::Triple::wasm32:
5011   case llvm::Triple::wasm64:
5012     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5013   case llvm::Triple::hexagon:
5014     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5015   default:
5016     return nullptr;
5017   }
5018 }
5019 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)5020 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5021                                               const CallExpr *E,
5022                                               ReturnValueSlot ReturnValue) {
5023   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5024     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5025     return EmitTargetArchBuiltinExpr(
5026         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5027         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5028   }
5029 
5030   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5031                                    getTarget().getTriple().getArch());
5032 }
5033 
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool HasLegalHalfType=true,bool V1Ty=false,bool AllowBFloatArgsAndRet=true)5034 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5035                                           NeonTypeFlags TypeFlags,
5036                                           bool HasLegalHalfType = true,
5037                                           bool V1Ty = false,
5038                                           bool AllowBFloatArgsAndRet = true) {
5039   int IsQuad = TypeFlags.isQuad();
5040   switch (TypeFlags.getEltType()) {
5041   case NeonTypeFlags::Int8:
5042   case NeonTypeFlags::Poly8:
5043     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5044   case NeonTypeFlags::Int16:
5045   case NeonTypeFlags::Poly16:
5046     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5047   case NeonTypeFlags::BFloat16:
5048     if (AllowBFloatArgsAndRet)
5049       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5050     else
5051       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5052   case NeonTypeFlags::Float16:
5053     if (HasLegalHalfType)
5054       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5055     else
5056       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5057   case NeonTypeFlags::Int32:
5058     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5059   case NeonTypeFlags::Int64:
5060   case NeonTypeFlags::Poly64:
5061     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5062   case NeonTypeFlags::Poly128:
5063     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5064     // There is a lot of i128 and f128 API missing.
5065     // so we use v16i8 to represent poly128 and get pattern matched.
5066     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5067   case NeonTypeFlags::Float32:
5068     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5069   case NeonTypeFlags::Float64:
5070     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5071   }
5072   llvm_unreachable("Unknown vector element type!");
5073 }
5074 
GetFloatNeonType(CodeGenFunction * CGF,NeonTypeFlags IntTypeFlags)5075 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5076                                           NeonTypeFlags IntTypeFlags) {
5077   int IsQuad = IntTypeFlags.isQuad();
5078   switch (IntTypeFlags.getEltType()) {
5079   case NeonTypeFlags::Int16:
5080     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5081   case NeonTypeFlags::Int32:
5082     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5083   case NeonTypeFlags::Int64:
5084     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5085   default:
5086     llvm_unreachable("Type can't be converted to floating-point!");
5087   }
5088 }
5089 
EmitNeonSplat(Value * V,Constant * C,const ElementCount & Count)5090 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5091                                       const ElementCount &Count) {
5092   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5093   return Builder.CreateShuffleVector(V, V, SV, "lane");
5094 }
5095 
EmitNeonSplat(Value * V,Constant * C)5096 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5097   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5098   return EmitNeonSplat(V, C, EC);
5099 }
5100 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)5101 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5102                                      const char *name,
5103                                      unsigned shift, bool rightshift) {
5104   unsigned j = 0;
5105   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5106        ai != ae; ++ai, ++j) {
5107     if (F->isConstrainedFPIntrinsic())
5108       if (ai->getType()->isMetadataTy())
5109         continue;
5110     if (shift > 0 && shift == j)
5111       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5112     else
5113       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5114   }
5115 
5116   if (F->isConstrainedFPIntrinsic())
5117     return Builder.CreateConstrainedFPCall(F, Ops, name);
5118   else
5119     return Builder.CreateCall(F, Ops, name);
5120 }
5121 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)5122 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5123                                             bool neg) {
5124   int SV = cast<ConstantInt>(V)->getSExtValue();
5125   return ConstantInt::get(Ty, neg ? -SV : SV);
5126 }
5127 
5128 // Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)5129 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5130                                           llvm::Type *Ty, bool usgn,
5131                                           const char *name) {
5132   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5133 
5134   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5135   int EltSize = VTy->getScalarSizeInBits();
5136 
5137   Vec = Builder.CreateBitCast(Vec, Ty);
5138 
5139   // lshr/ashr are undefined when the shift amount is equal to the vector
5140   // element size.
5141   if (ShiftAmt == EltSize) {
5142     if (usgn) {
5143       // Right-shifting an unsigned value by its size yields 0.
5144       return llvm::ConstantAggregateZero::get(VTy);
5145     } else {
5146       // Right-shifting a signed value by its size is equivalent
5147       // to a shift of size-1.
5148       --ShiftAmt;
5149       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5150     }
5151   }
5152 
5153   Shift = EmitNeonShiftVector(Shift, Ty, false);
5154   if (usgn)
5155     return Builder.CreateLShr(Vec, Shift, name);
5156   else
5157     return Builder.CreateAShr(Vec, Shift, name);
5158 }
5159 
5160 enum {
5161   AddRetType = (1 << 0),
5162   Add1ArgType = (1 << 1),
5163   Add2ArgTypes = (1 << 2),
5164 
5165   VectorizeRetType = (1 << 3),
5166   VectorizeArgTypes = (1 << 4),
5167 
5168   InventFloatType = (1 << 5),
5169   UnsignedAlts = (1 << 6),
5170 
5171   Use64BitVectors = (1 << 7),
5172   Use128BitVectors = (1 << 8),
5173 
5174   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5175   VectorRet = AddRetType | VectorizeRetType,
5176   VectorRetGetArgs01 =
5177       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5178   FpCmpzModifiers =
5179       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5180 };
5181 
5182 namespace {
5183 struct ARMVectorIntrinsicInfo {
5184   const char *NameHint;
5185   unsigned BuiltinID;
5186   unsigned LLVMIntrinsic;
5187   unsigned AltLLVMIntrinsic;
5188   uint64_t TypeModifier;
5189 
operator <__anon777ffcf60811::ARMVectorIntrinsicInfo5190   bool operator<(unsigned RHSBuiltinID) const {
5191     return BuiltinID < RHSBuiltinID;
5192   }
operator <__anon777ffcf60811::ARMVectorIntrinsicInfo5193   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5194     return BuiltinID < TE.BuiltinID;
5195   }
5196 };
5197 } // end anonymous namespace
5198 
5199 #define NEONMAP0(NameBase) \
5200   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5201 
5202 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5203   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5204       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5205 
5206 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5207   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5208       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5209       TypeModifier }
5210 
5211 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5212   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5213   NEONMAP0(splat_lane_v),
5214   NEONMAP0(splat_laneq_v),
5215   NEONMAP0(splatq_lane_v),
5216   NEONMAP0(splatq_laneq_v),
5217   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5218   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5219   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5220   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5221   NEONMAP0(vaddhn_v),
5222   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5223   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5224   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5225   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5226   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5227   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5228   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5229   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5230   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5231   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5232   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5233   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5234   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5235   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5236   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5237   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5238   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5239   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5240   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5241   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5242   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5243   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5244   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5245   NEONMAP0(vceqz_v),
5246   NEONMAP0(vceqzq_v),
5247   NEONMAP0(vcgez_v),
5248   NEONMAP0(vcgezq_v),
5249   NEONMAP0(vcgtz_v),
5250   NEONMAP0(vcgtzq_v),
5251   NEONMAP0(vclez_v),
5252   NEONMAP0(vclezq_v),
5253   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5254   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5255   NEONMAP0(vcltz_v),
5256   NEONMAP0(vcltzq_v),
5257   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5258   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5259   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5260   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5261   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5262   NEONMAP0(vcvt_f16_v),
5263   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5264   NEONMAP0(vcvt_f32_v),
5265   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5266   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5267   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5268   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5269   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5270   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5271   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5272   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5273   NEONMAP0(vcvt_s16_v),
5274   NEONMAP0(vcvt_s32_v),
5275   NEONMAP0(vcvt_s64_v),
5276   NEONMAP0(vcvt_u16_v),
5277   NEONMAP0(vcvt_u32_v),
5278   NEONMAP0(vcvt_u64_v),
5279   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5280   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5281   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5282   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5283   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5284   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5285   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5286   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5287   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5288   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5289   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5290   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5291   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5292   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5293   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5294   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5295   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5296   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5297   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5298   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5299   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5300   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5301   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5302   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5303   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5304   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5305   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5306   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5307   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5308   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5309   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5310   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5311   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5312   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5313   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5314   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5315   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5316   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5317   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5318   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5319   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5320   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5321   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5322   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5323   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5324   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5325   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5326   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5327   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5328   NEONMAP0(vcvtq_f16_v),
5329   NEONMAP0(vcvtq_f32_v),
5330   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5331   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5332   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5333   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5334   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5335   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5336   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5337   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5338   NEONMAP0(vcvtq_s16_v),
5339   NEONMAP0(vcvtq_s32_v),
5340   NEONMAP0(vcvtq_s64_v),
5341   NEONMAP0(vcvtq_u16_v),
5342   NEONMAP0(vcvtq_u32_v),
5343   NEONMAP0(vcvtq_u64_v),
5344   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5345   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5346   NEONMAP0(vext_v),
5347   NEONMAP0(vextq_v),
5348   NEONMAP0(vfma_v),
5349   NEONMAP0(vfmaq_v),
5350   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5351   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5352   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5353   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5354   NEONMAP0(vld1_dup_v),
5355   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5356   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5357   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5358   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5359   NEONMAP0(vld1q_dup_v),
5360   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5361   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5362   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5363   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5364   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5365   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5366   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5367   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5368   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5369   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5370   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5371   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5372   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5373   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5374   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5375   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5376   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5377   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5378   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5379   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5380   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5381   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5382   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5383   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5384   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5385   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5386   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5387   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5388   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5389   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5390   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5391   NEONMAP0(vmovl_v),
5392   NEONMAP0(vmovn_v),
5393   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5394   NEONMAP0(vmull_v),
5395   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5396   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5397   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5398   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5399   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5400   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5401   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5402   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5403   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5404   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5405   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5406   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5407   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5408   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5409   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5410   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5411   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5412   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5413   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5414   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5415   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5416   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5417   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5418   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5419   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5420   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5421   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5422   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5423   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5424   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5425   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5426   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5427   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5428   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5429   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5430   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5431   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5432   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5433   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5434   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5435   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5436   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5437   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5438   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5439   NEONMAP0(vrndi_v),
5440   NEONMAP0(vrndiq_v),
5441   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5442   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5443   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5444   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5445   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5446   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5447   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5448   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5449   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5450   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5451   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5452   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5453   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5454   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5455   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5456   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5457   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5458   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5459   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5460   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5461   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5462   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5463   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5464   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5465   NEONMAP0(vshl_n_v),
5466   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5467   NEONMAP0(vshll_n_v),
5468   NEONMAP0(vshlq_n_v),
5469   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5470   NEONMAP0(vshr_n_v),
5471   NEONMAP0(vshrn_n_v),
5472   NEONMAP0(vshrq_n_v),
5473   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5474   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5475   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5476   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5477   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5478   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5479   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5480   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5481   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5482   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5483   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5484   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5485   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5486   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5487   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5488   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5489   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5490   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5491   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5492   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5493   NEONMAP0(vsubhn_v),
5494   NEONMAP0(vtrn_v),
5495   NEONMAP0(vtrnq_v),
5496   NEONMAP0(vtst_v),
5497   NEONMAP0(vtstq_v),
5498   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5499   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5500   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5501   NEONMAP0(vuzp_v),
5502   NEONMAP0(vuzpq_v),
5503   NEONMAP0(vzip_v),
5504   NEONMAP0(vzipq_v)
5505 };
5506 
5507 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5508   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5509   NEONMAP0(splat_lane_v),
5510   NEONMAP0(splat_laneq_v),
5511   NEONMAP0(splatq_lane_v),
5512   NEONMAP0(splatq_laneq_v),
5513   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5514   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5515   NEONMAP0(vaddhn_v),
5516   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5517   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5518   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5519   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5520   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5521   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5522   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5523   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5524   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5525   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5526   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5527   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5528   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5529   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5530   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5531   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5532   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5533   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5534   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5535   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5536   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5537   NEONMAP0(vceqz_v),
5538   NEONMAP0(vceqzq_v),
5539   NEONMAP0(vcgez_v),
5540   NEONMAP0(vcgezq_v),
5541   NEONMAP0(vcgtz_v),
5542   NEONMAP0(vcgtzq_v),
5543   NEONMAP0(vclez_v),
5544   NEONMAP0(vclezq_v),
5545   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5546   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5547   NEONMAP0(vcltz_v),
5548   NEONMAP0(vcltzq_v),
5549   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5550   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5551   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5552   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5553   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5554   NEONMAP0(vcvt_f16_v),
5555   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5556   NEONMAP0(vcvt_f32_v),
5557   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5558   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5559   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5560   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5561   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5562   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5563   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5564   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5565   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5566   NEONMAP0(vcvtq_f16_v),
5567   NEONMAP0(vcvtq_f32_v),
5568   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5569   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5570   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5571   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5572   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5573   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5574   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5575   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5576   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5577   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5578   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5579   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5580   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5581   NEONMAP0(vext_v),
5582   NEONMAP0(vextq_v),
5583   NEONMAP0(vfma_v),
5584   NEONMAP0(vfmaq_v),
5585   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5586   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5587   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5588   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5589   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5590   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5591   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5592   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5593   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5594   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5595   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5596   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5597   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5598   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5599   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5600   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5601   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5602   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5603   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5604   NEONMAP0(vmovl_v),
5605   NEONMAP0(vmovn_v),
5606   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5607   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5608   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5609   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5610   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5611   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5612   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5613   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5614   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5615   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5616   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5617   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5618   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5619   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5620   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5621   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5622   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5623   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5624   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5625   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5626   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5627   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5628   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5629   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5630   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5631   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5632   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5633   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5634   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5635   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5636   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5637   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5638   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5639   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5640   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5641   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5642   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5643   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5644   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5645   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5646   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5647   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5648   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5649   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5650   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5651   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5652   NEONMAP0(vrndi_v),
5653   NEONMAP0(vrndiq_v),
5654   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5655   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5656   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5657   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5658   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5659   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5660   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5661   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5662   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5663   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5664   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5665   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5666   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5667   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5668   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5669   NEONMAP0(vshl_n_v),
5670   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5671   NEONMAP0(vshll_n_v),
5672   NEONMAP0(vshlq_n_v),
5673   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5674   NEONMAP0(vshr_n_v),
5675   NEONMAP0(vshrn_n_v),
5676   NEONMAP0(vshrq_n_v),
5677   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5678   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5679   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5680   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5681   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5682   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5683   NEONMAP0(vsubhn_v),
5684   NEONMAP0(vtst_v),
5685   NEONMAP0(vtstq_v),
5686   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5687   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5688   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5689 };
5690 
5691 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5692   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5693   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5694   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5695   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5696   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5697   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5698   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5699   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5700   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5701   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5702   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5703   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5704   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5705   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5706   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5707   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5708   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5709   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5710   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5711   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5712   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5713   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5714   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5715   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5716   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5717   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5718   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5719   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5720   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5721   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5722   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5723   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5724   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5725   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5726   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
5727   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5728   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5729   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5730   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5731   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5732   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5733   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5734   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5735   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5736   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5737   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5738   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5739   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5740   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5741   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5742   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5743   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5744   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5745   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
5746   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5747   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5748   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5749   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5750   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5751   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5752   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5753   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5754   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5755   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5756   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5757   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5758   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5759   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5760   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5761   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5762   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5763   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5764   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5765   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5766   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
5767   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
5768   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
5769   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5770   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5771   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5772   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5773   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5774   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5775   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5776   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5777   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5778   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5779   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5780   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
5781   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5782   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
5783   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5784   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5785   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
5786   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
5787   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5788   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5789   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
5790   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
5791   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
5792   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
5793   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
5794   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
5795   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
5796   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
5797   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5798   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5799   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5800   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5801   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
5802   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5803   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5804   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5805   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
5806   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5807   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
5808   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
5809   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
5810   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5811   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5812   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
5813   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
5814   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5815   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5816   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
5817   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5818   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5819   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5820   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5821   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5822   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5823   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5824   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5825   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5826   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5827   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5828   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5829   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5830   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5831   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5832   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5833   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5834   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5835   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5836   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5837   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5838   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5839   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5840   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5841   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5842   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5843   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5844   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5845   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5846   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5847   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5848   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5849   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5850   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5851   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5852   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5853   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5854   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5855   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5856   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5857   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5858   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5859   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5860   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5861   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5862   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5863   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5864   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5865   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5866   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5867   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5868   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5869   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5870   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5871   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5872   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5873   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5874   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5875   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5876   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5877   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5878   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5879   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5880   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5881   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5882   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5883   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5884   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5885   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5886   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5887   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5888   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5889   // FP16 scalar intrinisics go here.
5890   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5891   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5892   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5893   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5894   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5895   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5896   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5897   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5898   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5899   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5900   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5901   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5902   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5903   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5904   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5905   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5906   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5907   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5908   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5909   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5910   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5911   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5912   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5913   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5914   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5915   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5916   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5917   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5918   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5919   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5920   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5921   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5922   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5923   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5924 };
5925 
5926 #undef NEONMAP0
5927 #undef NEONMAP1
5928 #undef NEONMAP2
5929 
5930 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
5931   {                                                                            \
5932     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
5933         TypeModifier                                                           \
5934   }
5935 
5936 #define SVEMAP2(NameBase, TypeModifier)                                        \
5937   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
5938 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
5939 #define GET_SVE_LLVM_INTRINSIC_MAP
5940 #include "clang/Basic/arm_sve_builtin_cg.inc"
5941 #undef GET_SVE_LLVM_INTRINSIC_MAP
5942 };
5943 
5944 #undef SVEMAP1
5945 #undef SVEMAP2
5946 
5947 static bool NEONSIMDIntrinsicsProvenSorted = false;
5948 
5949 static bool AArch64SIMDIntrinsicsProvenSorted = false;
5950 static bool AArch64SISDIntrinsicsProvenSorted = false;
5951 static bool AArch64SVEIntrinsicsProvenSorted = false;
5952 
5953 static const ARMVectorIntrinsicInfo *
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)5954 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
5955                             unsigned BuiltinID, bool &MapProvenSorted) {
5956 
5957 #ifndef NDEBUG
5958   if (!MapProvenSorted) {
5959     assert(llvm::is_sorted(IntrinsicMap));
5960     MapProvenSorted = true;
5961   }
5962 #endif
5963 
5964   const ARMVectorIntrinsicInfo *Builtin =
5965       llvm::lower_bound(IntrinsicMap, BuiltinID);
5966 
5967   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5968     return Builtin;
5969 
5970   return nullptr;
5971 }
5972 
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)5973 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5974                                                    unsigned Modifier,
5975                                                    llvm::Type *ArgType,
5976                                                    const CallExpr *E) {
5977   int VectorSize = 0;
5978   if (Modifier & Use64BitVectors)
5979     VectorSize = 64;
5980   else if (Modifier & Use128BitVectors)
5981     VectorSize = 128;
5982 
5983   // Return type.
5984   SmallVector<llvm::Type *, 3> Tys;
5985   if (Modifier & AddRetType) {
5986     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5987     if (Modifier & VectorizeRetType)
5988       Ty = llvm::FixedVectorType::get(
5989           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5990 
5991     Tys.push_back(Ty);
5992   }
5993 
5994   // Arguments.
5995   if (Modifier & VectorizeArgTypes) {
5996     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5997     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
5998   }
5999 
6000   if (Modifier & (Add1ArgType | Add2ArgTypes))
6001     Tys.push_back(ArgType);
6002 
6003   if (Modifier & Add2ArgTypes)
6004     Tys.push_back(ArgType);
6005 
6006   if (Modifier & InventFloatType)
6007     Tys.push_back(FloatTy);
6008 
6009   return CGM.getIntrinsic(IntrinsicID, Tys);
6010 }
6011 
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const ARMVectorIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)6012 static Value *EmitCommonNeonSISDBuiltinExpr(
6013     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6014     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6015   unsigned BuiltinID = SISDInfo.BuiltinID;
6016   unsigned int Int = SISDInfo.LLVMIntrinsic;
6017   unsigned Modifier = SISDInfo.TypeModifier;
6018   const char *s = SISDInfo.NameHint;
6019 
6020   switch (BuiltinID) {
6021   case NEON::BI__builtin_neon_vcled_s64:
6022   case NEON::BI__builtin_neon_vcled_u64:
6023   case NEON::BI__builtin_neon_vcles_f32:
6024   case NEON::BI__builtin_neon_vcled_f64:
6025   case NEON::BI__builtin_neon_vcltd_s64:
6026   case NEON::BI__builtin_neon_vcltd_u64:
6027   case NEON::BI__builtin_neon_vclts_f32:
6028   case NEON::BI__builtin_neon_vcltd_f64:
6029   case NEON::BI__builtin_neon_vcales_f32:
6030   case NEON::BI__builtin_neon_vcaled_f64:
6031   case NEON::BI__builtin_neon_vcalts_f32:
6032   case NEON::BI__builtin_neon_vcaltd_f64:
6033     // Only one direction of comparisons actually exist, cmle is actually a cmge
6034     // with swapped operands. The table gives us the right intrinsic but we
6035     // still need to do the swap.
6036     std::swap(Ops[0], Ops[1]);
6037     break;
6038   }
6039 
6040   assert(Int && "Generic code assumes a valid intrinsic");
6041 
6042   // Determine the type(s) of this overloaded AArch64 intrinsic.
6043   const Expr *Arg = E->getArg(0);
6044   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6045   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6046 
6047   int j = 0;
6048   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6049   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6050        ai != ae; ++ai, ++j) {
6051     llvm::Type *ArgTy = ai->getType();
6052     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6053              ArgTy->getPrimitiveSizeInBits())
6054       continue;
6055 
6056     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6057     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6058     // it before inserting.
6059     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6060         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6061     Ops[j] =
6062         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6063   }
6064 
6065   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6066   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6067   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6068       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6069     return CGF.Builder.CreateExtractElement(Result, C0);
6070 
6071   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6072 }
6073 
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,Address PtrOp0,Address PtrOp1,llvm::Triple::ArchType Arch)6074 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6075     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6076     const char *NameHint, unsigned Modifier, const CallExpr *E,
6077     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6078     llvm::Triple::ArchType Arch) {
6079   // Get the last argument, which specifies the vector type.
6080   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6081   Optional<llvm::APSInt> NeonTypeConst =
6082       Arg->getIntegerConstantExpr(getContext());
6083   if (!NeonTypeConst)
6084     return nullptr;
6085 
6086   // Determine the type of this overloaded NEON intrinsic.
6087   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6088   bool Usgn = Type.isUnsigned();
6089   bool Quad = Type.isQuad();
6090   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6091   const bool AllowBFloatArgsAndRet =
6092       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6093 
6094   llvm::FixedVectorType *VTy =
6095       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6096   llvm::Type *Ty = VTy;
6097   if (!Ty)
6098     return nullptr;
6099 
6100   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6101     return Builder.getInt32(addr.getAlignment().getQuantity());
6102   };
6103 
6104   unsigned Int = LLVMIntrinsic;
6105   if ((Modifier & UnsignedAlts) && !Usgn)
6106     Int = AltLLVMIntrinsic;
6107 
6108   switch (BuiltinID) {
6109   default: break;
6110   case NEON::BI__builtin_neon_splat_lane_v:
6111   case NEON::BI__builtin_neon_splat_laneq_v:
6112   case NEON::BI__builtin_neon_splatq_lane_v:
6113   case NEON::BI__builtin_neon_splatq_laneq_v: {
6114     auto NumElements = VTy->getElementCount();
6115     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6116       NumElements = NumElements * 2;
6117     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6118       NumElements = NumElements.divideCoefficientBy(2);
6119 
6120     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6121     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6122   }
6123   case NEON::BI__builtin_neon_vpadd_v:
6124   case NEON::BI__builtin_neon_vpaddq_v:
6125     // We don't allow fp/int overloading of intrinsics.
6126     if (VTy->getElementType()->isFloatingPointTy() &&
6127         Int == Intrinsic::aarch64_neon_addp)
6128       Int = Intrinsic::aarch64_neon_faddp;
6129     break;
6130   case NEON::BI__builtin_neon_vabs_v:
6131   case NEON::BI__builtin_neon_vabsq_v:
6132     if (VTy->getElementType()->isFloatingPointTy())
6133       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6134     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6135   case NEON::BI__builtin_neon_vaddhn_v: {
6136     llvm::FixedVectorType *SrcTy =
6137         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6138 
6139     // %sum = add <4 x i32> %lhs, %rhs
6140     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6141     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6142     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6143 
6144     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6145     Constant *ShiftAmt =
6146         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6147     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6148 
6149     // %res = trunc <4 x i32> %high to <4 x i16>
6150     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6151   }
6152   case NEON::BI__builtin_neon_vcale_v:
6153   case NEON::BI__builtin_neon_vcaleq_v:
6154   case NEON::BI__builtin_neon_vcalt_v:
6155   case NEON::BI__builtin_neon_vcaltq_v:
6156     std::swap(Ops[0], Ops[1]);
6157     LLVM_FALLTHROUGH;
6158   case NEON::BI__builtin_neon_vcage_v:
6159   case NEON::BI__builtin_neon_vcageq_v:
6160   case NEON::BI__builtin_neon_vcagt_v:
6161   case NEON::BI__builtin_neon_vcagtq_v: {
6162     llvm::Type *Ty;
6163     switch (VTy->getScalarSizeInBits()) {
6164     default: llvm_unreachable("unexpected type");
6165     case 32:
6166       Ty = FloatTy;
6167       break;
6168     case 64:
6169       Ty = DoubleTy;
6170       break;
6171     case 16:
6172       Ty = HalfTy;
6173       break;
6174     }
6175     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6176     llvm::Type *Tys[] = { VTy, VecFlt };
6177     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6178     return EmitNeonCall(F, Ops, NameHint);
6179   }
6180   case NEON::BI__builtin_neon_vceqz_v:
6181   case NEON::BI__builtin_neon_vceqzq_v:
6182     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6183                                          ICmpInst::ICMP_EQ, "vceqz");
6184   case NEON::BI__builtin_neon_vcgez_v:
6185   case NEON::BI__builtin_neon_vcgezq_v:
6186     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6187                                          ICmpInst::ICMP_SGE, "vcgez");
6188   case NEON::BI__builtin_neon_vclez_v:
6189   case NEON::BI__builtin_neon_vclezq_v:
6190     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6191                                          ICmpInst::ICMP_SLE, "vclez");
6192   case NEON::BI__builtin_neon_vcgtz_v:
6193   case NEON::BI__builtin_neon_vcgtzq_v:
6194     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6195                                          ICmpInst::ICMP_SGT, "vcgtz");
6196   case NEON::BI__builtin_neon_vcltz_v:
6197   case NEON::BI__builtin_neon_vcltzq_v:
6198     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6199                                          ICmpInst::ICMP_SLT, "vcltz");
6200   case NEON::BI__builtin_neon_vclz_v:
6201   case NEON::BI__builtin_neon_vclzq_v:
6202     // We generate target-independent intrinsic, which needs a second argument
6203     // for whether or not clz of zero is undefined; on ARM it isn't.
6204     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6205     break;
6206   case NEON::BI__builtin_neon_vcvt_f32_v:
6207   case NEON::BI__builtin_neon_vcvtq_f32_v:
6208     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6209     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6210                      HasLegalHalfType);
6211     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6212                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6213   case NEON::BI__builtin_neon_vcvt_f16_v:
6214   case NEON::BI__builtin_neon_vcvtq_f16_v:
6215     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6216     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6217                      HasLegalHalfType);
6218     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6219                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6220   case NEON::BI__builtin_neon_vcvt_n_f16_v:
6221   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6222   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6223   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6224   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6225   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6226     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6227     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6228     Function *F = CGM.getIntrinsic(Int, Tys);
6229     return EmitNeonCall(F, Ops, "vcvt_n");
6230   }
6231   case NEON::BI__builtin_neon_vcvt_n_s16_v:
6232   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6233   case NEON::BI__builtin_neon_vcvt_n_u16_v:
6234   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6235   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6236   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6237   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6238   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6239   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6240   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6241   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6242   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6243     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6244     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6245     return EmitNeonCall(F, Ops, "vcvt_n");
6246   }
6247   case NEON::BI__builtin_neon_vcvt_s32_v:
6248   case NEON::BI__builtin_neon_vcvt_u32_v:
6249   case NEON::BI__builtin_neon_vcvt_s64_v:
6250   case NEON::BI__builtin_neon_vcvt_u64_v:
6251   case NEON::BI__builtin_neon_vcvt_s16_v:
6252   case NEON::BI__builtin_neon_vcvt_u16_v:
6253   case NEON::BI__builtin_neon_vcvtq_s32_v:
6254   case NEON::BI__builtin_neon_vcvtq_u32_v:
6255   case NEON::BI__builtin_neon_vcvtq_s64_v:
6256   case NEON::BI__builtin_neon_vcvtq_u64_v:
6257   case NEON::BI__builtin_neon_vcvtq_s16_v:
6258   case NEON::BI__builtin_neon_vcvtq_u16_v: {
6259     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6260     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6261                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6262   }
6263   case NEON::BI__builtin_neon_vcvta_s16_v:
6264   case NEON::BI__builtin_neon_vcvta_s32_v:
6265   case NEON::BI__builtin_neon_vcvta_s64_v:
6266   case NEON::BI__builtin_neon_vcvta_u16_v:
6267   case NEON::BI__builtin_neon_vcvta_u32_v:
6268   case NEON::BI__builtin_neon_vcvta_u64_v:
6269   case NEON::BI__builtin_neon_vcvtaq_s16_v:
6270   case NEON::BI__builtin_neon_vcvtaq_s32_v:
6271   case NEON::BI__builtin_neon_vcvtaq_s64_v:
6272   case NEON::BI__builtin_neon_vcvtaq_u16_v:
6273   case NEON::BI__builtin_neon_vcvtaq_u32_v:
6274   case NEON::BI__builtin_neon_vcvtaq_u64_v:
6275   case NEON::BI__builtin_neon_vcvtn_s16_v:
6276   case NEON::BI__builtin_neon_vcvtn_s32_v:
6277   case NEON::BI__builtin_neon_vcvtn_s64_v:
6278   case NEON::BI__builtin_neon_vcvtn_u16_v:
6279   case NEON::BI__builtin_neon_vcvtn_u32_v:
6280   case NEON::BI__builtin_neon_vcvtn_u64_v:
6281   case NEON::BI__builtin_neon_vcvtnq_s16_v:
6282   case NEON::BI__builtin_neon_vcvtnq_s32_v:
6283   case NEON::BI__builtin_neon_vcvtnq_s64_v:
6284   case NEON::BI__builtin_neon_vcvtnq_u16_v:
6285   case NEON::BI__builtin_neon_vcvtnq_u32_v:
6286   case NEON::BI__builtin_neon_vcvtnq_u64_v:
6287   case NEON::BI__builtin_neon_vcvtp_s16_v:
6288   case NEON::BI__builtin_neon_vcvtp_s32_v:
6289   case NEON::BI__builtin_neon_vcvtp_s64_v:
6290   case NEON::BI__builtin_neon_vcvtp_u16_v:
6291   case NEON::BI__builtin_neon_vcvtp_u32_v:
6292   case NEON::BI__builtin_neon_vcvtp_u64_v:
6293   case NEON::BI__builtin_neon_vcvtpq_s16_v:
6294   case NEON::BI__builtin_neon_vcvtpq_s32_v:
6295   case NEON::BI__builtin_neon_vcvtpq_s64_v:
6296   case NEON::BI__builtin_neon_vcvtpq_u16_v:
6297   case NEON::BI__builtin_neon_vcvtpq_u32_v:
6298   case NEON::BI__builtin_neon_vcvtpq_u64_v:
6299   case NEON::BI__builtin_neon_vcvtm_s16_v:
6300   case NEON::BI__builtin_neon_vcvtm_s32_v:
6301   case NEON::BI__builtin_neon_vcvtm_s64_v:
6302   case NEON::BI__builtin_neon_vcvtm_u16_v:
6303   case NEON::BI__builtin_neon_vcvtm_u32_v:
6304   case NEON::BI__builtin_neon_vcvtm_u64_v:
6305   case NEON::BI__builtin_neon_vcvtmq_s16_v:
6306   case NEON::BI__builtin_neon_vcvtmq_s32_v:
6307   case NEON::BI__builtin_neon_vcvtmq_s64_v:
6308   case NEON::BI__builtin_neon_vcvtmq_u16_v:
6309   case NEON::BI__builtin_neon_vcvtmq_u32_v:
6310   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6311     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6312     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6313   }
6314   case NEON::BI__builtin_neon_vcvtx_f32_v: {
6315     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6316     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6317 
6318   }
6319   case NEON::BI__builtin_neon_vext_v:
6320   case NEON::BI__builtin_neon_vextq_v: {
6321     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6322     SmallVector<int, 16> Indices;
6323     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6324       Indices.push_back(i+CV);
6325 
6326     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6327     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6328     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6329   }
6330   case NEON::BI__builtin_neon_vfma_v:
6331   case NEON::BI__builtin_neon_vfmaq_v: {
6332     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6333     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6334     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6335 
6336     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6337     return emitCallMaybeConstrainedFPBuiltin(
6338         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6339         {Ops[1], Ops[2], Ops[0]});
6340   }
6341   case NEON::BI__builtin_neon_vld1_v:
6342   case NEON::BI__builtin_neon_vld1q_v: {
6343     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6344     Ops.push_back(getAlignmentValue32(PtrOp0));
6345     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6346   }
6347   case NEON::BI__builtin_neon_vld1_x2_v:
6348   case NEON::BI__builtin_neon_vld1q_x2_v:
6349   case NEON::BI__builtin_neon_vld1_x3_v:
6350   case NEON::BI__builtin_neon_vld1q_x3_v:
6351   case NEON::BI__builtin_neon_vld1_x4_v:
6352   case NEON::BI__builtin_neon_vld1q_x4_v: {
6353     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6354     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6355     llvm::Type *Tys[2] = { VTy, PTy };
6356     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6357     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6358     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6359     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6360     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6361   }
6362   case NEON::BI__builtin_neon_vld2_v:
6363   case NEON::BI__builtin_neon_vld2q_v:
6364   case NEON::BI__builtin_neon_vld3_v:
6365   case NEON::BI__builtin_neon_vld3q_v:
6366   case NEON::BI__builtin_neon_vld4_v:
6367   case NEON::BI__builtin_neon_vld4q_v:
6368   case NEON::BI__builtin_neon_vld2_dup_v:
6369   case NEON::BI__builtin_neon_vld2q_dup_v:
6370   case NEON::BI__builtin_neon_vld3_dup_v:
6371   case NEON::BI__builtin_neon_vld3q_dup_v:
6372   case NEON::BI__builtin_neon_vld4_dup_v:
6373   case NEON::BI__builtin_neon_vld4q_dup_v: {
6374     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6375     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6376     Value *Align = getAlignmentValue32(PtrOp1);
6377     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6378     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6379     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6380     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6381   }
6382   case NEON::BI__builtin_neon_vld1_dup_v:
6383   case NEON::BI__builtin_neon_vld1q_dup_v: {
6384     Value *V = UndefValue::get(Ty);
6385     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6386     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6387     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6388     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6389     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6390     return EmitNeonSplat(Ops[0], CI);
6391   }
6392   case NEON::BI__builtin_neon_vld2_lane_v:
6393   case NEON::BI__builtin_neon_vld2q_lane_v:
6394   case NEON::BI__builtin_neon_vld3_lane_v:
6395   case NEON::BI__builtin_neon_vld3q_lane_v:
6396   case NEON::BI__builtin_neon_vld4_lane_v:
6397   case NEON::BI__builtin_neon_vld4q_lane_v: {
6398     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6399     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6400     for (unsigned I = 2; I < Ops.size() - 1; ++I)
6401       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6402     Ops.push_back(getAlignmentValue32(PtrOp1));
6403     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6404     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6405     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6406     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6407   }
6408   case NEON::BI__builtin_neon_vmovl_v: {
6409     llvm::FixedVectorType *DTy =
6410         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6411     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6412     if (Usgn)
6413       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6414     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6415   }
6416   case NEON::BI__builtin_neon_vmovn_v: {
6417     llvm::FixedVectorType *QTy =
6418         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6419     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6420     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6421   }
6422   case NEON::BI__builtin_neon_vmull_v:
6423     // FIXME: the integer vmull operations could be emitted in terms of pure
6424     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6425     // hoisting the exts outside loops. Until global ISel comes along that can
6426     // see through such movement this leads to bad CodeGen. So we need an
6427     // intrinsic for now.
6428     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6429     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6430     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6431   case NEON::BI__builtin_neon_vpadal_v:
6432   case NEON::BI__builtin_neon_vpadalq_v: {
6433     // The source operand type has twice as many elements of half the size.
6434     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6435     llvm::Type *EltTy =
6436       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6437     auto *NarrowTy =
6438         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6439     llvm::Type *Tys[2] = { Ty, NarrowTy };
6440     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6441   }
6442   case NEON::BI__builtin_neon_vpaddl_v:
6443   case NEON::BI__builtin_neon_vpaddlq_v: {
6444     // The source operand type has twice as many elements of half the size.
6445     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6446     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6447     auto *NarrowTy =
6448         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6449     llvm::Type *Tys[2] = { Ty, NarrowTy };
6450     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6451   }
6452   case NEON::BI__builtin_neon_vqdmlal_v:
6453   case NEON::BI__builtin_neon_vqdmlsl_v: {
6454     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6455     Ops[1] =
6456         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6457     Ops.resize(2);
6458     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6459   }
6460   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6461   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6462   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6463   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6464     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6465     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6466         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6467       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6468                                        RTy->getNumElements() * 2);
6469     llvm::Type *Tys[2] = {
6470         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6471                                              /*isQuad*/ false))};
6472     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6473   }
6474   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6475   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6476   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6477   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6478     llvm::Type *Tys[2] = {
6479         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6480                                             /*isQuad*/ true))};
6481     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6482   }
6483   case NEON::BI__builtin_neon_vqshl_n_v:
6484   case NEON::BI__builtin_neon_vqshlq_n_v:
6485     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6486                         1, false);
6487   case NEON::BI__builtin_neon_vqshlu_n_v:
6488   case NEON::BI__builtin_neon_vqshluq_n_v:
6489     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6490                         1, false);
6491   case NEON::BI__builtin_neon_vrecpe_v:
6492   case NEON::BI__builtin_neon_vrecpeq_v:
6493   case NEON::BI__builtin_neon_vrsqrte_v:
6494   case NEON::BI__builtin_neon_vrsqrteq_v:
6495     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6496     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6497   case NEON::BI__builtin_neon_vrndi_v:
6498   case NEON::BI__builtin_neon_vrndiq_v:
6499     Int = Builder.getIsFPConstrained()
6500               ? Intrinsic::experimental_constrained_nearbyint
6501               : Intrinsic::nearbyint;
6502     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6503   case NEON::BI__builtin_neon_vrshr_n_v:
6504   case NEON::BI__builtin_neon_vrshrq_n_v:
6505     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6506                         1, true);
6507   case NEON::BI__builtin_neon_vshl_n_v:
6508   case NEON::BI__builtin_neon_vshlq_n_v:
6509     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6510     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6511                              "vshl_n");
6512   case NEON::BI__builtin_neon_vshll_n_v: {
6513     llvm::FixedVectorType *SrcTy =
6514         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6515     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6516     if (Usgn)
6517       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6518     else
6519       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6520     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6521     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6522   }
6523   case NEON::BI__builtin_neon_vshrn_n_v: {
6524     llvm::FixedVectorType *SrcTy =
6525         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6526     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6527     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6528     if (Usgn)
6529       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6530     else
6531       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6532     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6533   }
6534   case NEON::BI__builtin_neon_vshr_n_v:
6535   case NEON::BI__builtin_neon_vshrq_n_v:
6536     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6537   case NEON::BI__builtin_neon_vst1_v:
6538   case NEON::BI__builtin_neon_vst1q_v:
6539   case NEON::BI__builtin_neon_vst2_v:
6540   case NEON::BI__builtin_neon_vst2q_v:
6541   case NEON::BI__builtin_neon_vst3_v:
6542   case NEON::BI__builtin_neon_vst3q_v:
6543   case NEON::BI__builtin_neon_vst4_v:
6544   case NEON::BI__builtin_neon_vst4q_v:
6545   case NEON::BI__builtin_neon_vst2_lane_v:
6546   case NEON::BI__builtin_neon_vst2q_lane_v:
6547   case NEON::BI__builtin_neon_vst3_lane_v:
6548   case NEON::BI__builtin_neon_vst3q_lane_v:
6549   case NEON::BI__builtin_neon_vst4_lane_v:
6550   case NEON::BI__builtin_neon_vst4q_lane_v: {
6551     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6552     Ops.push_back(getAlignmentValue32(PtrOp0));
6553     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6554   }
6555   case NEON::BI__builtin_neon_vst1_x2_v:
6556   case NEON::BI__builtin_neon_vst1q_x2_v:
6557   case NEON::BI__builtin_neon_vst1_x3_v:
6558   case NEON::BI__builtin_neon_vst1q_x3_v:
6559   case NEON::BI__builtin_neon_vst1_x4_v:
6560   case NEON::BI__builtin_neon_vst1q_x4_v: {
6561     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6562     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6563     // in AArch64 it comes last. We may want to stick to one or another.
6564     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6565         Arch == llvm::Triple::aarch64_32) {
6566       llvm::Type *Tys[2] = { VTy, PTy };
6567       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6568       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6569     }
6570     llvm::Type *Tys[2] = { PTy, VTy };
6571     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6572   }
6573   case NEON::BI__builtin_neon_vsubhn_v: {
6574     llvm::FixedVectorType *SrcTy =
6575         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6576 
6577     // %sum = add <4 x i32> %lhs, %rhs
6578     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6579     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6580     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6581 
6582     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6583     Constant *ShiftAmt =
6584         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6585     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6586 
6587     // %res = trunc <4 x i32> %high to <4 x i16>
6588     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6589   }
6590   case NEON::BI__builtin_neon_vtrn_v:
6591   case NEON::BI__builtin_neon_vtrnq_v: {
6592     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6593     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6594     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6595     Value *SV = nullptr;
6596 
6597     for (unsigned vi = 0; vi != 2; ++vi) {
6598       SmallVector<int, 16> Indices;
6599       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6600         Indices.push_back(i+vi);
6601         Indices.push_back(i+e+vi);
6602       }
6603       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6604       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6605       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6606     }
6607     return SV;
6608   }
6609   case NEON::BI__builtin_neon_vtst_v:
6610   case NEON::BI__builtin_neon_vtstq_v: {
6611     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6612     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6613     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6614     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6615                                 ConstantAggregateZero::get(Ty));
6616     return Builder.CreateSExt(Ops[0], Ty, "vtst");
6617   }
6618   case NEON::BI__builtin_neon_vuzp_v:
6619   case NEON::BI__builtin_neon_vuzpq_v: {
6620     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6621     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6622     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6623     Value *SV = nullptr;
6624 
6625     for (unsigned vi = 0; vi != 2; ++vi) {
6626       SmallVector<int, 16> Indices;
6627       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6628         Indices.push_back(2*i+vi);
6629 
6630       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6631       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6632       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6633     }
6634     return SV;
6635   }
6636   case NEON::BI__builtin_neon_vzip_v:
6637   case NEON::BI__builtin_neon_vzipq_v: {
6638     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6639     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6640     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6641     Value *SV = nullptr;
6642 
6643     for (unsigned vi = 0; vi != 2; ++vi) {
6644       SmallVector<int, 16> Indices;
6645       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6646         Indices.push_back((i + vi*e) >> 1);
6647         Indices.push_back(((i + vi*e) >> 1)+e);
6648       }
6649       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6650       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6651       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6652     }
6653     return SV;
6654   }
6655   case NEON::BI__builtin_neon_vdot_v:
6656   case NEON::BI__builtin_neon_vdotq_v: {
6657     auto *InputTy =
6658         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6659     llvm::Type *Tys[2] = { Ty, InputTy };
6660     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6661     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6662   }
6663   case NEON::BI__builtin_neon_vfmlal_low_v:
6664   case NEON::BI__builtin_neon_vfmlalq_low_v: {
6665     auto *InputTy =
6666         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6667     llvm::Type *Tys[2] = { Ty, InputTy };
6668     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6669   }
6670   case NEON::BI__builtin_neon_vfmlsl_low_v:
6671   case NEON::BI__builtin_neon_vfmlslq_low_v: {
6672     auto *InputTy =
6673         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6674     llvm::Type *Tys[2] = { Ty, InputTy };
6675     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6676   }
6677   case NEON::BI__builtin_neon_vfmlal_high_v:
6678   case NEON::BI__builtin_neon_vfmlalq_high_v: {
6679     auto *InputTy =
6680         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6681     llvm::Type *Tys[2] = { Ty, InputTy };
6682     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6683   }
6684   case NEON::BI__builtin_neon_vfmlsl_high_v:
6685   case NEON::BI__builtin_neon_vfmlslq_high_v: {
6686     auto *InputTy =
6687         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6688     llvm::Type *Tys[2] = { Ty, InputTy };
6689     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
6690   }
6691   case NEON::BI__builtin_neon_vmmlaq_v: {
6692     auto *InputTy =
6693         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6694     llvm::Type *Tys[2] = { Ty, InputTy };
6695     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6696     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
6697   }
6698   case NEON::BI__builtin_neon_vusmmlaq_v: {
6699     auto *InputTy =
6700         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6701     llvm::Type *Tys[2] = { Ty, InputTy };
6702     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
6703   }
6704   case NEON::BI__builtin_neon_vusdot_v:
6705   case NEON::BI__builtin_neon_vusdotq_v: {
6706     auto *InputTy =
6707         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6708     llvm::Type *Tys[2] = { Ty, InputTy };
6709     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
6710   }
6711   case NEON::BI__builtin_neon_vbfdot_v:
6712   case NEON::BI__builtin_neon_vbfdotq_v: {
6713     llvm::Type *InputTy =
6714         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
6715     llvm::Type *Tys[2] = { Ty, InputTy };
6716     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
6717   }
6718   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
6719     llvm::Type *Tys[1] = { Ty };
6720     Function *F = CGM.getIntrinsic(Int, Tys);
6721     return EmitNeonCall(F, Ops, "vcvtfp2bf");
6722   }
6723 
6724   }
6725 
6726   assert(Int && "Expected valid intrinsic number");
6727 
6728   // Determine the type(s) of this overloaded AArch64 intrinsic.
6729   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
6730 
6731   Value *Result = EmitNeonCall(F, Ops, NameHint);
6732   llvm::Type *ResultType = ConvertType(E->getType());
6733   // AArch64 intrinsic one-element vector type cast to
6734   // scalar type expected by the builtin
6735   return Builder.CreateBitCast(Result, ResultType, NameHint);
6736 }
6737 
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)6738 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
6739     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
6740     const CmpInst::Predicate Ip, const Twine &Name) {
6741   llvm::Type *OTy = Op->getType();
6742 
6743   // FIXME: this is utterly horrific. We should not be looking at previous
6744   // codegen context to find out what needs doing. Unfortunately TableGen
6745   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
6746   // (etc).
6747   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
6748     OTy = BI->getOperand(0)->getType();
6749 
6750   Op = Builder.CreateBitCast(Op, OTy);
6751   if (OTy->getScalarType()->isFloatingPointTy()) {
6752     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
6753   } else {
6754     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
6755   }
6756   return Builder.CreateSExt(Op, Ty, Name);
6757 }
6758 
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)6759 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
6760                                  Value *ExtOp, Value *IndexOp,
6761                                  llvm::Type *ResTy, unsigned IntID,
6762                                  const char *Name) {
6763   SmallVector<Value *, 2> TblOps;
6764   if (ExtOp)
6765     TblOps.push_back(ExtOp);
6766 
6767   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
6768   SmallVector<int, 16> Indices;
6769   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
6770   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
6771     Indices.push_back(2*i);
6772     Indices.push_back(2*i+1);
6773   }
6774 
6775   int PairPos = 0, End = Ops.size() - 1;
6776   while (PairPos < End) {
6777     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6778                                                      Ops[PairPos+1], Indices,
6779                                                      Name));
6780     PairPos += 2;
6781   }
6782 
6783   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
6784   // of the 128-bit lookup table with zero.
6785   if (PairPos == End) {
6786     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
6787     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6788                                                      ZeroTbl, Indices, Name));
6789   }
6790 
6791   Function *TblF;
6792   TblOps.push_back(IndexOp);
6793   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
6794 
6795   return CGF.EmitNeonCall(TblF, TblOps, Name);
6796 }
6797 
GetValueForARMHint(unsigned BuiltinID)6798 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
6799   unsigned Value;
6800   switch (BuiltinID) {
6801   default:
6802     return nullptr;
6803   case ARM::BI__builtin_arm_nop:
6804     Value = 0;
6805     break;
6806   case ARM::BI__builtin_arm_yield:
6807   case ARM::BI__yield:
6808     Value = 1;
6809     break;
6810   case ARM::BI__builtin_arm_wfe:
6811   case ARM::BI__wfe:
6812     Value = 2;
6813     break;
6814   case ARM::BI__builtin_arm_wfi:
6815   case ARM::BI__wfi:
6816     Value = 3;
6817     break;
6818   case ARM::BI__builtin_arm_sev:
6819   case ARM::BI__sev:
6820     Value = 4;
6821     break;
6822   case ARM::BI__builtin_arm_sevl:
6823   case ARM::BI__sevl:
6824     Value = 5;
6825     break;
6826   }
6827 
6828   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
6829                             llvm::ConstantInt::get(Int32Ty, Value));
6830 }
6831 
6832 enum SpecialRegisterAccessKind {
6833   NormalRead,
6834   VolatileRead,
6835   Write,
6836 };
6837 
6838 // Generates the IR for the read/write special register builtin,
6839 // ValueType is the type of the value that is to be written or read,
6840 // RegisterType is the type of the register being written to or read from.
EmitSpecialRegisterBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,SpecialRegisterAccessKind AccessKind,StringRef SysReg="")6841 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
6842                                          const CallExpr *E,
6843                                          llvm::Type *RegisterType,
6844                                          llvm::Type *ValueType,
6845                                          SpecialRegisterAccessKind AccessKind,
6846                                          StringRef SysReg = "") {
6847   // write and register intrinsics only support 32 and 64 bit operations.
6848   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
6849           && "Unsupported size for register.");
6850 
6851   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6852   CodeGen::CodeGenModule &CGM = CGF.CGM;
6853   LLVMContext &Context = CGM.getLLVMContext();
6854 
6855   if (SysReg.empty()) {
6856     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
6857     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
6858   }
6859 
6860   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
6861   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6862   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6863 
6864   llvm::Type *Types[] = { RegisterType };
6865 
6866   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
6867   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
6868             && "Can't fit 64-bit value in 32-bit register");
6869 
6870   if (AccessKind != Write) {
6871     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
6872     llvm::Function *F = CGM.getIntrinsic(
6873         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
6874                                    : llvm::Intrinsic::read_register,
6875         Types);
6876     llvm::Value *Call = Builder.CreateCall(F, Metadata);
6877 
6878     if (MixedTypes)
6879       // Read into 64 bit register and then truncate result to 32 bit.
6880       return Builder.CreateTrunc(Call, ValueType);
6881 
6882     if (ValueType->isPointerTy())
6883       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
6884       return Builder.CreateIntToPtr(Call, ValueType);
6885 
6886     return Call;
6887   }
6888 
6889   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
6890   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
6891   if (MixedTypes) {
6892     // Extend 32 bit write value to 64 bit to pass to write.
6893     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
6894     return Builder.CreateCall(F, { Metadata, ArgValue });
6895   }
6896 
6897   if (ValueType->isPointerTy()) {
6898     // Have VoidPtrTy ArgValue but want to return an i32/i64.
6899     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
6900     return Builder.CreateCall(F, { Metadata, ArgValue });
6901   }
6902 
6903   return Builder.CreateCall(F, { Metadata, ArgValue });
6904 }
6905 
6906 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
6907 /// argument that specifies the vector type.
HasExtraNeonArgument(unsigned BuiltinID)6908 static bool HasExtraNeonArgument(unsigned BuiltinID) {
6909   switch (BuiltinID) {
6910   default: break;
6911   case NEON::BI__builtin_neon_vget_lane_i8:
6912   case NEON::BI__builtin_neon_vget_lane_i16:
6913   case NEON::BI__builtin_neon_vget_lane_bf16:
6914   case NEON::BI__builtin_neon_vget_lane_i32:
6915   case NEON::BI__builtin_neon_vget_lane_i64:
6916   case NEON::BI__builtin_neon_vget_lane_f32:
6917   case NEON::BI__builtin_neon_vgetq_lane_i8:
6918   case NEON::BI__builtin_neon_vgetq_lane_i16:
6919   case NEON::BI__builtin_neon_vgetq_lane_bf16:
6920   case NEON::BI__builtin_neon_vgetq_lane_i32:
6921   case NEON::BI__builtin_neon_vgetq_lane_i64:
6922   case NEON::BI__builtin_neon_vgetq_lane_f32:
6923   case NEON::BI__builtin_neon_vduph_lane_bf16:
6924   case NEON::BI__builtin_neon_vduph_laneq_bf16:
6925   case NEON::BI__builtin_neon_vset_lane_i8:
6926   case NEON::BI__builtin_neon_vset_lane_i16:
6927   case NEON::BI__builtin_neon_vset_lane_bf16:
6928   case NEON::BI__builtin_neon_vset_lane_i32:
6929   case NEON::BI__builtin_neon_vset_lane_i64:
6930   case NEON::BI__builtin_neon_vset_lane_f32:
6931   case NEON::BI__builtin_neon_vsetq_lane_i8:
6932   case NEON::BI__builtin_neon_vsetq_lane_i16:
6933   case NEON::BI__builtin_neon_vsetq_lane_bf16:
6934   case NEON::BI__builtin_neon_vsetq_lane_i32:
6935   case NEON::BI__builtin_neon_vsetq_lane_i64:
6936   case NEON::BI__builtin_neon_vsetq_lane_f32:
6937   case NEON::BI__builtin_neon_vsha1h_u32:
6938   case NEON::BI__builtin_neon_vsha1cq_u32:
6939   case NEON::BI__builtin_neon_vsha1pq_u32:
6940   case NEON::BI__builtin_neon_vsha1mq_u32:
6941   case NEON::BI__builtin_neon_vcvth_bf16_f32:
6942   case clang::ARM::BI_MoveToCoprocessor:
6943   case clang::ARM::BI_MoveToCoprocessor2:
6944     return false;
6945   }
6946   return true;
6947 }
6948 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)6949 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6950                                            const CallExpr *E,
6951                                            ReturnValueSlot ReturnValue,
6952                                            llvm::Triple::ArchType Arch) {
6953   if (auto Hint = GetValueForARMHint(BuiltinID))
6954     return Hint;
6955 
6956   if (BuiltinID == ARM::BI__emit) {
6957     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6958     llvm::FunctionType *FTy =
6959         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6960 
6961     Expr::EvalResult Result;
6962     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6963       llvm_unreachable("Sema will ensure that the parameter is constant");
6964 
6965     llvm::APSInt Value = Result.Val.getInt();
6966     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6967 
6968     llvm::InlineAsm *Emit =
6969         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6970                                  /*hasSideEffects=*/true)
6971                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6972                                  /*hasSideEffects=*/true);
6973 
6974     return Builder.CreateCall(Emit);
6975   }
6976 
6977   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6978     Value *Option = EmitScalarExpr(E->getArg(0));
6979     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6980   }
6981 
6982   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6983     Value *Address = EmitScalarExpr(E->getArg(0));
6984     Value *RW      = EmitScalarExpr(E->getArg(1));
6985     Value *IsData  = EmitScalarExpr(E->getArg(2));
6986 
6987     // Locality is not supported on ARM target
6988     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6989 
6990     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6991     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6992   }
6993 
6994   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6995     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6996     return Builder.CreateCall(
6997         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6998   }
6999 
7000   if (BuiltinID == ARM::BI__builtin_arm_cls) {
7001     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7002     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7003   }
7004   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7005     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7006     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7007                               "cls");
7008   }
7009 
7010   if (BuiltinID == ARM::BI__clear_cache) {
7011     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7012     const FunctionDecl *FD = E->getDirectCallee();
7013     Value *Ops[2];
7014     for (unsigned i = 0; i < 2; i++)
7015       Ops[i] = EmitScalarExpr(E->getArg(i));
7016     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7017     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7018     StringRef Name = FD->getName();
7019     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7020   }
7021 
7022   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7023       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7024     Function *F;
7025 
7026     switch (BuiltinID) {
7027     default: llvm_unreachable("unexpected builtin");
7028     case ARM::BI__builtin_arm_mcrr:
7029       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7030       break;
7031     case ARM::BI__builtin_arm_mcrr2:
7032       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7033       break;
7034     }
7035 
7036     // MCRR{2} instruction has 5 operands but
7037     // the intrinsic has 4 because Rt and Rt2
7038     // are represented as a single unsigned 64
7039     // bit integer in the intrinsic definition
7040     // but internally it's represented as 2 32
7041     // bit integers.
7042 
7043     Value *Coproc = EmitScalarExpr(E->getArg(0));
7044     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7045     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7046     Value *CRm = EmitScalarExpr(E->getArg(3));
7047 
7048     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7049     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7050     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7051     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7052 
7053     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7054   }
7055 
7056   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7057       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7058     Function *F;
7059 
7060     switch (BuiltinID) {
7061     default: llvm_unreachable("unexpected builtin");
7062     case ARM::BI__builtin_arm_mrrc:
7063       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7064       break;
7065     case ARM::BI__builtin_arm_mrrc2:
7066       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7067       break;
7068     }
7069 
7070     Value *Coproc = EmitScalarExpr(E->getArg(0));
7071     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7072     Value *CRm  = EmitScalarExpr(E->getArg(2));
7073     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7074 
7075     // Returns an unsigned 64 bit integer, represented
7076     // as two 32 bit integers.
7077 
7078     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7079     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7080     Rt = Builder.CreateZExt(Rt, Int64Ty);
7081     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7082 
7083     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7084     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7085     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7086 
7087     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7088   }
7089 
7090   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7091       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7092         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7093        getContext().getTypeSize(E->getType()) == 64) ||
7094       BuiltinID == ARM::BI__ldrexd) {
7095     Function *F;
7096 
7097     switch (BuiltinID) {
7098     default: llvm_unreachable("unexpected builtin");
7099     case ARM::BI__builtin_arm_ldaex:
7100       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7101       break;
7102     case ARM::BI__builtin_arm_ldrexd:
7103     case ARM::BI__builtin_arm_ldrex:
7104     case ARM::BI__ldrexd:
7105       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7106       break;
7107     }
7108 
7109     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7110     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7111                                     "ldrexd");
7112 
7113     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7114     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7115     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7116     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7117 
7118     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7119     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7120     Val = Builder.CreateOr(Val, Val1);
7121     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7122   }
7123 
7124   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7125       BuiltinID == ARM::BI__builtin_arm_ldaex) {
7126     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7127 
7128     QualType Ty = E->getType();
7129     llvm::Type *RealResTy = ConvertType(Ty);
7130     llvm::Type *PtrTy = llvm::IntegerType::get(
7131         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7132     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7133 
7134     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7135                                        ? Intrinsic::arm_ldaex
7136                                        : Intrinsic::arm_ldrex,
7137                                    PtrTy);
7138     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7139 
7140     if (RealResTy->isPointerTy())
7141       return Builder.CreateIntToPtr(Val, RealResTy);
7142     else {
7143       llvm::Type *IntResTy = llvm::IntegerType::get(
7144           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7145       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7146       return Builder.CreateBitCast(Val, RealResTy);
7147     }
7148   }
7149 
7150   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7151       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7152         BuiltinID == ARM::BI__builtin_arm_strex) &&
7153        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7154     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7155                                        ? Intrinsic::arm_stlexd
7156                                        : Intrinsic::arm_strexd);
7157     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7158 
7159     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7160     Value *Val = EmitScalarExpr(E->getArg(0));
7161     Builder.CreateStore(Val, Tmp);
7162 
7163     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7164     Val = Builder.CreateLoad(LdPtr);
7165 
7166     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7167     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7168     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7169     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7170   }
7171 
7172   if (BuiltinID == ARM::BI__builtin_arm_strex ||
7173       BuiltinID == ARM::BI__builtin_arm_stlex) {
7174     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7175     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7176 
7177     QualType Ty = E->getArg(0)->getType();
7178     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7179                                                  getContext().getTypeSize(Ty));
7180     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7181 
7182     if (StoreVal->getType()->isPointerTy())
7183       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7184     else {
7185       llvm::Type *IntTy = llvm::IntegerType::get(
7186           getLLVMContext(),
7187           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7188       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7189       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7190     }
7191 
7192     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7193                                        ? Intrinsic::arm_stlex
7194                                        : Intrinsic::arm_strex,
7195                                    StoreAddr->getType());
7196     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7197   }
7198 
7199   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7200     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7201     return Builder.CreateCall(F);
7202   }
7203 
7204   // CRC32
7205   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7206   switch (BuiltinID) {
7207   case ARM::BI__builtin_arm_crc32b:
7208     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7209   case ARM::BI__builtin_arm_crc32cb:
7210     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7211   case ARM::BI__builtin_arm_crc32h:
7212     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7213   case ARM::BI__builtin_arm_crc32ch:
7214     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7215   case ARM::BI__builtin_arm_crc32w:
7216   case ARM::BI__builtin_arm_crc32d:
7217     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7218   case ARM::BI__builtin_arm_crc32cw:
7219   case ARM::BI__builtin_arm_crc32cd:
7220     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7221   }
7222 
7223   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7224     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7225     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7226 
7227     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7228     // intrinsics, hence we need different codegen for these cases.
7229     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7230         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7231       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7232       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7233       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7234       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7235 
7236       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7237       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7238       return Builder.CreateCall(F, {Res, Arg1b});
7239     } else {
7240       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7241 
7242       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7243       return Builder.CreateCall(F, {Arg0, Arg1});
7244     }
7245   }
7246 
7247   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7248       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7249       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7250       BuiltinID == ARM::BI__builtin_arm_wsr ||
7251       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7252       BuiltinID == ARM::BI__builtin_arm_wsrp) {
7253 
7254     SpecialRegisterAccessKind AccessKind = Write;
7255     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7256         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7257         BuiltinID == ARM::BI__builtin_arm_rsrp)
7258       AccessKind = VolatileRead;
7259 
7260     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7261                             BuiltinID == ARM::BI__builtin_arm_wsrp;
7262 
7263     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7264                    BuiltinID == ARM::BI__builtin_arm_wsr64;
7265 
7266     llvm::Type *ValueType;
7267     llvm::Type *RegisterType;
7268     if (IsPointerBuiltin) {
7269       ValueType = VoidPtrTy;
7270       RegisterType = Int32Ty;
7271     } else if (Is64Bit) {
7272       ValueType = RegisterType = Int64Ty;
7273     } else {
7274       ValueType = RegisterType = Int32Ty;
7275     }
7276 
7277     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7278                                       AccessKind);
7279   }
7280 
7281   // Handle MSVC intrinsics before argument evaluation to prevent double
7282   // evaluation.
7283   if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7284     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7285 
7286   // Deal with MVE builtins
7287   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7288     return Result;
7289   // Handle CDE builtins
7290   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7291     return Result;
7292 
7293   // Find out if any arguments are required to be integer constant
7294   // expressions.
7295   unsigned ICEArguments = 0;
7296   ASTContext::GetBuiltinTypeError Error;
7297   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7298   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7299 
7300   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7301     return Builder.getInt32(addr.getAlignment().getQuantity());
7302   };
7303 
7304   Address PtrOp0 = Address::invalid();
7305   Address PtrOp1 = Address::invalid();
7306   SmallVector<Value*, 4> Ops;
7307   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7308   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7309   for (unsigned i = 0, e = NumArgs; i != e; i++) {
7310     if (i == 0) {
7311       switch (BuiltinID) {
7312       case NEON::BI__builtin_neon_vld1_v:
7313       case NEON::BI__builtin_neon_vld1q_v:
7314       case NEON::BI__builtin_neon_vld1q_lane_v:
7315       case NEON::BI__builtin_neon_vld1_lane_v:
7316       case NEON::BI__builtin_neon_vld1_dup_v:
7317       case NEON::BI__builtin_neon_vld1q_dup_v:
7318       case NEON::BI__builtin_neon_vst1_v:
7319       case NEON::BI__builtin_neon_vst1q_v:
7320       case NEON::BI__builtin_neon_vst1q_lane_v:
7321       case NEON::BI__builtin_neon_vst1_lane_v:
7322       case NEON::BI__builtin_neon_vst2_v:
7323       case NEON::BI__builtin_neon_vst2q_v:
7324       case NEON::BI__builtin_neon_vst2_lane_v:
7325       case NEON::BI__builtin_neon_vst2q_lane_v:
7326       case NEON::BI__builtin_neon_vst3_v:
7327       case NEON::BI__builtin_neon_vst3q_v:
7328       case NEON::BI__builtin_neon_vst3_lane_v:
7329       case NEON::BI__builtin_neon_vst3q_lane_v:
7330       case NEON::BI__builtin_neon_vst4_v:
7331       case NEON::BI__builtin_neon_vst4q_v:
7332       case NEON::BI__builtin_neon_vst4_lane_v:
7333       case NEON::BI__builtin_neon_vst4q_lane_v:
7334         // Get the alignment for the argument in addition to the value;
7335         // we'll use it later.
7336         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7337         Ops.push_back(PtrOp0.getPointer());
7338         continue;
7339       }
7340     }
7341     if (i == 1) {
7342       switch (BuiltinID) {
7343       case NEON::BI__builtin_neon_vld2_v:
7344       case NEON::BI__builtin_neon_vld2q_v:
7345       case NEON::BI__builtin_neon_vld3_v:
7346       case NEON::BI__builtin_neon_vld3q_v:
7347       case NEON::BI__builtin_neon_vld4_v:
7348       case NEON::BI__builtin_neon_vld4q_v:
7349       case NEON::BI__builtin_neon_vld2_lane_v:
7350       case NEON::BI__builtin_neon_vld2q_lane_v:
7351       case NEON::BI__builtin_neon_vld3_lane_v:
7352       case NEON::BI__builtin_neon_vld3q_lane_v:
7353       case NEON::BI__builtin_neon_vld4_lane_v:
7354       case NEON::BI__builtin_neon_vld4q_lane_v:
7355       case NEON::BI__builtin_neon_vld2_dup_v:
7356       case NEON::BI__builtin_neon_vld2q_dup_v:
7357       case NEON::BI__builtin_neon_vld3_dup_v:
7358       case NEON::BI__builtin_neon_vld3q_dup_v:
7359       case NEON::BI__builtin_neon_vld4_dup_v:
7360       case NEON::BI__builtin_neon_vld4q_dup_v:
7361         // Get the alignment for the argument in addition to the value;
7362         // we'll use it later.
7363         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7364         Ops.push_back(PtrOp1.getPointer());
7365         continue;
7366       }
7367     }
7368 
7369     if ((ICEArguments & (1 << i)) == 0) {
7370       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7371     } else {
7372       // If this is required to be a constant, constant fold it so that we know
7373       // that the generated intrinsic gets a ConstantInt.
7374       Ops.push_back(llvm::ConstantInt::get(
7375           getLLVMContext(),
7376           *E->getArg(i)->getIntegerConstantExpr(getContext())));
7377     }
7378   }
7379 
7380   switch (BuiltinID) {
7381   default: break;
7382 
7383   case NEON::BI__builtin_neon_vget_lane_i8:
7384   case NEON::BI__builtin_neon_vget_lane_i16:
7385   case NEON::BI__builtin_neon_vget_lane_i32:
7386   case NEON::BI__builtin_neon_vget_lane_i64:
7387   case NEON::BI__builtin_neon_vget_lane_bf16:
7388   case NEON::BI__builtin_neon_vget_lane_f32:
7389   case NEON::BI__builtin_neon_vgetq_lane_i8:
7390   case NEON::BI__builtin_neon_vgetq_lane_i16:
7391   case NEON::BI__builtin_neon_vgetq_lane_i32:
7392   case NEON::BI__builtin_neon_vgetq_lane_i64:
7393   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7394   case NEON::BI__builtin_neon_vgetq_lane_f32:
7395   case NEON::BI__builtin_neon_vduph_lane_bf16:
7396   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7397     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7398 
7399   case NEON::BI__builtin_neon_vrndns_f32: {
7400     Value *Arg = EmitScalarExpr(E->getArg(0));
7401     llvm::Type *Tys[] = {Arg->getType()};
7402     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7403     return Builder.CreateCall(F, {Arg}, "vrndn"); }
7404 
7405   case NEON::BI__builtin_neon_vset_lane_i8:
7406   case NEON::BI__builtin_neon_vset_lane_i16:
7407   case NEON::BI__builtin_neon_vset_lane_i32:
7408   case NEON::BI__builtin_neon_vset_lane_i64:
7409   case NEON::BI__builtin_neon_vset_lane_bf16:
7410   case NEON::BI__builtin_neon_vset_lane_f32:
7411   case NEON::BI__builtin_neon_vsetq_lane_i8:
7412   case NEON::BI__builtin_neon_vsetq_lane_i16:
7413   case NEON::BI__builtin_neon_vsetq_lane_i32:
7414   case NEON::BI__builtin_neon_vsetq_lane_i64:
7415   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7416   case NEON::BI__builtin_neon_vsetq_lane_f32:
7417     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7418 
7419   case NEON::BI__builtin_neon_vsha1h_u32:
7420     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7421                         "vsha1h");
7422   case NEON::BI__builtin_neon_vsha1cq_u32:
7423     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7424                         "vsha1h");
7425   case NEON::BI__builtin_neon_vsha1pq_u32:
7426     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7427                         "vsha1h");
7428   case NEON::BI__builtin_neon_vsha1mq_u32:
7429     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7430                         "vsha1h");
7431 
7432   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7433     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7434                         "vcvtbfp2bf");
7435   }
7436 
7437   // The ARM _MoveToCoprocessor builtins put the input register value as
7438   // the first argument, but the LLVM intrinsic expects it as the third one.
7439   case ARM::BI_MoveToCoprocessor:
7440   case ARM::BI_MoveToCoprocessor2: {
7441     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7442                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7443     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7444                                   Ops[3], Ops[4], Ops[5]});
7445   }
7446   }
7447 
7448   // Get the last argument, which specifies the vector type.
7449   assert(HasExtraArg);
7450   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7451   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7452   if (!Result)
7453     return nullptr;
7454 
7455   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7456       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7457     // Determine the overloaded type of this builtin.
7458     llvm::Type *Ty;
7459     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7460       Ty = FloatTy;
7461     else
7462       Ty = DoubleTy;
7463 
7464     // Determine whether this is an unsigned conversion or not.
7465     bool usgn = Result->getZExtValue() == 1;
7466     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7467 
7468     // Call the appropriate intrinsic.
7469     Function *F = CGM.getIntrinsic(Int, Ty);
7470     return Builder.CreateCall(F, Ops, "vcvtr");
7471   }
7472 
7473   // Determine the type of this overloaded NEON intrinsic.
7474   NeonTypeFlags Type = Result->getZExtValue();
7475   bool usgn = Type.isUnsigned();
7476   bool rightShift = false;
7477 
7478   llvm::FixedVectorType *VTy =
7479       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7480                   getTarget().hasBFloat16Type());
7481   llvm::Type *Ty = VTy;
7482   if (!Ty)
7483     return nullptr;
7484 
7485   // Many NEON builtins have identical semantics and uses in ARM and
7486   // AArch64. Emit these in a single function.
7487   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7488   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7489       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7490   if (Builtin)
7491     return EmitCommonNeonBuiltinExpr(
7492         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7493         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7494 
7495   unsigned Int;
7496   switch (BuiltinID) {
7497   default: return nullptr;
7498   case NEON::BI__builtin_neon_vld1q_lane_v:
7499     // Handle 64-bit integer elements as a special case.  Use shuffles of
7500     // one-element vectors to avoid poor code for i64 in the backend.
7501     if (VTy->getElementType()->isIntegerTy(64)) {
7502       // Extract the other lane.
7503       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7504       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7505       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7506       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7507       // Load the value as a one-element vector.
7508       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7509       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7510       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7511       Value *Align = getAlignmentValue32(PtrOp0);
7512       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7513       // Combine them.
7514       int Indices[] = {1 - Lane, Lane};
7515       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7516     }
7517     LLVM_FALLTHROUGH;
7518   case NEON::BI__builtin_neon_vld1_lane_v: {
7519     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7520     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7521     Value *Ld = Builder.CreateLoad(PtrOp0);
7522     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7523   }
7524   case NEON::BI__builtin_neon_vqrshrn_n_v:
7525     Int =
7526       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7527     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7528                         1, true);
7529   case NEON::BI__builtin_neon_vqrshrun_n_v:
7530     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7531                         Ops, "vqrshrun_n", 1, true);
7532   case NEON::BI__builtin_neon_vqshrn_n_v:
7533     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7534     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7535                         1, true);
7536   case NEON::BI__builtin_neon_vqshrun_n_v:
7537     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7538                         Ops, "vqshrun_n", 1, true);
7539   case NEON::BI__builtin_neon_vrecpe_v:
7540   case NEON::BI__builtin_neon_vrecpeq_v:
7541     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7542                         Ops, "vrecpe");
7543   case NEON::BI__builtin_neon_vrshrn_n_v:
7544     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7545                         Ops, "vrshrn_n", 1, true);
7546   case NEON::BI__builtin_neon_vrsra_n_v:
7547   case NEON::BI__builtin_neon_vrsraq_n_v:
7548     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7549     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7550     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7551     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7552     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7553     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7554   case NEON::BI__builtin_neon_vsri_n_v:
7555   case NEON::BI__builtin_neon_vsriq_n_v:
7556     rightShift = true;
7557     LLVM_FALLTHROUGH;
7558   case NEON::BI__builtin_neon_vsli_n_v:
7559   case NEON::BI__builtin_neon_vsliq_n_v:
7560     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7561     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7562                         Ops, "vsli_n");
7563   case NEON::BI__builtin_neon_vsra_n_v:
7564   case NEON::BI__builtin_neon_vsraq_n_v:
7565     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7566     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7567     return Builder.CreateAdd(Ops[0], Ops[1]);
7568   case NEON::BI__builtin_neon_vst1q_lane_v:
7569     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7570     // a one-element vector and avoid poor code for i64 in the backend.
7571     if (VTy->getElementType()->isIntegerTy(64)) {
7572       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7573       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7574       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7575       Ops[2] = getAlignmentValue32(PtrOp0);
7576       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7577       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7578                                                  Tys), Ops);
7579     }
7580     LLVM_FALLTHROUGH;
7581   case NEON::BI__builtin_neon_vst1_lane_v: {
7582     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7583     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7584     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7585     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7586     return St;
7587   }
7588   case NEON::BI__builtin_neon_vtbl1_v:
7589     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7590                         Ops, "vtbl1");
7591   case NEON::BI__builtin_neon_vtbl2_v:
7592     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7593                         Ops, "vtbl2");
7594   case NEON::BI__builtin_neon_vtbl3_v:
7595     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7596                         Ops, "vtbl3");
7597   case NEON::BI__builtin_neon_vtbl4_v:
7598     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7599                         Ops, "vtbl4");
7600   case NEON::BI__builtin_neon_vtbx1_v:
7601     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7602                         Ops, "vtbx1");
7603   case NEON::BI__builtin_neon_vtbx2_v:
7604     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7605                         Ops, "vtbx2");
7606   case NEON::BI__builtin_neon_vtbx3_v:
7607     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7608                         Ops, "vtbx3");
7609   case NEON::BI__builtin_neon_vtbx4_v:
7610     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7611                         Ops, "vtbx4");
7612   }
7613 }
7614 
7615 template<typename Integer>
GetIntegerConstantValue(const Expr * E,ASTContext & Context)7616 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7617   return E->getIntegerConstantExpr(Context)->getExtValue();
7618 }
7619 
SignOrZeroExtend(CGBuilderTy & Builder,llvm::Value * V,llvm::Type * T,bool Unsigned)7620 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7621                                      llvm::Type *T, bool Unsigned) {
7622   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7623   // which finds it convenient to specify signed/unsigned as a boolean flag.
7624   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7625 }
7626 
MVEImmediateShr(CGBuilderTy & Builder,llvm::Value * V,uint32_t Shift,bool Unsigned)7627 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7628                                     uint32_t Shift, bool Unsigned) {
7629   // MVE helper function for integer shift right. This must handle signed vs
7630   // unsigned, and also deal specially with the case where the shift count is
7631   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7632   // undefined behavior, but in MVE it's legal, so we must convert it to code
7633   // that is not undefined in IR.
7634   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7635                           ->getElementType()
7636                           ->getPrimitiveSizeInBits();
7637   if (Shift == LaneBits) {
7638     // An unsigned shift of the full lane size always generates zero, so we can
7639     // simply emit a zero vector. A signed shift of the full lane size does the
7640     // same thing as shifting by one bit fewer.
7641     if (Unsigned)
7642       return llvm::Constant::getNullValue(V->getType());
7643     else
7644       --Shift;
7645   }
7646   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7647 }
7648 
ARMMVEVectorSplat(CGBuilderTy & Builder,llvm::Value * V)7649 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7650   // MVE-specific helper function for a vector splat, which infers the element
7651   // count of the output vector by knowing that MVE vectors are all 128 bits
7652   // wide.
7653   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7654   return Builder.CreateVectorSplat(Elements, V);
7655 }
7656 
ARMMVEVectorReinterpret(CGBuilderTy & Builder,CodeGenFunction * CGF,llvm::Value * V,llvm::Type * DestType)7657 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7658                                             CodeGenFunction *CGF,
7659                                             llvm::Value *V,
7660                                             llvm::Type *DestType) {
7661   // Convert one MVE vector type into another by reinterpreting its in-register
7662   // format.
7663   //
7664   // Little-endian, this is identical to a bitcast (which reinterprets the
7665   // memory format). But big-endian, they're not necessarily the same, because
7666   // the register and memory formats map to each other differently depending on
7667   // the lane size.
7668   //
7669   // We generate a bitcast whenever we can (if we're little-endian, or if the
7670   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7671   // that performs the different kind of reinterpretation.
7672   if (CGF->getTarget().isBigEndian() &&
7673       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7674     return Builder.CreateCall(
7675         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7676                               {DestType, V->getType()}),
7677         V);
7678   } else {
7679     return Builder.CreateBitCast(V, DestType);
7680   }
7681 }
7682 
VectorUnzip(CGBuilderTy & Builder,llvm::Value * V,bool Odd)7683 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7684   // Make a shufflevector that extracts every other element of a vector (evens
7685   // or odds, as desired).
7686   SmallVector<int, 16> Indices;
7687   unsigned InputElements =
7688       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
7689   for (unsigned i = 0; i < InputElements; i += 2)
7690     Indices.push_back(i + Odd);
7691   return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7692                                      Indices);
7693 }
7694 
VectorZip(CGBuilderTy & Builder,llvm::Value * V0,llvm::Value * V1)7695 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
7696                               llvm::Value *V1) {
7697   // Make a shufflevector that interleaves two vectors element by element.
7698   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
7699   SmallVector<int, 16> Indices;
7700   unsigned InputElements =
7701       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
7702   for (unsigned i = 0; i < InputElements; i++) {
7703     Indices.push_back(i);
7704     Indices.push_back(i + InputElements);
7705   }
7706   return Builder.CreateShuffleVector(V0, V1, Indices);
7707 }
7708 
7709 template<unsigned HighBit, unsigned OtherBits>
ARMMVEConstantSplat(CGBuilderTy & Builder,llvm::Type * VT)7710 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
7711   // MVE-specific helper function to make a vector splat of a constant such as
7712   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
7713   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
7714   unsigned LaneBits = T->getPrimitiveSizeInBits();
7715   uint32_t Value = HighBit << (LaneBits - 1);
7716   if (OtherBits)
7717     Value |= (1UL << (LaneBits - 1)) - 1;
7718   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
7719   return ARMMVEVectorSplat(Builder, Lane);
7720 }
7721 
ARMMVEVectorElementReverse(CGBuilderTy & Builder,llvm::Value * V,unsigned ReverseWidth)7722 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
7723                                                llvm::Value *V,
7724                                                unsigned ReverseWidth) {
7725   // MVE-specific helper function which reverses the elements of a
7726   // vector within every (ReverseWidth)-bit collection of lanes.
7727   SmallVector<int, 16> Indices;
7728   unsigned LaneSize = V->getType()->getScalarSizeInBits();
7729   unsigned Elements = 128 / LaneSize;
7730   unsigned Mask = ReverseWidth / LaneSize - 1;
7731   for (unsigned i = 0; i < Elements; i++)
7732     Indices.push_back(i ^ Mask);
7733   return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7734                                      Indices);
7735 }
7736 
EmitARMMVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)7737 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
7738                                               const CallExpr *E,
7739                                               ReturnValueSlot ReturnValue,
7740                                               llvm::Triple::ArchType Arch) {
7741   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
7742   Intrinsic::ID IRIntr;
7743   unsigned NumVectors;
7744 
7745   // Code autogenerated by Tablegen will handle all the simple builtins.
7746   switch (BuiltinID) {
7747     #include "clang/Basic/arm_mve_builtin_cg.inc"
7748 
7749     // If we didn't match an MVE builtin id at all, go back to the
7750     // main EmitARMBuiltinExpr.
7751   default:
7752     return nullptr;
7753   }
7754 
7755   // Anything that breaks from that switch is an MVE builtin that
7756   // needs handwritten code to generate.
7757 
7758   switch (CustomCodeGenType) {
7759 
7760   case CustomCodeGen::VLD24: {
7761     llvm::SmallVector<Value *, 4> Ops;
7762     llvm::SmallVector<llvm::Type *, 4> Tys;
7763 
7764     auto MvecCType = E->getType();
7765     auto MvecLType = ConvertType(MvecCType);
7766     assert(MvecLType->isStructTy() &&
7767            "Return type for vld[24]q should be a struct");
7768     assert(MvecLType->getStructNumElements() == 1 &&
7769            "Return-type struct for vld[24]q should have one element");
7770     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7771     assert(MvecLTypeInner->isArrayTy() &&
7772            "Return-type struct for vld[24]q should contain an array");
7773     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7774            "Array member of return-type struct vld[24]q has wrong length");
7775     auto VecLType = MvecLTypeInner->getArrayElementType();
7776 
7777     Tys.push_back(VecLType);
7778 
7779     auto Addr = E->getArg(0);
7780     Ops.push_back(EmitScalarExpr(Addr));
7781     Tys.push_back(ConvertType(Addr->getType()));
7782 
7783     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7784     Value *LoadResult = Builder.CreateCall(F, Ops);
7785     Value *MvecOut = UndefValue::get(MvecLType);
7786     for (unsigned i = 0; i < NumVectors; ++i) {
7787       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
7788       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
7789     }
7790 
7791     if (ReturnValue.isNull())
7792       return MvecOut;
7793     else
7794       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
7795   }
7796 
7797   case CustomCodeGen::VST24: {
7798     llvm::SmallVector<Value *, 4> Ops;
7799     llvm::SmallVector<llvm::Type *, 4> Tys;
7800 
7801     auto Addr = E->getArg(0);
7802     Ops.push_back(EmitScalarExpr(Addr));
7803     Tys.push_back(ConvertType(Addr->getType()));
7804 
7805     auto MvecCType = E->getArg(1)->getType();
7806     auto MvecLType = ConvertType(MvecCType);
7807     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
7808     assert(MvecLType->getStructNumElements() == 1 &&
7809            "Data-type struct for vst2q should have one element");
7810     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7811     assert(MvecLTypeInner->isArrayTy() &&
7812            "Data-type struct for vst2q should contain an array");
7813     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7814            "Array member of return-type struct vld[24]q has wrong length");
7815     auto VecLType = MvecLTypeInner->getArrayElementType();
7816 
7817     Tys.push_back(VecLType);
7818 
7819     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
7820     EmitAggExpr(E->getArg(1), MvecSlot);
7821     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
7822     for (unsigned i = 0; i < NumVectors; i++)
7823       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
7824 
7825     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7826     Value *ToReturn = nullptr;
7827     for (unsigned i = 0; i < NumVectors; i++) {
7828       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
7829       ToReturn = Builder.CreateCall(F, Ops);
7830       Ops.pop_back();
7831     }
7832     return ToReturn;
7833   }
7834   }
7835   llvm_unreachable("unknown custom codegen type.");
7836 }
7837 
EmitARMCDEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)7838 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
7839                                               const CallExpr *E,
7840                                               ReturnValueSlot ReturnValue,
7841                                               llvm::Triple::ArchType Arch) {
7842   switch (BuiltinID) {
7843   default:
7844     return nullptr;
7845 #include "clang/Basic/arm_cde_builtin_cg.inc"
7846   }
7847 }
7848 
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,llvm::Triple::ArchType Arch)7849 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
7850                                       const CallExpr *E,
7851                                       SmallVectorImpl<Value *> &Ops,
7852                                       llvm::Triple::ArchType Arch) {
7853   unsigned int Int = 0;
7854   const char *s = nullptr;
7855 
7856   switch (BuiltinID) {
7857   default:
7858     return nullptr;
7859   case NEON::BI__builtin_neon_vtbl1_v:
7860   case NEON::BI__builtin_neon_vqtbl1_v:
7861   case NEON::BI__builtin_neon_vqtbl1q_v:
7862   case NEON::BI__builtin_neon_vtbl2_v:
7863   case NEON::BI__builtin_neon_vqtbl2_v:
7864   case NEON::BI__builtin_neon_vqtbl2q_v:
7865   case NEON::BI__builtin_neon_vtbl3_v:
7866   case NEON::BI__builtin_neon_vqtbl3_v:
7867   case NEON::BI__builtin_neon_vqtbl3q_v:
7868   case NEON::BI__builtin_neon_vtbl4_v:
7869   case NEON::BI__builtin_neon_vqtbl4_v:
7870   case NEON::BI__builtin_neon_vqtbl4q_v:
7871     break;
7872   case NEON::BI__builtin_neon_vtbx1_v:
7873   case NEON::BI__builtin_neon_vqtbx1_v:
7874   case NEON::BI__builtin_neon_vqtbx1q_v:
7875   case NEON::BI__builtin_neon_vtbx2_v:
7876   case NEON::BI__builtin_neon_vqtbx2_v:
7877   case NEON::BI__builtin_neon_vqtbx2q_v:
7878   case NEON::BI__builtin_neon_vtbx3_v:
7879   case NEON::BI__builtin_neon_vqtbx3_v:
7880   case NEON::BI__builtin_neon_vqtbx3q_v:
7881   case NEON::BI__builtin_neon_vtbx4_v:
7882   case NEON::BI__builtin_neon_vqtbx4_v:
7883   case NEON::BI__builtin_neon_vqtbx4q_v:
7884     break;
7885   }
7886 
7887   assert(E->getNumArgs() >= 3);
7888 
7889   // Get the last argument, which specifies the vector type.
7890   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7891   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
7892   if (!Result)
7893     return nullptr;
7894 
7895   // Determine the type of this overloaded NEON intrinsic.
7896   NeonTypeFlags Type = Result->getZExtValue();
7897   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
7898   if (!Ty)
7899     return nullptr;
7900 
7901   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7902 
7903   // AArch64 scalar builtins are not overloaded, they do not have an extra
7904   // argument that specifies the vector type, need to handle each case.
7905   switch (BuiltinID) {
7906   case NEON::BI__builtin_neon_vtbl1_v: {
7907     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
7908                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
7909                               "vtbl1");
7910   }
7911   case NEON::BI__builtin_neon_vtbl2_v: {
7912     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
7913                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
7914                               "vtbl1");
7915   }
7916   case NEON::BI__builtin_neon_vtbl3_v: {
7917     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
7918                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
7919                               "vtbl2");
7920   }
7921   case NEON::BI__builtin_neon_vtbl4_v: {
7922     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
7923                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
7924                               "vtbl2");
7925   }
7926   case NEON::BI__builtin_neon_vtbx1_v: {
7927     Value *TblRes =
7928         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
7929                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
7930 
7931     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
7932     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
7933     CmpRes = Builder.CreateSExt(CmpRes, Ty);
7934 
7935     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7936     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7937     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7938   }
7939   case NEON::BI__builtin_neon_vtbx2_v: {
7940     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
7941                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
7942                               "vtbx1");
7943   }
7944   case NEON::BI__builtin_neon_vtbx3_v: {
7945     Value *TblRes =
7946         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
7947                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
7948 
7949     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
7950     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
7951                                            TwentyFourV);
7952     CmpRes = Builder.CreateSExt(CmpRes, Ty);
7953 
7954     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7955     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7956     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7957   }
7958   case NEON::BI__builtin_neon_vtbx4_v: {
7959     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
7960                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
7961                               "vtbx2");
7962   }
7963   case NEON::BI__builtin_neon_vqtbl1_v:
7964   case NEON::BI__builtin_neon_vqtbl1q_v:
7965     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
7966   case NEON::BI__builtin_neon_vqtbl2_v:
7967   case NEON::BI__builtin_neon_vqtbl2q_v: {
7968     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
7969   case NEON::BI__builtin_neon_vqtbl3_v:
7970   case NEON::BI__builtin_neon_vqtbl3q_v:
7971     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
7972   case NEON::BI__builtin_neon_vqtbl4_v:
7973   case NEON::BI__builtin_neon_vqtbl4q_v:
7974     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
7975   case NEON::BI__builtin_neon_vqtbx1_v:
7976   case NEON::BI__builtin_neon_vqtbx1q_v:
7977     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
7978   case NEON::BI__builtin_neon_vqtbx2_v:
7979   case NEON::BI__builtin_neon_vqtbx2q_v:
7980     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
7981   case NEON::BI__builtin_neon_vqtbx3_v:
7982   case NEON::BI__builtin_neon_vqtbx3q_v:
7983     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
7984   case NEON::BI__builtin_neon_vqtbx4_v:
7985   case NEON::BI__builtin_neon_vqtbx4q_v:
7986     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
7987   }
7988   }
7989 
7990   if (!Int)
7991     return nullptr;
7992 
7993   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
7994   return CGF.EmitNeonCall(F, Ops, s);
7995 }
7996 
vectorWrapScalar16(Value * Op)7997 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
7998   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
7999   Op = Builder.CreateBitCast(Op, Int16Ty);
8000   Value *V = UndefValue::get(VTy);
8001   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8002   Op = Builder.CreateInsertElement(V, Op, CI);
8003   return Op;
8004 }
8005 
8006 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8007 /// access builtin.  Only required if it can't be inferred from the base pointer
8008 /// operand.
SVEBuiltinMemEltTy(SVETypeFlags TypeFlags)8009 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
8010   switch (TypeFlags.getMemEltType()) {
8011   case SVETypeFlags::MemEltTyDefault:
8012     return getEltType(TypeFlags);
8013   case SVETypeFlags::MemEltTyInt8:
8014     return Builder.getInt8Ty();
8015   case SVETypeFlags::MemEltTyInt16:
8016     return Builder.getInt16Ty();
8017   case SVETypeFlags::MemEltTyInt32:
8018     return Builder.getInt32Ty();
8019   case SVETypeFlags::MemEltTyInt64:
8020     return Builder.getInt64Ty();
8021   }
8022   llvm_unreachable("Unknown MemEltType");
8023 }
8024 
getEltType(SVETypeFlags TypeFlags)8025 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
8026   switch (TypeFlags.getEltType()) {
8027   default:
8028     llvm_unreachable("Invalid SVETypeFlag!");
8029 
8030   case SVETypeFlags::EltTyInt8:
8031     return Builder.getInt8Ty();
8032   case SVETypeFlags::EltTyInt16:
8033     return Builder.getInt16Ty();
8034   case SVETypeFlags::EltTyInt32:
8035     return Builder.getInt32Ty();
8036   case SVETypeFlags::EltTyInt64:
8037     return Builder.getInt64Ty();
8038 
8039   case SVETypeFlags::EltTyFloat16:
8040     return Builder.getHalfTy();
8041   case SVETypeFlags::EltTyFloat32:
8042     return Builder.getFloatTy();
8043   case SVETypeFlags::EltTyFloat64:
8044     return Builder.getDoubleTy();
8045 
8046   case SVETypeFlags::EltTyBFloat16:
8047     return Builder.getBFloatTy();
8048 
8049   case SVETypeFlags::EltTyBool8:
8050   case SVETypeFlags::EltTyBool16:
8051   case SVETypeFlags::EltTyBool32:
8052   case SVETypeFlags::EltTyBool64:
8053     return Builder.getInt1Ty();
8054   }
8055 }
8056 
8057 // Return the llvm predicate vector type corresponding to the specified element
8058 // TypeFlags.
8059 llvm::ScalableVectorType *
getSVEPredType(SVETypeFlags TypeFlags)8060 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
8061   switch (TypeFlags.getEltType()) {
8062   default: llvm_unreachable("Unhandled SVETypeFlag!");
8063 
8064   case SVETypeFlags::EltTyInt8:
8065     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8066   case SVETypeFlags::EltTyInt16:
8067     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8068   case SVETypeFlags::EltTyInt32:
8069     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8070   case SVETypeFlags::EltTyInt64:
8071     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8072 
8073   case SVETypeFlags::EltTyBFloat16:
8074     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8075   case SVETypeFlags::EltTyFloat16:
8076     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8077   case SVETypeFlags::EltTyFloat32:
8078     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8079   case SVETypeFlags::EltTyFloat64:
8080     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8081 
8082   case SVETypeFlags::EltTyBool8:
8083     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8084   case SVETypeFlags::EltTyBool16:
8085     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8086   case SVETypeFlags::EltTyBool32:
8087     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8088   case SVETypeFlags::EltTyBool64:
8089     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8090   }
8091 }
8092 
8093 // Return the llvm vector type corresponding to the specified element TypeFlags.
8094 llvm::ScalableVectorType *
getSVEType(const SVETypeFlags & TypeFlags)8095 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8096   switch (TypeFlags.getEltType()) {
8097   default:
8098     llvm_unreachable("Invalid SVETypeFlag!");
8099 
8100   case SVETypeFlags::EltTyInt8:
8101     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8102   case SVETypeFlags::EltTyInt16:
8103     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8104   case SVETypeFlags::EltTyInt32:
8105     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8106   case SVETypeFlags::EltTyInt64:
8107     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8108 
8109   case SVETypeFlags::EltTyFloat16:
8110     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8111   case SVETypeFlags::EltTyBFloat16:
8112     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8113   case SVETypeFlags::EltTyFloat32:
8114     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8115   case SVETypeFlags::EltTyFloat64:
8116     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8117 
8118   case SVETypeFlags::EltTyBool8:
8119     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8120   case SVETypeFlags::EltTyBool16:
8121     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8122   case SVETypeFlags::EltTyBool32:
8123     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8124   case SVETypeFlags::EltTyBool64:
8125     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8126   }
8127 }
8128 
EmitSVEAllTruePred(SVETypeFlags TypeFlags)8129 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
8130   Function *Ptrue =
8131       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8132   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8133 }
8134 
8135 constexpr unsigned SVEBitsPerBlock = 128;
8136 
getSVEVectorForElementType(llvm::Type * EltTy)8137 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8138   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8139   return llvm::ScalableVectorType::get(EltTy, NumElts);
8140 }
8141 
8142 // Reinterpret the input predicate so that it can be used to correctly isolate
8143 // the elements of the specified datatype.
EmitSVEPredicateCast(Value * Pred,llvm::ScalableVectorType * VTy)8144 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8145                                              llvm::ScalableVectorType *VTy) {
8146   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8147   if (Pred->getType() == RTy)
8148     return Pred;
8149 
8150   unsigned IntID;
8151   llvm::Type *IntrinsicTy;
8152   switch (VTy->getMinNumElements()) {
8153   default:
8154     llvm_unreachable("unsupported element count!");
8155   case 2:
8156   case 4:
8157   case 8:
8158     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8159     IntrinsicTy = RTy;
8160     break;
8161   case 16:
8162     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8163     IntrinsicTy = Pred->getType();
8164     break;
8165   }
8166 
8167   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8168   Value *C = Builder.CreateCall(F, Pred);
8169   assert(C->getType() == RTy && "Unexpected return type!");
8170   return C;
8171 }
8172 
EmitSVEGatherLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8173 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
8174                                           SmallVectorImpl<Value *> &Ops,
8175                                           unsigned IntID) {
8176   auto *ResultTy = getSVEType(TypeFlags);
8177   auto *OverloadedTy =
8178       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8179 
8180   // At the ACLE level there's only one predicate type, svbool_t, which is
8181   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8182   // actual type being loaded. For example, when loading doubles (i64) the
8183   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8184   // the predicate and the data being loaded must match. Cast accordingly.
8185   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8186 
8187   Function *F = nullptr;
8188   if (Ops[1]->getType()->isVectorTy())
8189     // This is the "vector base, scalar offset" case. In order to uniquely
8190     // map this built-in to an LLVM IR intrinsic, we need both the return type
8191     // and the type of the vector base.
8192     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8193   else
8194     // This is the "scalar base, vector offset case". The type of the offset
8195     // is encoded in the name of the intrinsic. We only need to specify the
8196     // return type in order to uniquely map this built-in to an LLVM IR
8197     // intrinsic.
8198     F = CGM.getIntrinsic(IntID, OverloadedTy);
8199 
8200   // Pass 0 when the offset is missing. This can only be applied when using
8201   // the "vector base" addressing mode for which ACLE allows no offset. The
8202   // corresponding LLVM IR always requires an offset.
8203   if (Ops.size() == 2) {
8204     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8205     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8206   }
8207 
8208   // For "vector base, scalar index" scale the index so that it becomes a
8209   // scalar offset.
8210   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8211     unsigned BytesPerElt =
8212         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8213     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8214     Ops[2] = Builder.CreateMul(Ops[2], Scale);
8215   }
8216 
8217   Value *Call = Builder.CreateCall(F, Ops);
8218 
8219   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8220   // other cases it's folded into a nop.
8221   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8222                                   : Builder.CreateSExt(Call, ResultTy);
8223 }
8224 
EmitSVEScatterStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8225 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
8226                                             SmallVectorImpl<Value *> &Ops,
8227                                             unsigned IntID) {
8228   auto *SrcDataTy = getSVEType(TypeFlags);
8229   auto *OverloadedTy =
8230       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8231 
8232   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8233   // it's the first argument. Move it accordingly.
8234   Ops.insert(Ops.begin(), Ops.pop_back_val());
8235 
8236   Function *F = nullptr;
8237   if (Ops[2]->getType()->isVectorTy())
8238     // This is the "vector base, scalar offset" case. In order to uniquely
8239     // map this built-in to an LLVM IR intrinsic, we need both the return type
8240     // and the type of the vector base.
8241     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8242   else
8243     // This is the "scalar base, vector offset case". The type of the offset
8244     // is encoded in the name of the intrinsic. We only need to specify the
8245     // return type in order to uniquely map this built-in to an LLVM IR
8246     // intrinsic.
8247     F = CGM.getIntrinsic(IntID, OverloadedTy);
8248 
8249   // Pass 0 when the offset is missing. This can only be applied when using
8250   // the "vector base" addressing mode for which ACLE allows no offset. The
8251   // corresponding LLVM IR always requires an offset.
8252   if (Ops.size() == 3) {
8253     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8254     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8255   }
8256 
8257   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8258   // folded into a nop.
8259   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8260 
8261   // At the ACLE level there's only one predicate type, svbool_t, which is
8262   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8263   // actual type being stored. For example, when storing doubles (i64) the
8264   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8265   // the predicate and the data being stored must match. Cast accordingly.
8266   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8267 
8268   // For "vector base, scalar index" scale the index so that it becomes a
8269   // scalar offset.
8270   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8271     unsigned BytesPerElt =
8272         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8273     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8274     Ops[3] = Builder.CreateMul(Ops[3], Scale);
8275   }
8276 
8277   return Builder.CreateCall(F, Ops);
8278 }
8279 
EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8280 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
8281                                               SmallVectorImpl<Value *> &Ops,
8282                                               unsigned IntID) {
8283   // The gather prefetches are overloaded on the vector input - this can either
8284   // be the vector of base addresses or vector of offsets.
8285   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8286   if (!OverloadedTy)
8287     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8288 
8289   // Cast the predicate from svbool_t to the right number of elements.
8290   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8291 
8292   // vector + imm addressing modes
8293   if (Ops[1]->getType()->isVectorTy()) {
8294     if (Ops.size() == 3) {
8295       // Pass 0 for 'vector+imm' when the index is omitted.
8296       Ops.push_back(ConstantInt::get(Int64Ty, 0));
8297 
8298       // The sv_prfop is the last operand in the builtin and IR intrinsic.
8299       std::swap(Ops[2], Ops[3]);
8300     } else {
8301       // Index needs to be passed as scaled offset.
8302       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8303       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8304       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8305       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8306     }
8307   }
8308 
8309   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8310   return Builder.CreateCall(F, Ops);
8311 }
8312 
EmitSVEStructLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8313 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8314                                           SmallVectorImpl<Value*> &Ops,
8315                                           unsigned IntID) {
8316   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8317   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8318   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8319 
8320   unsigned N;
8321   switch (IntID) {
8322   case Intrinsic::aarch64_sve_ld2:
8323     N = 2;
8324     break;
8325   case Intrinsic::aarch64_sve_ld3:
8326     N = 3;
8327     break;
8328   case Intrinsic::aarch64_sve_ld4:
8329     N = 4;
8330     break;
8331   default:
8332     llvm_unreachable("unknown intrinsic!");
8333   }
8334   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8335                                      VTy->getElementCount() * N);
8336 
8337 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8338   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8339   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8340   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8341   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8342 
8343   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8344   return Builder.CreateCall(F, { Predicate, BasePtr });
8345 }
8346 
EmitSVEStructStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8347 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8348                                            SmallVectorImpl<Value*> &Ops,
8349                                            unsigned IntID) {
8350   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8351   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8352   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8353 
8354   unsigned N;
8355   switch (IntID) {
8356   case Intrinsic::aarch64_sve_st2:
8357     N = 2;
8358     break;
8359   case Intrinsic::aarch64_sve_st3:
8360     N = 3;
8361     break;
8362   case Intrinsic::aarch64_sve_st4:
8363     N = 4;
8364     break;
8365   default:
8366     llvm_unreachable("unknown intrinsic!");
8367   }
8368   auto TupleTy =
8369       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8370 
8371   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8372   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8373   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8374   Value *Val = Ops.back();
8375   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8376   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8377 
8378   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8379   // need to break up the tuple vector.
8380   SmallVector<llvm::Value*, 5> Operands;
8381   Function *FExtr =
8382       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8383   for (unsigned I = 0; I < N; ++I)
8384     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8385   Operands.append({Predicate, BasePtr});
8386 
8387   Function *F = CGM.getIntrinsic(IntID, { VTy });
8388   return Builder.CreateCall(F, Operands);
8389 }
8390 
8391 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8392 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8393 // to a wider type.
EmitSVEPMull(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8394 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8395                                      SmallVectorImpl<Value *> &Ops,
8396                                      unsigned BuiltinID) {
8397   // Splat scalar operand to vector (intrinsics with _n infix)
8398   if (TypeFlags.hasSplatOperand()) {
8399     unsigned OpNo = TypeFlags.getSplatOperand();
8400     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8401   }
8402 
8403   // The pair-wise function has a narrower overloaded type.
8404   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8405   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8406 
8407   // Now bitcast to the wider result type.
8408   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8409   return EmitSVEReinterpret(Call, Ty);
8410 }
8411 
EmitSVEMovl(SVETypeFlags TypeFlags,ArrayRef<Value * > Ops,unsigned BuiltinID)8412 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8413                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8414   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8415   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8416   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8417 }
8418 
EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8419 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8420                                             SmallVectorImpl<Value *> &Ops,
8421                                             unsigned BuiltinID) {
8422   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8423   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8424   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8425 
8426   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8427   Value *BasePtr = Ops[1];
8428 
8429   // Implement the index operand if not omitted.
8430   if (Ops.size() > 3) {
8431     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8432     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8433   }
8434 
8435   // Prefetch intriniscs always expect an i8*
8436   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8437   Value *PrfOp = Ops.back();
8438 
8439   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8440   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8441 }
8442 
EmitSVEMaskedLoad(const CallExpr * E,llvm::Type * ReturnTy,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID,bool IsZExtReturn)8443 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8444                                           llvm::Type *ReturnTy,
8445                                           SmallVectorImpl<Value *> &Ops,
8446                                           unsigned BuiltinID,
8447                                           bool IsZExtReturn) {
8448   QualType LangPTy = E->getArg(1)->getType();
8449   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8450       LangPTy->getAs<PointerType>()->getPointeeType());
8451 
8452   // The vector type that is returned may be different from the
8453   // eventual type loaded from memory.
8454   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8455   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8456 
8457   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8458   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8459   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8460   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8461 
8462   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8463   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8464   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8465 
8466   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8467                      : Builder.CreateSExt(Load, VectorTy);
8468 }
8469 
EmitSVEMaskedStore(const CallExpr * E,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8470 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8471                                            SmallVectorImpl<Value *> &Ops,
8472                                            unsigned BuiltinID) {
8473   QualType LangPTy = E->getArg(1)->getType();
8474   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8475       LangPTy->getAs<PointerType>()->getPointeeType());
8476 
8477   // The vector type that is stored may be different from the
8478   // eventual type stored to memory.
8479   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8480   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8481 
8482   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8483   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8484   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8485   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8486 
8487   // Last value is always the data
8488   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8489 
8490   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8491   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8492   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8493 }
8494 
8495 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8496 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
EmitSVEDupX(Value * Scalar,llvm::Type * Ty)8497 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8498   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8499   return Builder.CreateCall(F, Scalar);
8500 }
8501 
EmitSVEDupX(Value * Scalar)8502 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8503   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8504 }
8505 
EmitSVEReinterpret(Value * Val,llvm::Type * Ty)8506 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8507   // FIXME: For big endian this needs an additional REV, or needs a separate
8508   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8509   // instruction is defined as 'bitwise' equivalent from memory point of
8510   // view (when storing/reloading), whereas the svreinterpret builtin
8511   // implements bitwise equivalent cast from register point of view.
8512   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8513   return Builder.CreateBitCast(Val, Ty);
8514 }
8515 
InsertExplicitZeroOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8516 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8517                                       SmallVectorImpl<Value *> &Ops) {
8518   auto *SplatZero = Constant::getNullValue(Ty);
8519   Ops.insert(Ops.begin(), SplatZero);
8520 }
8521 
InsertExplicitUndefOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8522 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8523                                        SmallVectorImpl<Value *> &Ops) {
8524   auto *SplatUndef = UndefValue::get(Ty);
8525   Ops.insert(Ops.begin(), SplatUndef);
8526 }
8527 
getSVEOverloadTypes(SVETypeFlags TypeFlags,llvm::Type * ResultType,ArrayRef<Value * > Ops)8528 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8529     SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8530   if (TypeFlags.isOverloadNone())
8531     return {};
8532 
8533   llvm::Type *DefaultType = getSVEType(TypeFlags);
8534 
8535   if (TypeFlags.isOverloadWhile())
8536     return {DefaultType, Ops[1]->getType()};
8537 
8538   if (TypeFlags.isOverloadWhileRW())
8539     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8540 
8541   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8542     return {Ops[0]->getType(), Ops.back()->getType()};
8543 
8544   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8545     return {ResultType, Ops[0]->getType()};
8546 
8547   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8548   return {DefaultType};
8549 }
8550 
EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E)8551 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8552                                                   const CallExpr *E) {
8553   // Find out if any arguments are required to be integer constant expressions.
8554   unsigned ICEArguments = 0;
8555   ASTContext::GetBuiltinTypeError Error;
8556   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8557   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8558 
8559   llvm::Type *Ty = ConvertType(E->getType());
8560   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8561       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8562     Value *Val = EmitScalarExpr(E->getArg(0));
8563     return EmitSVEReinterpret(Val, Ty);
8564   }
8565 
8566   llvm::SmallVector<Value *, 4> Ops;
8567   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8568     if ((ICEArguments & (1 << i)) == 0)
8569       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8570     else {
8571       // If this is required to be a constant, constant fold it so that we know
8572       // that the generated intrinsic gets a ConstantInt.
8573       Optional<llvm::APSInt> Result =
8574           E->getArg(i)->getIntegerConstantExpr(getContext());
8575       assert(Result && "Expected argument to be a constant");
8576 
8577       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8578       // truncate because the immediate has been range checked and no valid
8579       // immediate requires more than a handful of bits.
8580       *Result = Result->extOrTrunc(32);
8581       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8582     }
8583   }
8584 
8585   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8586                                               AArch64SVEIntrinsicsProvenSorted);
8587   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8588   if (TypeFlags.isLoad())
8589     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8590                              TypeFlags.isZExtReturn());
8591   else if (TypeFlags.isStore())
8592     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8593   else if (TypeFlags.isGatherLoad())
8594     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8595   else if (TypeFlags.isScatterStore())
8596     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8597   else if (TypeFlags.isPrefetch())
8598     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8599   else if (TypeFlags.isGatherPrefetch())
8600     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8601 	else if (TypeFlags.isStructLoad())
8602 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8603 	else if (TypeFlags.isStructStore())
8604 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8605   else if (TypeFlags.isUndef())
8606     return UndefValue::get(Ty);
8607   else if (Builtin->LLVMIntrinsic != 0) {
8608     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8609       InsertExplicitZeroOperand(Builder, Ty, Ops);
8610 
8611     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8612       InsertExplicitUndefOperand(Builder, Ty, Ops);
8613 
8614     // Some ACLE builtins leave out the argument to specify the predicate
8615     // pattern, which is expected to be expanded to an SV_ALL pattern.
8616     if (TypeFlags.isAppendSVALL())
8617       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8618     if (TypeFlags.isInsertOp1SVALL())
8619       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8620 
8621     // Predicates must match the main datatype.
8622     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8623       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8624         if (PredTy->getElementType()->isIntegerTy(1))
8625           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8626 
8627     // Splat scalar operand to vector (intrinsics with _n infix)
8628     if (TypeFlags.hasSplatOperand()) {
8629       unsigned OpNo = TypeFlags.getSplatOperand();
8630       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8631     }
8632 
8633     if (TypeFlags.isReverseCompare())
8634       std::swap(Ops[1], Ops[2]);
8635 
8636     if (TypeFlags.isReverseUSDOT())
8637       std::swap(Ops[1], Ops[2]);
8638 
8639     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8640     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8641       llvm::Type *OpndTy = Ops[1]->getType();
8642       auto *SplatZero = Constant::getNullValue(OpndTy);
8643       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8644       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8645     }
8646 
8647     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8648                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
8649     Value *Call = Builder.CreateCall(F, Ops);
8650 
8651     // Predicate results must be converted to svbool_t.
8652     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8653       if (PredTy->getScalarType()->isIntegerTy(1))
8654         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8655 
8656     return Call;
8657   }
8658 
8659   switch (BuiltinID) {
8660   default:
8661     return nullptr;
8662 
8663   case SVE::BI__builtin_sve_svmov_b_z: {
8664     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8665     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8666     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8667     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8668     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8669   }
8670 
8671   case SVE::BI__builtin_sve_svnot_b_z: {
8672     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8673     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8674     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8675     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8676     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8677   }
8678 
8679   case SVE::BI__builtin_sve_svmovlb_u16:
8680   case SVE::BI__builtin_sve_svmovlb_u32:
8681   case SVE::BI__builtin_sve_svmovlb_u64:
8682     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8683 
8684   case SVE::BI__builtin_sve_svmovlb_s16:
8685   case SVE::BI__builtin_sve_svmovlb_s32:
8686   case SVE::BI__builtin_sve_svmovlb_s64:
8687     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
8688 
8689   case SVE::BI__builtin_sve_svmovlt_u16:
8690   case SVE::BI__builtin_sve_svmovlt_u32:
8691   case SVE::BI__builtin_sve_svmovlt_u64:
8692     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
8693 
8694   case SVE::BI__builtin_sve_svmovlt_s16:
8695   case SVE::BI__builtin_sve_svmovlt_s32:
8696   case SVE::BI__builtin_sve_svmovlt_s64:
8697     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
8698 
8699   case SVE::BI__builtin_sve_svpmullt_u16:
8700   case SVE::BI__builtin_sve_svpmullt_u64:
8701   case SVE::BI__builtin_sve_svpmullt_n_u16:
8702   case SVE::BI__builtin_sve_svpmullt_n_u64:
8703     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
8704 
8705   case SVE::BI__builtin_sve_svpmullb_u16:
8706   case SVE::BI__builtin_sve_svpmullb_u64:
8707   case SVE::BI__builtin_sve_svpmullb_n_u16:
8708   case SVE::BI__builtin_sve_svpmullb_n_u64:
8709     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
8710 
8711   case SVE::BI__builtin_sve_svdup_n_b8:
8712   case SVE::BI__builtin_sve_svdup_n_b16:
8713   case SVE::BI__builtin_sve_svdup_n_b32:
8714   case SVE::BI__builtin_sve_svdup_n_b64: {
8715     Value *CmpNE =
8716         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
8717     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
8718     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
8719     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
8720   }
8721 
8722   case SVE::BI__builtin_sve_svdupq_n_b8:
8723   case SVE::BI__builtin_sve_svdupq_n_b16:
8724   case SVE::BI__builtin_sve_svdupq_n_b32:
8725   case SVE::BI__builtin_sve_svdupq_n_b64:
8726   case SVE::BI__builtin_sve_svdupq_n_u8:
8727   case SVE::BI__builtin_sve_svdupq_n_s8:
8728   case SVE::BI__builtin_sve_svdupq_n_u64:
8729   case SVE::BI__builtin_sve_svdupq_n_f64:
8730   case SVE::BI__builtin_sve_svdupq_n_s64:
8731   case SVE::BI__builtin_sve_svdupq_n_u16:
8732   case SVE::BI__builtin_sve_svdupq_n_f16:
8733   case SVE::BI__builtin_sve_svdupq_n_bf16:
8734   case SVE::BI__builtin_sve_svdupq_n_s16:
8735   case SVE::BI__builtin_sve_svdupq_n_u32:
8736   case SVE::BI__builtin_sve_svdupq_n_f32:
8737   case SVE::BI__builtin_sve_svdupq_n_s32: {
8738     // These builtins are implemented by storing each element to an array and using
8739     // ld1rq to materialize a vector.
8740     unsigned NumOpnds = Ops.size();
8741 
8742     bool IsBoolTy =
8743         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
8744 
8745     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
8746     // so that the compare can use the width that is natural for the expected
8747     // number of predicate lanes.
8748     llvm::Type *EltTy = Ops[0]->getType();
8749     if (IsBoolTy)
8750       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
8751 
8752     Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
8753                                      CharUnits::fromQuantity(16));
8754     for (unsigned I = 0; I < NumOpnds; ++I)
8755       Builder.CreateDefaultAlignedStore(
8756           IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
8757           Builder.CreateGEP(Alloca.getPointer(),
8758                             {Builder.getInt64(0), Builder.getInt64(I)}));
8759 
8760     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8761     Value *Pred = EmitSVEAllTruePred(TypeFlags);
8762 
8763     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
8764     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
8765     Value *Alloca0 = Builder.CreateGEP(
8766         Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)});
8767     Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
8768 
8769     if (!IsBoolTy)
8770       return LD1RQ;
8771 
8772     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
8773     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
8774                                        : Intrinsic::aarch64_sve_cmpne_wide,
8775                          OverloadedTy);
8776     Value *Call =
8777         Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
8778     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8779   }
8780 
8781   case SVE::BI__builtin_sve_svpfalse_b:
8782     return ConstantInt::getFalse(Ty);
8783 
8784   case SVE::BI__builtin_sve_svlen_bf16:
8785   case SVE::BI__builtin_sve_svlen_f16:
8786   case SVE::BI__builtin_sve_svlen_f32:
8787   case SVE::BI__builtin_sve_svlen_f64:
8788   case SVE::BI__builtin_sve_svlen_s8:
8789   case SVE::BI__builtin_sve_svlen_s16:
8790   case SVE::BI__builtin_sve_svlen_s32:
8791   case SVE::BI__builtin_sve_svlen_s64:
8792   case SVE::BI__builtin_sve_svlen_u8:
8793   case SVE::BI__builtin_sve_svlen_u16:
8794   case SVE::BI__builtin_sve_svlen_u32:
8795   case SVE::BI__builtin_sve_svlen_u64: {
8796     SVETypeFlags TF(Builtin->TypeModifier);
8797     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8798     auto *NumEls =
8799         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
8800 
8801     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
8802     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
8803   }
8804 
8805   case SVE::BI__builtin_sve_svtbl2_u8:
8806   case SVE::BI__builtin_sve_svtbl2_s8:
8807   case SVE::BI__builtin_sve_svtbl2_u16:
8808   case SVE::BI__builtin_sve_svtbl2_s16:
8809   case SVE::BI__builtin_sve_svtbl2_u32:
8810   case SVE::BI__builtin_sve_svtbl2_s32:
8811   case SVE::BI__builtin_sve_svtbl2_u64:
8812   case SVE::BI__builtin_sve_svtbl2_s64:
8813   case SVE::BI__builtin_sve_svtbl2_f16:
8814   case SVE::BI__builtin_sve_svtbl2_bf16:
8815   case SVE::BI__builtin_sve_svtbl2_f32:
8816   case SVE::BI__builtin_sve_svtbl2_f64: {
8817     SVETypeFlags TF(Builtin->TypeModifier);
8818     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8819     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
8820     Function *FExtr =
8821         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8822     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
8823     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
8824     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
8825     return Builder.CreateCall(F, {V0, V1, Ops[1]});
8826   }
8827   }
8828 
8829   /// Should not happen
8830   return nullptr;
8831 }
8832 
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)8833 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
8834                                                const CallExpr *E,
8835                                                llvm::Triple::ArchType Arch) {
8836   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
8837       BuiltinID <= AArch64::LastSVEBuiltin)
8838     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
8839 
8840   unsigned HintID = static_cast<unsigned>(-1);
8841   switch (BuiltinID) {
8842   default: break;
8843   case AArch64::BI__builtin_arm_nop:
8844     HintID = 0;
8845     break;
8846   case AArch64::BI__builtin_arm_yield:
8847   case AArch64::BI__yield:
8848     HintID = 1;
8849     break;
8850   case AArch64::BI__builtin_arm_wfe:
8851   case AArch64::BI__wfe:
8852     HintID = 2;
8853     break;
8854   case AArch64::BI__builtin_arm_wfi:
8855   case AArch64::BI__wfi:
8856     HintID = 3;
8857     break;
8858   case AArch64::BI__builtin_arm_sev:
8859   case AArch64::BI__sev:
8860     HintID = 4;
8861     break;
8862   case AArch64::BI__builtin_arm_sevl:
8863   case AArch64::BI__sevl:
8864     HintID = 5;
8865     break;
8866   }
8867 
8868   if (HintID != static_cast<unsigned>(-1)) {
8869     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
8870     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
8871   }
8872 
8873   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
8874     Value *Address         = EmitScalarExpr(E->getArg(0));
8875     Value *RW              = EmitScalarExpr(E->getArg(1));
8876     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
8877     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
8878     Value *IsData          = EmitScalarExpr(E->getArg(4));
8879 
8880     Value *Locality = nullptr;
8881     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
8882       // Temporal fetch, needs to convert cache level to locality.
8883       Locality = llvm::ConstantInt::get(Int32Ty,
8884         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
8885     } else {
8886       // Streaming fetch.
8887       Locality = llvm::ConstantInt::get(Int32Ty, 0);
8888     }
8889 
8890     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
8891     // PLDL3STRM or PLDL2STRM.
8892     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8893     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8894   }
8895 
8896   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
8897     assert((getContext().getTypeSize(E->getType()) == 32) &&
8898            "rbit of unusual size!");
8899     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8900     return Builder.CreateCall(
8901         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8902   }
8903   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
8904     assert((getContext().getTypeSize(E->getType()) == 64) &&
8905            "rbit of unusual size!");
8906     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8907     return Builder.CreateCall(
8908         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8909   }
8910 
8911   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
8912     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8913     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
8914                               "cls");
8915   }
8916   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
8917     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8918     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
8919                               "cls");
8920   }
8921 
8922   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
8923     assert((getContext().getTypeSize(E->getType()) == 32) &&
8924            "__jcvt of unusual size!");
8925     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8926     return Builder.CreateCall(
8927         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
8928   }
8929 
8930   if (BuiltinID == AArch64::BI__clear_cache) {
8931     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8932     const FunctionDecl *FD = E->getDirectCallee();
8933     Value *Ops[2];
8934     for (unsigned i = 0; i < 2; i++)
8935       Ops[i] = EmitScalarExpr(E->getArg(i));
8936     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8937     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8938     StringRef Name = FD->getName();
8939     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8940   }
8941 
8942   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8943       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
8944       getContext().getTypeSize(E->getType()) == 128) {
8945     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8946                                        ? Intrinsic::aarch64_ldaxp
8947                                        : Intrinsic::aarch64_ldxp);
8948 
8949     Value *LdPtr = EmitScalarExpr(E->getArg(0));
8950     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
8951                                     "ldxp");
8952 
8953     Value *Val0 = Builder.CreateExtractValue(Val, 1);
8954     Value *Val1 = Builder.CreateExtractValue(Val, 0);
8955     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
8956     Val0 = Builder.CreateZExt(Val0, Int128Ty);
8957     Val1 = Builder.CreateZExt(Val1, Int128Ty);
8958 
8959     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
8960     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8961     Val = Builder.CreateOr(Val, Val1);
8962     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8963   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8964              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
8965     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8966 
8967     QualType Ty = E->getType();
8968     llvm::Type *RealResTy = ConvertType(Ty);
8969     llvm::Type *PtrTy = llvm::IntegerType::get(
8970         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
8971     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
8972 
8973     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8974                                        ? Intrinsic::aarch64_ldaxr
8975                                        : Intrinsic::aarch64_ldxr,
8976                                    PtrTy);
8977     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
8978 
8979     if (RealResTy->isPointerTy())
8980       return Builder.CreateIntToPtr(Val, RealResTy);
8981 
8982     llvm::Type *IntResTy = llvm::IntegerType::get(
8983         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8984     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
8985     return Builder.CreateBitCast(Val, RealResTy);
8986   }
8987 
8988   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
8989        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
8990       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
8991     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8992                                        ? Intrinsic::aarch64_stlxp
8993                                        : Intrinsic::aarch64_stxp);
8994     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
8995 
8996     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8997     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
8998 
8999     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9000     llvm::Value *Val = Builder.CreateLoad(Tmp);
9001 
9002     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9003     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9004     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9005                                          Int8PtrTy);
9006     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9007   }
9008 
9009   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9010       BuiltinID == AArch64::BI__builtin_arm_stlex) {
9011     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9012     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9013 
9014     QualType Ty = E->getArg(0)->getType();
9015     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9016                                                  getContext().getTypeSize(Ty));
9017     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9018 
9019     if (StoreVal->getType()->isPointerTy())
9020       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9021     else {
9022       llvm::Type *IntTy = llvm::IntegerType::get(
9023           getLLVMContext(),
9024           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9025       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9026       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9027     }
9028 
9029     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9030                                        ? Intrinsic::aarch64_stlxr
9031                                        : Intrinsic::aarch64_stxr,
9032                                    StoreAddr->getType());
9033     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9034   }
9035 
9036   if (BuiltinID == AArch64::BI__getReg) {
9037     Expr::EvalResult Result;
9038     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9039       llvm_unreachable("Sema will ensure that the parameter is constant");
9040 
9041     llvm::APSInt Value = Result.Val.getInt();
9042     LLVMContext &Context = CGM.getLLVMContext();
9043     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
9044 
9045     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9046     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9047     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9048 
9049     llvm::Function *F =
9050         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9051     return Builder.CreateCall(F, Metadata);
9052   }
9053 
9054   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9055     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9056     return Builder.CreateCall(F);
9057   }
9058 
9059   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9060     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9061                                llvm::SyncScope::SingleThread);
9062 
9063   // CRC32
9064   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9065   switch (BuiltinID) {
9066   case AArch64::BI__builtin_arm_crc32b:
9067     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9068   case AArch64::BI__builtin_arm_crc32cb:
9069     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9070   case AArch64::BI__builtin_arm_crc32h:
9071     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9072   case AArch64::BI__builtin_arm_crc32ch:
9073     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9074   case AArch64::BI__builtin_arm_crc32w:
9075     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9076   case AArch64::BI__builtin_arm_crc32cw:
9077     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9078   case AArch64::BI__builtin_arm_crc32d:
9079     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9080   case AArch64::BI__builtin_arm_crc32cd:
9081     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9082   }
9083 
9084   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9085     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9086     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9087     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9088 
9089     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9090     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9091 
9092     return Builder.CreateCall(F, {Arg0, Arg1});
9093   }
9094 
9095   // Memory Tagging Extensions (MTE) Intrinsics
9096   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9097   switch (BuiltinID) {
9098   case AArch64::BI__builtin_arm_irg:
9099     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9100   case  AArch64::BI__builtin_arm_addg:
9101     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9102   case  AArch64::BI__builtin_arm_gmi:
9103     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9104   case  AArch64::BI__builtin_arm_ldg:
9105     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9106   case AArch64::BI__builtin_arm_stg:
9107     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9108   case AArch64::BI__builtin_arm_subp:
9109     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9110   }
9111 
9112   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9113     llvm::Type *T = ConvertType(E->getType());
9114 
9115     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9116       Value *Pointer = EmitScalarExpr(E->getArg(0));
9117       Value *Mask = EmitScalarExpr(E->getArg(1));
9118 
9119       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9120       Mask = Builder.CreateZExt(Mask, Int64Ty);
9121       Value *RV = Builder.CreateCall(
9122                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9123        return Builder.CreatePointerCast(RV, T);
9124     }
9125     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9126       Value *Pointer = EmitScalarExpr(E->getArg(0));
9127       Value *TagOffset = EmitScalarExpr(E->getArg(1));
9128 
9129       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9130       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9131       Value *RV = Builder.CreateCall(
9132                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9133       return Builder.CreatePointerCast(RV, T);
9134     }
9135     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9136       Value *Pointer = EmitScalarExpr(E->getArg(0));
9137       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9138 
9139       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9140       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9141       return Builder.CreateCall(
9142                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9143     }
9144     // Although it is possible to supply a different return
9145     // address (first arg) to this intrinsic, for now we set
9146     // return address same as input address.
9147     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9148       Value *TagAddress = EmitScalarExpr(E->getArg(0));
9149       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9150       Value *RV = Builder.CreateCall(
9151                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9152       return Builder.CreatePointerCast(RV, T);
9153     }
9154     // Although it is possible to supply a different tag (to set)
9155     // to this intrinsic (as first arg), for now we supply
9156     // the tag that is in input address arg (common use case).
9157     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9158         Value *TagAddress = EmitScalarExpr(E->getArg(0));
9159         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9160         return Builder.CreateCall(
9161                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9162     }
9163     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9164       Value *PointerA = EmitScalarExpr(E->getArg(0));
9165       Value *PointerB = EmitScalarExpr(E->getArg(1));
9166       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9167       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9168       return Builder.CreateCall(
9169                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9170     }
9171   }
9172 
9173   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9174       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9175       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9176       BuiltinID == AArch64::BI__builtin_arm_wsr ||
9177       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9178       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9179 
9180     SpecialRegisterAccessKind AccessKind = Write;
9181     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9182         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9183         BuiltinID == AArch64::BI__builtin_arm_rsrp)
9184       AccessKind = VolatileRead;
9185 
9186     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9187                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
9188 
9189     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9190                    BuiltinID != AArch64::BI__builtin_arm_wsr;
9191 
9192     llvm::Type *ValueType;
9193     llvm::Type *RegisterType = Int64Ty;
9194     if (IsPointerBuiltin) {
9195       ValueType = VoidPtrTy;
9196     } else if (Is64Bit) {
9197       ValueType = Int64Ty;
9198     } else {
9199       ValueType = Int32Ty;
9200     }
9201 
9202     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9203                                       AccessKind);
9204   }
9205 
9206   if (BuiltinID == AArch64::BI_ReadStatusReg ||
9207       BuiltinID == AArch64::BI_WriteStatusReg) {
9208     LLVMContext &Context = CGM.getLLVMContext();
9209 
9210     unsigned SysReg =
9211       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9212 
9213     std::string SysRegStr;
9214     llvm::raw_string_ostream(SysRegStr) <<
9215                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
9216                        ((SysReg >> 11) & 7)               << ":" <<
9217                        ((SysReg >> 7)  & 15)              << ":" <<
9218                        ((SysReg >> 3)  & 15)              << ":" <<
9219                        ( SysReg        & 7);
9220 
9221     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9222     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9223     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9224 
9225     llvm::Type *RegisterType = Int64Ty;
9226     llvm::Type *Types[] = { RegisterType };
9227 
9228     if (BuiltinID == AArch64::BI_ReadStatusReg) {
9229       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9230 
9231       return Builder.CreateCall(F, Metadata);
9232     }
9233 
9234     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9235     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9236 
9237     return Builder.CreateCall(F, { Metadata, ArgValue });
9238   }
9239 
9240   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9241     llvm::Function *F =
9242         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9243     return Builder.CreateCall(F);
9244   }
9245 
9246   if (BuiltinID == AArch64::BI__builtin_sponentry) {
9247     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9248     return Builder.CreateCall(F);
9249   }
9250 
9251   // Handle MSVC intrinsics before argument evaluation to prevent double
9252   // evaluation.
9253   if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9254     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9255 
9256   // Find out if any arguments are required to be integer constant
9257   // expressions.
9258   unsigned ICEArguments = 0;
9259   ASTContext::GetBuiltinTypeError Error;
9260   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9261   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9262 
9263   llvm::SmallVector<Value*, 4> Ops;
9264   Address PtrOp0 = Address::invalid();
9265   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9266     if (i == 0) {
9267       switch (BuiltinID) {
9268       case NEON::BI__builtin_neon_vld1_v:
9269       case NEON::BI__builtin_neon_vld1q_v:
9270       case NEON::BI__builtin_neon_vld1_dup_v:
9271       case NEON::BI__builtin_neon_vld1q_dup_v:
9272       case NEON::BI__builtin_neon_vld1_lane_v:
9273       case NEON::BI__builtin_neon_vld1q_lane_v:
9274       case NEON::BI__builtin_neon_vst1_v:
9275       case NEON::BI__builtin_neon_vst1q_v:
9276       case NEON::BI__builtin_neon_vst1_lane_v:
9277       case NEON::BI__builtin_neon_vst1q_lane_v:
9278         // Get the alignment for the argument in addition to the value;
9279         // we'll use it later.
9280         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9281         Ops.push_back(PtrOp0.getPointer());
9282         continue;
9283       }
9284     }
9285     if ((ICEArguments & (1 << i)) == 0) {
9286       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9287     } else {
9288       // If this is required to be a constant, constant fold it so that we know
9289       // that the generated intrinsic gets a ConstantInt.
9290       Ops.push_back(llvm::ConstantInt::get(
9291           getLLVMContext(),
9292           *E->getArg(i)->getIntegerConstantExpr(getContext())));
9293     }
9294   }
9295 
9296   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9297   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9298       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9299 
9300   if (Builtin) {
9301     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9302     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9303     assert(Result && "SISD intrinsic should have been handled");
9304     return Result;
9305   }
9306 
9307   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9308   NeonTypeFlags Type(0);
9309   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9310     // Determine the type of this overloaded NEON intrinsic.
9311     Type = NeonTypeFlags(Result->getZExtValue());
9312 
9313   bool usgn = Type.isUnsigned();
9314   bool quad = Type.isQuad();
9315 
9316   // Handle non-overloaded intrinsics first.
9317   switch (BuiltinID) {
9318   default: break;
9319   case NEON::BI__builtin_neon_vabsh_f16:
9320     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9321     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9322   case NEON::BI__builtin_neon_vldrq_p128: {
9323     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9324     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9325     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9326     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9327                                      CharUnits::fromQuantity(16));
9328   }
9329   case NEON::BI__builtin_neon_vstrq_p128: {
9330     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9331     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9332     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9333   }
9334   case NEON::BI__builtin_neon_vcvts_f32_u32:
9335   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9336     usgn = true;
9337     LLVM_FALLTHROUGH;
9338   case NEON::BI__builtin_neon_vcvts_f32_s32:
9339   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9340     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9341     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9342     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9343     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9344     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9345     if (usgn)
9346       return Builder.CreateUIToFP(Ops[0], FTy);
9347     return Builder.CreateSIToFP(Ops[0], FTy);
9348   }
9349   case NEON::BI__builtin_neon_vcvth_f16_u16:
9350   case NEON::BI__builtin_neon_vcvth_f16_u32:
9351   case NEON::BI__builtin_neon_vcvth_f16_u64:
9352     usgn = true;
9353     LLVM_FALLTHROUGH;
9354   case NEON::BI__builtin_neon_vcvth_f16_s16:
9355   case NEON::BI__builtin_neon_vcvth_f16_s32:
9356   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9357     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9358     llvm::Type *FTy = HalfTy;
9359     llvm::Type *InTy;
9360     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9361       InTy = Int64Ty;
9362     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9363       InTy = Int32Ty;
9364     else
9365       InTy = Int16Ty;
9366     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9367     if (usgn)
9368       return Builder.CreateUIToFP(Ops[0], FTy);
9369     return Builder.CreateSIToFP(Ops[0], FTy);
9370   }
9371   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9372   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9373   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9374   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9375   case NEON::BI__builtin_neon_vcvth_u16_f16:
9376   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9377   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9378   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9379   case NEON::BI__builtin_neon_vcvtph_s16_f16:
9380   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9381     unsigned Int;
9382     llvm::Type* InTy = Int32Ty;
9383     llvm::Type* FTy  = HalfTy;
9384     llvm::Type *Tys[2] = {InTy, FTy};
9385     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9386     switch (BuiltinID) {
9387     default: llvm_unreachable("missing builtin ID in switch!");
9388     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9389       Int = Intrinsic::aarch64_neon_fcvtau; break;
9390     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9391       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9392     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9393       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9394     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9395       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9396     case NEON::BI__builtin_neon_vcvth_u16_f16:
9397       Int = Intrinsic::aarch64_neon_fcvtzu; break;
9398     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9399       Int = Intrinsic::aarch64_neon_fcvtas; break;
9400     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9401       Int = Intrinsic::aarch64_neon_fcvtms; break;
9402     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9403       Int = Intrinsic::aarch64_neon_fcvtns; break;
9404     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9405       Int = Intrinsic::aarch64_neon_fcvtps; break;
9406     case NEON::BI__builtin_neon_vcvth_s16_f16:
9407       Int = Intrinsic::aarch64_neon_fcvtzs; break;
9408     }
9409     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9410     return Builder.CreateTrunc(Ops[0], Int16Ty);
9411   }
9412   case NEON::BI__builtin_neon_vcaleh_f16:
9413   case NEON::BI__builtin_neon_vcalth_f16:
9414   case NEON::BI__builtin_neon_vcageh_f16:
9415   case NEON::BI__builtin_neon_vcagth_f16: {
9416     unsigned Int;
9417     llvm::Type* InTy = Int32Ty;
9418     llvm::Type* FTy  = HalfTy;
9419     llvm::Type *Tys[2] = {InTy, FTy};
9420     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9421     switch (BuiltinID) {
9422     default: llvm_unreachable("missing builtin ID in switch!");
9423     case NEON::BI__builtin_neon_vcageh_f16:
9424       Int = Intrinsic::aarch64_neon_facge; break;
9425     case NEON::BI__builtin_neon_vcagth_f16:
9426       Int = Intrinsic::aarch64_neon_facgt; break;
9427     case NEON::BI__builtin_neon_vcaleh_f16:
9428       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9429     case NEON::BI__builtin_neon_vcalth_f16:
9430       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9431     }
9432     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9433     return Builder.CreateTrunc(Ops[0], Int16Ty);
9434   }
9435   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9436   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9437     unsigned Int;
9438     llvm::Type* InTy = Int32Ty;
9439     llvm::Type* FTy  = HalfTy;
9440     llvm::Type *Tys[2] = {InTy, FTy};
9441     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9442     switch (BuiltinID) {
9443     default: llvm_unreachable("missing builtin ID in switch!");
9444     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9445       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9446     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9447       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9448     }
9449     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9450     return Builder.CreateTrunc(Ops[0], Int16Ty);
9451   }
9452   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9453   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9454     unsigned Int;
9455     llvm::Type* FTy  = HalfTy;
9456     llvm::Type* InTy = Int32Ty;
9457     llvm::Type *Tys[2] = {FTy, InTy};
9458     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9459     switch (BuiltinID) {
9460     default: llvm_unreachable("missing builtin ID in switch!");
9461     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9462       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9463       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9464       break;
9465     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9466       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9467       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9468       break;
9469     }
9470     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9471   }
9472   case NEON::BI__builtin_neon_vpaddd_s64: {
9473     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9474     Value *Vec = EmitScalarExpr(E->getArg(0));
9475     // The vector is v2f64, so make sure it's bitcast to that.
9476     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9477     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9478     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9479     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9480     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9481     // Pairwise addition of a v2f64 into a scalar f64.
9482     return Builder.CreateAdd(Op0, Op1, "vpaddd");
9483   }
9484   case NEON::BI__builtin_neon_vpaddd_f64: {
9485     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9486     Value *Vec = EmitScalarExpr(E->getArg(0));
9487     // The vector is v2f64, so make sure it's bitcast to that.
9488     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9489     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9490     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9491     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9492     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9493     // Pairwise addition of a v2f64 into a scalar f64.
9494     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9495   }
9496   case NEON::BI__builtin_neon_vpadds_f32: {
9497     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9498     Value *Vec = EmitScalarExpr(E->getArg(0));
9499     // The vector is v2f32, so make sure it's bitcast to that.
9500     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9501     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9502     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9503     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9504     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9505     // Pairwise addition of a v2f32 into a scalar f32.
9506     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9507   }
9508   case NEON::BI__builtin_neon_vceqzd_s64:
9509   case NEON::BI__builtin_neon_vceqzd_f64:
9510   case NEON::BI__builtin_neon_vceqzs_f32:
9511   case NEON::BI__builtin_neon_vceqzh_f16:
9512     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9513     return EmitAArch64CompareBuiltinExpr(
9514         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9515         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9516   case NEON::BI__builtin_neon_vcgezd_s64:
9517   case NEON::BI__builtin_neon_vcgezd_f64:
9518   case NEON::BI__builtin_neon_vcgezs_f32:
9519   case NEON::BI__builtin_neon_vcgezh_f16:
9520     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9521     return EmitAArch64CompareBuiltinExpr(
9522         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9523         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9524   case NEON::BI__builtin_neon_vclezd_s64:
9525   case NEON::BI__builtin_neon_vclezd_f64:
9526   case NEON::BI__builtin_neon_vclezs_f32:
9527   case NEON::BI__builtin_neon_vclezh_f16:
9528     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9529     return EmitAArch64CompareBuiltinExpr(
9530         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9531         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9532   case NEON::BI__builtin_neon_vcgtzd_s64:
9533   case NEON::BI__builtin_neon_vcgtzd_f64:
9534   case NEON::BI__builtin_neon_vcgtzs_f32:
9535   case NEON::BI__builtin_neon_vcgtzh_f16:
9536     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9537     return EmitAArch64CompareBuiltinExpr(
9538         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9539         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9540   case NEON::BI__builtin_neon_vcltzd_s64:
9541   case NEON::BI__builtin_neon_vcltzd_f64:
9542   case NEON::BI__builtin_neon_vcltzs_f32:
9543   case NEON::BI__builtin_neon_vcltzh_f16:
9544     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9545     return EmitAArch64CompareBuiltinExpr(
9546         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9547         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9548 
9549   case NEON::BI__builtin_neon_vceqzd_u64: {
9550     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9551     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9552     Ops[0] =
9553         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9554     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9555   }
9556   case NEON::BI__builtin_neon_vceqd_f64:
9557   case NEON::BI__builtin_neon_vcled_f64:
9558   case NEON::BI__builtin_neon_vcltd_f64:
9559   case NEON::BI__builtin_neon_vcged_f64:
9560   case NEON::BI__builtin_neon_vcgtd_f64: {
9561     llvm::CmpInst::Predicate P;
9562     switch (BuiltinID) {
9563     default: llvm_unreachable("missing builtin ID in switch!");
9564     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9565     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9566     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9567     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9568     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9569     }
9570     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9571     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9572     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9573     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9574     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9575   }
9576   case NEON::BI__builtin_neon_vceqs_f32:
9577   case NEON::BI__builtin_neon_vcles_f32:
9578   case NEON::BI__builtin_neon_vclts_f32:
9579   case NEON::BI__builtin_neon_vcges_f32:
9580   case NEON::BI__builtin_neon_vcgts_f32: {
9581     llvm::CmpInst::Predicate P;
9582     switch (BuiltinID) {
9583     default: llvm_unreachable("missing builtin ID in switch!");
9584     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9585     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9586     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9587     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9588     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
9589     }
9590     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9591     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
9592     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
9593     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9594     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
9595   }
9596   case NEON::BI__builtin_neon_vceqh_f16:
9597   case NEON::BI__builtin_neon_vcleh_f16:
9598   case NEON::BI__builtin_neon_vclth_f16:
9599   case NEON::BI__builtin_neon_vcgeh_f16:
9600   case NEON::BI__builtin_neon_vcgth_f16: {
9601     llvm::CmpInst::Predicate P;
9602     switch (BuiltinID) {
9603     default: llvm_unreachable("missing builtin ID in switch!");
9604     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
9605     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
9606     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
9607     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
9608     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
9609     }
9610     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9611     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9612     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
9613     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9614     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
9615   }
9616   case NEON::BI__builtin_neon_vceqd_s64:
9617   case NEON::BI__builtin_neon_vceqd_u64:
9618   case NEON::BI__builtin_neon_vcgtd_s64:
9619   case NEON::BI__builtin_neon_vcgtd_u64:
9620   case NEON::BI__builtin_neon_vcltd_s64:
9621   case NEON::BI__builtin_neon_vcltd_u64:
9622   case NEON::BI__builtin_neon_vcged_u64:
9623   case NEON::BI__builtin_neon_vcged_s64:
9624   case NEON::BI__builtin_neon_vcled_u64:
9625   case NEON::BI__builtin_neon_vcled_s64: {
9626     llvm::CmpInst::Predicate P;
9627     switch (BuiltinID) {
9628     default: llvm_unreachable("missing builtin ID in switch!");
9629     case NEON::BI__builtin_neon_vceqd_s64:
9630     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
9631     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
9632     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
9633     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
9634     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
9635     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
9636     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
9637     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
9638     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
9639     }
9640     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9641     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9642     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9643     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
9644     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
9645   }
9646   case NEON::BI__builtin_neon_vtstd_s64:
9647   case NEON::BI__builtin_neon_vtstd_u64: {
9648     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9649     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9650     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9651     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
9652     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
9653                                 llvm::Constant::getNullValue(Int64Ty));
9654     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
9655   }
9656   case NEON::BI__builtin_neon_vset_lane_i8:
9657   case NEON::BI__builtin_neon_vset_lane_i16:
9658   case NEON::BI__builtin_neon_vset_lane_i32:
9659   case NEON::BI__builtin_neon_vset_lane_i64:
9660   case NEON::BI__builtin_neon_vset_lane_bf16:
9661   case NEON::BI__builtin_neon_vset_lane_f32:
9662   case NEON::BI__builtin_neon_vsetq_lane_i8:
9663   case NEON::BI__builtin_neon_vsetq_lane_i16:
9664   case NEON::BI__builtin_neon_vsetq_lane_i32:
9665   case NEON::BI__builtin_neon_vsetq_lane_i64:
9666   case NEON::BI__builtin_neon_vsetq_lane_bf16:
9667   case NEON::BI__builtin_neon_vsetq_lane_f32:
9668     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9669     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9670   case NEON::BI__builtin_neon_vset_lane_f64:
9671     // The vector type needs a cast for the v1f64 variant.
9672     Ops[1] =
9673         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
9674     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9675     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9676   case NEON::BI__builtin_neon_vsetq_lane_f64:
9677     // The vector type needs a cast for the v2f64 variant.
9678     Ops[1] =
9679         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
9680     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9681     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9682 
9683   case NEON::BI__builtin_neon_vget_lane_i8:
9684   case NEON::BI__builtin_neon_vdupb_lane_i8:
9685     Ops[0] =
9686         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
9687     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9688                                         "vget_lane");
9689   case NEON::BI__builtin_neon_vgetq_lane_i8:
9690   case NEON::BI__builtin_neon_vdupb_laneq_i8:
9691     Ops[0] =
9692         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
9693     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9694                                         "vgetq_lane");
9695   case NEON::BI__builtin_neon_vget_lane_i16:
9696   case NEON::BI__builtin_neon_vduph_lane_i16:
9697     Ops[0] =
9698         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
9699     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9700                                         "vget_lane");
9701   case NEON::BI__builtin_neon_vgetq_lane_i16:
9702   case NEON::BI__builtin_neon_vduph_laneq_i16:
9703     Ops[0] =
9704         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
9705     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9706                                         "vgetq_lane");
9707   case NEON::BI__builtin_neon_vget_lane_i32:
9708   case NEON::BI__builtin_neon_vdups_lane_i32:
9709     Ops[0] =
9710         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
9711     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9712                                         "vget_lane");
9713   case NEON::BI__builtin_neon_vdups_lane_f32:
9714     Ops[0] =
9715         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9716     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9717                                         "vdups_lane");
9718   case NEON::BI__builtin_neon_vgetq_lane_i32:
9719   case NEON::BI__builtin_neon_vdups_laneq_i32:
9720     Ops[0] =
9721         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
9722     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9723                                         "vgetq_lane");
9724   case NEON::BI__builtin_neon_vget_lane_i64:
9725   case NEON::BI__builtin_neon_vdupd_lane_i64:
9726     Ops[0] =
9727         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
9728     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9729                                         "vget_lane");
9730   case NEON::BI__builtin_neon_vdupd_lane_f64:
9731     Ops[0] =
9732         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9733     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9734                                         "vdupd_lane");
9735   case NEON::BI__builtin_neon_vgetq_lane_i64:
9736   case NEON::BI__builtin_neon_vdupd_laneq_i64:
9737     Ops[0] =
9738         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
9739     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9740                                         "vgetq_lane");
9741   case NEON::BI__builtin_neon_vget_lane_f32:
9742     Ops[0] =
9743         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9744     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9745                                         "vget_lane");
9746   case NEON::BI__builtin_neon_vget_lane_f64:
9747     Ops[0] =
9748         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9749     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9750                                         "vget_lane");
9751   case NEON::BI__builtin_neon_vgetq_lane_f32:
9752   case NEON::BI__builtin_neon_vdups_laneq_f32:
9753     Ops[0] =
9754         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
9755     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9756                                         "vgetq_lane");
9757   case NEON::BI__builtin_neon_vgetq_lane_f64:
9758   case NEON::BI__builtin_neon_vdupd_laneq_f64:
9759     Ops[0] =
9760         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
9761     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9762                                         "vgetq_lane");
9763   case NEON::BI__builtin_neon_vaddh_f16:
9764     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9765     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
9766   case NEON::BI__builtin_neon_vsubh_f16:
9767     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9768     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
9769   case NEON::BI__builtin_neon_vmulh_f16:
9770     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9771     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
9772   case NEON::BI__builtin_neon_vdivh_f16:
9773     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9774     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
9775   case NEON::BI__builtin_neon_vfmah_f16:
9776     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9777     return emitCallMaybeConstrainedFPBuiltin(
9778         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9779         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
9780   case NEON::BI__builtin_neon_vfmsh_f16: {
9781     // FIXME: This should be an fneg instruction:
9782     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
9783     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
9784 
9785     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9786     return emitCallMaybeConstrainedFPBuiltin(
9787         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9788         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
9789   }
9790   case NEON::BI__builtin_neon_vaddd_s64:
9791   case NEON::BI__builtin_neon_vaddd_u64:
9792     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
9793   case NEON::BI__builtin_neon_vsubd_s64:
9794   case NEON::BI__builtin_neon_vsubd_u64:
9795     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
9796   case NEON::BI__builtin_neon_vqdmlalh_s16:
9797   case NEON::BI__builtin_neon_vqdmlslh_s16: {
9798     SmallVector<Value *, 2> ProductOps;
9799     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9800     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
9801     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9802     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9803                           ProductOps, "vqdmlXl");
9804     Constant *CI = ConstantInt::get(SizeTy, 0);
9805     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9806 
9807     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
9808                                         ? Intrinsic::aarch64_neon_sqadd
9809                                         : Intrinsic::aarch64_neon_sqsub;
9810     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
9811   }
9812   case NEON::BI__builtin_neon_vqshlud_n_s64: {
9813     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9814     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9815     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
9816                         Ops, "vqshlu_n");
9817   }
9818   case NEON::BI__builtin_neon_vqshld_n_u64:
9819   case NEON::BI__builtin_neon_vqshld_n_s64: {
9820     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
9821                                    ? Intrinsic::aarch64_neon_uqshl
9822                                    : Intrinsic::aarch64_neon_sqshl;
9823     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9824     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9825     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
9826   }
9827   case NEON::BI__builtin_neon_vrshrd_n_u64:
9828   case NEON::BI__builtin_neon_vrshrd_n_s64: {
9829     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
9830                                    ? Intrinsic::aarch64_neon_urshl
9831                                    : Intrinsic::aarch64_neon_srshl;
9832     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9833     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
9834     Ops[1] = ConstantInt::get(Int64Ty, -SV);
9835     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
9836   }
9837   case NEON::BI__builtin_neon_vrsrad_n_u64:
9838   case NEON::BI__builtin_neon_vrsrad_n_s64: {
9839     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
9840                                    ? Intrinsic::aarch64_neon_urshl
9841                                    : Intrinsic::aarch64_neon_srshl;
9842     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9843     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
9844     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
9845                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
9846     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
9847   }
9848   case NEON::BI__builtin_neon_vshld_n_s64:
9849   case NEON::BI__builtin_neon_vshld_n_u64: {
9850     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9851     return Builder.CreateShl(
9852         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
9853   }
9854   case NEON::BI__builtin_neon_vshrd_n_s64: {
9855     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9856     return Builder.CreateAShr(
9857         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9858                                                    Amt->getZExtValue())),
9859         "shrd_n");
9860   }
9861   case NEON::BI__builtin_neon_vshrd_n_u64: {
9862     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9863     uint64_t ShiftAmt = Amt->getZExtValue();
9864     // Right-shifting an unsigned value by its size yields 0.
9865     if (ShiftAmt == 64)
9866       return ConstantInt::get(Int64Ty, 0);
9867     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
9868                               "shrd_n");
9869   }
9870   case NEON::BI__builtin_neon_vsrad_n_s64: {
9871     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9872     Ops[1] = Builder.CreateAShr(
9873         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9874                                                    Amt->getZExtValue())),
9875         "shrd_n");
9876     return Builder.CreateAdd(Ops[0], Ops[1]);
9877   }
9878   case NEON::BI__builtin_neon_vsrad_n_u64: {
9879     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9880     uint64_t ShiftAmt = Amt->getZExtValue();
9881     // Right-shifting an unsigned value by its size yields 0.
9882     // As Op + 0 = Op, return Ops[0] directly.
9883     if (ShiftAmt == 64)
9884       return Ops[0];
9885     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
9886                                 "shrd_n");
9887     return Builder.CreateAdd(Ops[0], Ops[1]);
9888   }
9889   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
9890   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
9891   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
9892   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
9893     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9894                                           "lane");
9895     SmallVector<Value *, 2> ProductOps;
9896     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9897     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
9898     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9899     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9900                           ProductOps, "vqdmlXl");
9901     Constant *CI = ConstantInt::get(SizeTy, 0);
9902     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9903     Ops.pop_back();
9904 
9905     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
9906                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
9907                           ? Intrinsic::aarch64_neon_sqadd
9908                           : Intrinsic::aarch64_neon_sqsub;
9909     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
9910   }
9911   case NEON::BI__builtin_neon_vqdmlals_s32:
9912   case NEON::BI__builtin_neon_vqdmlsls_s32: {
9913     SmallVector<Value *, 2> ProductOps;
9914     ProductOps.push_back(Ops[1]);
9915     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
9916     Ops[1] =
9917         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9918                      ProductOps, "vqdmlXl");
9919 
9920     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
9921                                         ? Intrinsic::aarch64_neon_sqadd
9922                                         : Intrinsic::aarch64_neon_sqsub;
9923     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
9924   }
9925   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
9926   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
9927   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
9928   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
9929     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9930                                           "lane");
9931     SmallVector<Value *, 2> ProductOps;
9932     ProductOps.push_back(Ops[1]);
9933     ProductOps.push_back(Ops[2]);
9934     Ops[1] =
9935         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9936                      ProductOps, "vqdmlXl");
9937     Ops.pop_back();
9938 
9939     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
9940                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
9941                           ? Intrinsic::aarch64_neon_sqadd
9942                           : Intrinsic::aarch64_neon_sqsub;
9943     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
9944   }
9945   case NEON::BI__builtin_neon_vget_lane_bf16:
9946   case NEON::BI__builtin_neon_vduph_lane_bf16:
9947   case NEON::BI__builtin_neon_vduph_lane_f16: {
9948     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9949                                         "vget_lane");
9950   }
9951   case NEON::BI__builtin_neon_vgetq_lane_bf16:
9952   case NEON::BI__builtin_neon_vduph_laneq_bf16:
9953   case NEON::BI__builtin_neon_vduph_laneq_f16: {
9954     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9955                                         "vgetq_lane");
9956   }
9957 
9958   case AArch64::BI_InterlockedAdd: {
9959     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9960     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9961     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9962       AtomicRMWInst::Add, Arg0, Arg1,
9963       llvm::AtomicOrdering::SequentiallyConsistent);
9964     return Builder.CreateAdd(RMWI, Arg1);
9965   }
9966   }
9967 
9968   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
9969   llvm::Type *Ty = VTy;
9970   if (!Ty)
9971     return nullptr;
9972 
9973   // Not all intrinsics handled by the common case work for AArch64 yet, so only
9974   // defer to common code if it's been added to our special map.
9975   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
9976                                         AArch64SIMDIntrinsicsProvenSorted);
9977 
9978   if (Builtin)
9979     return EmitCommonNeonBuiltinExpr(
9980         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9981         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
9982         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
9983 
9984   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
9985     return V;
9986 
9987   unsigned Int;
9988   switch (BuiltinID) {
9989   default: return nullptr;
9990   case NEON::BI__builtin_neon_vbsl_v:
9991   case NEON::BI__builtin_neon_vbslq_v: {
9992     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
9993     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
9994     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
9995     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
9996 
9997     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
9998     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
9999     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10000     return Builder.CreateBitCast(Ops[0], Ty);
10001   }
10002   case NEON::BI__builtin_neon_vfma_lane_v:
10003   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10004     // The ARM builtins (and instructions) have the addend as the first
10005     // operand, but the 'fma' intrinsics have it last. Swap it around here.
10006     Value *Addend = Ops[0];
10007     Value *Multiplicand = Ops[1];
10008     Value *LaneSource = Ops[2];
10009     Ops[0] = Multiplicand;
10010     Ops[1] = LaneSource;
10011     Ops[2] = Addend;
10012 
10013     // Now adjust things to handle the lane access.
10014     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10015                          ? llvm::FixedVectorType::get(VTy->getElementType(),
10016                                                       VTy->getNumElements() / 2)
10017                          : VTy;
10018     llvm::Constant *cst = cast<Constant>(Ops[3]);
10019     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10020     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10021     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10022 
10023     Ops.pop_back();
10024     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10025                                        : Intrinsic::fma;
10026     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10027   }
10028   case NEON::BI__builtin_neon_vfma_laneq_v: {
10029     auto *VTy = cast<llvm::FixedVectorType>(Ty);
10030     // v1f64 fma should be mapped to Neon scalar f64 fma
10031     if (VTy && VTy->getElementType() == DoubleTy) {
10032       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10033       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10034       llvm::FixedVectorType *VTy =
10035           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10036       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10037       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10038       Value *Result;
10039       Result = emitCallMaybeConstrainedFPBuiltin(
10040           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10041           DoubleTy, {Ops[1], Ops[2], Ops[0]});
10042       return Builder.CreateBitCast(Result, Ty);
10043     }
10044     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10045     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10046 
10047     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10048                                            VTy->getNumElements() * 2);
10049     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10050     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10051                                                cast<ConstantInt>(Ops[3]));
10052     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10053 
10054     return emitCallMaybeConstrainedFPBuiltin(
10055         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10056         {Ops[2], Ops[1], Ops[0]});
10057   }
10058   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10059     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10060     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10061 
10062     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10063     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10064     return emitCallMaybeConstrainedFPBuiltin(
10065         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10066         {Ops[2], Ops[1], Ops[0]});
10067   }
10068   case NEON::BI__builtin_neon_vfmah_lane_f16:
10069   case NEON::BI__builtin_neon_vfmas_lane_f32:
10070   case NEON::BI__builtin_neon_vfmah_laneq_f16:
10071   case NEON::BI__builtin_neon_vfmas_laneq_f32:
10072   case NEON::BI__builtin_neon_vfmad_lane_f64:
10073   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10074     Ops.push_back(EmitScalarExpr(E->getArg(3)));
10075     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10076     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10077     return emitCallMaybeConstrainedFPBuiltin(
10078         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10079         {Ops[1], Ops[2], Ops[0]});
10080   }
10081   case NEON::BI__builtin_neon_vmull_v:
10082     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10083     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10084     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10085     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10086   case NEON::BI__builtin_neon_vmax_v:
10087   case NEON::BI__builtin_neon_vmaxq_v:
10088     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10089     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10090     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10091     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10092   case NEON::BI__builtin_neon_vmaxh_f16: {
10093     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10094     Int = Intrinsic::aarch64_neon_fmax;
10095     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10096   }
10097   case NEON::BI__builtin_neon_vmin_v:
10098   case NEON::BI__builtin_neon_vminq_v:
10099     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10100     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10101     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10102     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10103   case NEON::BI__builtin_neon_vminh_f16: {
10104     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10105     Int = Intrinsic::aarch64_neon_fmin;
10106     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10107   }
10108   case NEON::BI__builtin_neon_vabd_v:
10109   case NEON::BI__builtin_neon_vabdq_v:
10110     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10111     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10112     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10113     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10114   case NEON::BI__builtin_neon_vpadal_v:
10115   case NEON::BI__builtin_neon_vpadalq_v: {
10116     unsigned ArgElts = VTy->getNumElements();
10117     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10118     unsigned BitWidth = EltTy->getBitWidth();
10119     auto *ArgTy = llvm::FixedVectorType::get(
10120         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10121     llvm::Type* Tys[2] = { VTy, ArgTy };
10122     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10123     SmallVector<llvm::Value*, 1> TmpOps;
10124     TmpOps.push_back(Ops[1]);
10125     Function *F = CGM.getIntrinsic(Int, Tys);
10126     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10127     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10128     return Builder.CreateAdd(tmp, addend);
10129   }
10130   case NEON::BI__builtin_neon_vpmin_v:
10131   case NEON::BI__builtin_neon_vpminq_v:
10132     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10133     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10134     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10135     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10136   case NEON::BI__builtin_neon_vpmax_v:
10137   case NEON::BI__builtin_neon_vpmaxq_v:
10138     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10139     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10140     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10141     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10142   case NEON::BI__builtin_neon_vminnm_v:
10143   case NEON::BI__builtin_neon_vminnmq_v:
10144     Int = Intrinsic::aarch64_neon_fminnm;
10145     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10146   case NEON::BI__builtin_neon_vminnmh_f16:
10147     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10148     Int = Intrinsic::aarch64_neon_fminnm;
10149     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10150   case NEON::BI__builtin_neon_vmaxnm_v:
10151   case NEON::BI__builtin_neon_vmaxnmq_v:
10152     Int = Intrinsic::aarch64_neon_fmaxnm;
10153     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10154   case NEON::BI__builtin_neon_vmaxnmh_f16:
10155     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10156     Int = Intrinsic::aarch64_neon_fmaxnm;
10157     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10158   case NEON::BI__builtin_neon_vrecpss_f32: {
10159     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10160     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10161                         Ops, "vrecps");
10162   }
10163   case NEON::BI__builtin_neon_vrecpsd_f64:
10164     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10165     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10166                         Ops, "vrecps");
10167   case NEON::BI__builtin_neon_vrecpsh_f16:
10168     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10169     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10170                         Ops, "vrecps");
10171   case NEON::BI__builtin_neon_vqshrun_n_v:
10172     Int = Intrinsic::aarch64_neon_sqshrun;
10173     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10174   case NEON::BI__builtin_neon_vqrshrun_n_v:
10175     Int = Intrinsic::aarch64_neon_sqrshrun;
10176     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10177   case NEON::BI__builtin_neon_vqshrn_n_v:
10178     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10179     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10180   case NEON::BI__builtin_neon_vrshrn_n_v:
10181     Int = Intrinsic::aarch64_neon_rshrn;
10182     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10183   case NEON::BI__builtin_neon_vqrshrn_n_v:
10184     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10185     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10186   case NEON::BI__builtin_neon_vrndah_f16: {
10187     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10188     Int = Builder.getIsFPConstrained()
10189               ? Intrinsic::experimental_constrained_round
10190               : Intrinsic::round;
10191     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10192   }
10193   case NEON::BI__builtin_neon_vrnda_v:
10194   case NEON::BI__builtin_neon_vrndaq_v: {
10195     Int = Builder.getIsFPConstrained()
10196               ? Intrinsic::experimental_constrained_round
10197               : Intrinsic::round;
10198     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10199   }
10200   case NEON::BI__builtin_neon_vrndih_f16: {
10201     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10202     Int = Builder.getIsFPConstrained()
10203               ? Intrinsic::experimental_constrained_nearbyint
10204               : Intrinsic::nearbyint;
10205     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10206   }
10207   case NEON::BI__builtin_neon_vrndmh_f16: {
10208     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10209     Int = Builder.getIsFPConstrained()
10210               ? Intrinsic::experimental_constrained_floor
10211               : Intrinsic::floor;
10212     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10213   }
10214   case NEON::BI__builtin_neon_vrndm_v:
10215   case NEON::BI__builtin_neon_vrndmq_v: {
10216     Int = Builder.getIsFPConstrained()
10217               ? Intrinsic::experimental_constrained_floor
10218               : Intrinsic::floor;
10219     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10220   }
10221   case NEON::BI__builtin_neon_vrndnh_f16: {
10222     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10223     Int = Intrinsic::aarch64_neon_frintn;
10224     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10225   }
10226   case NEON::BI__builtin_neon_vrndn_v:
10227   case NEON::BI__builtin_neon_vrndnq_v: {
10228     Int = Intrinsic::aarch64_neon_frintn;
10229     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10230   }
10231   case NEON::BI__builtin_neon_vrndns_f32: {
10232     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10233     Int = Intrinsic::aarch64_neon_frintn;
10234     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10235   }
10236   case NEON::BI__builtin_neon_vrndph_f16: {
10237     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10238     Int = Builder.getIsFPConstrained()
10239               ? Intrinsic::experimental_constrained_ceil
10240               : Intrinsic::ceil;
10241     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10242   }
10243   case NEON::BI__builtin_neon_vrndp_v:
10244   case NEON::BI__builtin_neon_vrndpq_v: {
10245     Int = Builder.getIsFPConstrained()
10246               ? Intrinsic::experimental_constrained_ceil
10247               : Intrinsic::ceil;
10248     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10249   }
10250   case NEON::BI__builtin_neon_vrndxh_f16: {
10251     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10252     Int = Builder.getIsFPConstrained()
10253               ? Intrinsic::experimental_constrained_rint
10254               : Intrinsic::rint;
10255     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10256   }
10257   case NEON::BI__builtin_neon_vrndx_v:
10258   case NEON::BI__builtin_neon_vrndxq_v: {
10259     Int = Builder.getIsFPConstrained()
10260               ? Intrinsic::experimental_constrained_rint
10261               : Intrinsic::rint;
10262     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10263   }
10264   case NEON::BI__builtin_neon_vrndh_f16: {
10265     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10266     Int = Builder.getIsFPConstrained()
10267               ? Intrinsic::experimental_constrained_trunc
10268               : Intrinsic::trunc;
10269     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10270   }
10271   case NEON::BI__builtin_neon_vrnd_v:
10272   case NEON::BI__builtin_neon_vrndq_v: {
10273     Int = Builder.getIsFPConstrained()
10274               ? Intrinsic::experimental_constrained_trunc
10275               : Intrinsic::trunc;
10276     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10277   }
10278   case NEON::BI__builtin_neon_vcvt_f64_v:
10279   case NEON::BI__builtin_neon_vcvtq_f64_v:
10280     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10281     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10282     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10283                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10284   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10285     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10286            "unexpected vcvt_f64_f32 builtin");
10287     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10288     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10289 
10290     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10291   }
10292   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10293     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10294            "unexpected vcvt_f32_f64 builtin");
10295     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10296     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10297 
10298     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10299   }
10300   case NEON::BI__builtin_neon_vcvt_s32_v:
10301   case NEON::BI__builtin_neon_vcvt_u32_v:
10302   case NEON::BI__builtin_neon_vcvt_s64_v:
10303   case NEON::BI__builtin_neon_vcvt_u64_v:
10304   case NEON::BI__builtin_neon_vcvt_s16_v:
10305   case NEON::BI__builtin_neon_vcvt_u16_v:
10306   case NEON::BI__builtin_neon_vcvtq_s32_v:
10307   case NEON::BI__builtin_neon_vcvtq_u32_v:
10308   case NEON::BI__builtin_neon_vcvtq_s64_v:
10309   case NEON::BI__builtin_neon_vcvtq_u64_v:
10310   case NEON::BI__builtin_neon_vcvtq_s16_v:
10311   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10312     Int =
10313         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10314     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10315     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10316   }
10317   case NEON::BI__builtin_neon_vcvta_s16_v:
10318   case NEON::BI__builtin_neon_vcvta_u16_v:
10319   case NEON::BI__builtin_neon_vcvta_s32_v:
10320   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10321   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10322   case NEON::BI__builtin_neon_vcvta_u32_v:
10323   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10324   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10325   case NEON::BI__builtin_neon_vcvta_s64_v:
10326   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10327   case NEON::BI__builtin_neon_vcvta_u64_v:
10328   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10329     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10330     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10331     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10332   }
10333   case NEON::BI__builtin_neon_vcvtm_s16_v:
10334   case NEON::BI__builtin_neon_vcvtm_s32_v:
10335   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10336   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10337   case NEON::BI__builtin_neon_vcvtm_u16_v:
10338   case NEON::BI__builtin_neon_vcvtm_u32_v:
10339   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10340   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10341   case NEON::BI__builtin_neon_vcvtm_s64_v:
10342   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10343   case NEON::BI__builtin_neon_vcvtm_u64_v:
10344   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10345     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10346     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10347     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10348   }
10349   case NEON::BI__builtin_neon_vcvtn_s16_v:
10350   case NEON::BI__builtin_neon_vcvtn_s32_v:
10351   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10352   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10353   case NEON::BI__builtin_neon_vcvtn_u16_v:
10354   case NEON::BI__builtin_neon_vcvtn_u32_v:
10355   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10356   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10357   case NEON::BI__builtin_neon_vcvtn_s64_v:
10358   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10359   case NEON::BI__builtin_neon_vcvtn_u64_v:
10360   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10361     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10362     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10363     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10364   }
10365   case NEON::BI__builtin_neon_vcvtp_s16_v:
10366   case NEON::BI__builtin_neon_vcvtp_s32_v:
10367   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10368   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10369   case NEON::BI__builtin_neon_vcvtp_u16_v:
10370   case NEON::BI__builtin_neon_vcvtp_u32_v:
10371   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10372   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10373   case NEON::BI__builtin_neon_vcvtp_s64_v:
10374   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10375   case NEON::BI__builtin_neon_vcvtp_u64_v:
10376   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10377     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10378     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10379     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10380   }
10381   case NEON::BI__builtin_neon_vmulx_v:
10382   case NEON::BI__builtin_neon_vmulxq_v: {
10383     Int = Intrinsic::aarch64_neon_fmulx;
10384     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10385   }
10386   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10387   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10388     // vmulx_lane should be mapped to Neon scalar mulx after
10389     // extracting the scalar element
10390     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10391     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10392     Ops.pop_back();
10393     Int = Intrinsic::aarch64_neon_fmulx;
10394     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10395   }
10396   case NEON::BI__builtin_neon_vmul_lane_v:
10397   case NEON::BI__builtin_neon_vmul_laneq_v: {
10398     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10399     bool Quad = false;
10400     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10401       Quad = true;
10402     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10403     llvm::FixedVectorType *VTy =
10404         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10405     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10406     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10407     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10408     return Builder.CreateBitCast(Result, Ty);
10409   }
10410   case NEON::BI__builtin_neon_vnegd_s64:
10411     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10412   case NEON::BI__builtin_neon_vnegh_f16:
10413     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10414   case NEON::BI__builtin_neon_vpmaxnm_v:
10415   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10416     Int = Intrinsic::aarch64_neon_fmaxnmp;
10417     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10418   }
10419   case NEON::BI__builtin_neon_vpminnm_v:
10420   case NEON::BI__builtin_neon_vpminnmq_v: {
10421     Int = Intrinsic::aarch64_neon_fminnmp;
10422     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10423   }
10424   case NEON::BI__builtin_neon_vsqrth_f16: {
10425     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10426     Int = Builder.getIsFPConstrained()
10427               ? Intrinsic::experimental_constrained_sqrt
10428               : Intrinsic::sqrt;
10429     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10430   }
10431   case NEON::BI__builtin_neon_vsqrt_v:
10432   case NEON::BI__builtin_neon_vsqrtq_v: {
10433     Int = Builder.getIsFPConstrained()
10434               ? Intrinsic::experimental_constrained_sqrt
10435               : Intrinsic::sqrt;
10436     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10437     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10438   }
10439   case NEON::BI__builtin_neon_vrbit_v:
10440   case NEON::BI__builtin_neon_vrbitq_v: {
10441     Int = Intrinsic::aarch64_neon_rbit;
10442     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10443   }
10444   case NEON::BI__builtin_neon_vaddv_u8:
10445     // FIXME: These are handled by the AArch64 scalar code.
10446     usgn = true;
10447     LLVM_FALLTHROUGH;
10448   case NEON::BI__builtin_neon_vaddv_s8: {
10449     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10450     Ty = Int32Ty;
10451     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10452     llvm::Type *Tys[2] = { Ty, VTy };
10453     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10454     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10455     return Builder.CreateTrunc(Ops[0], Int8Ty);
10456   }
10457   case NEON::BI__builtin_neon_vaddv_u16:
10458     usgn = true;
10459     LLVM_FALLTHROUGH;
10460   case NEON::BI__builtin_neon_vaddv_s16: {
10461     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10462     Ty = Int32Ty;
10463     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10464     llvm::Type *Tys[2] = { Ty, VTy };
10465     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10466     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10467     return Builder.CreateTrunc(Ops[0], Int16Ty);
10468   }
10469   case NEON::BI__builtin_neon_vaddvq_u8:
10470     usgn = true;
10471     LLVM_FALLTHROUGH;
10472   case NEON::BI__builtin_neon_vaddvq_s8: {
10473     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10474     Ty = Int32Ty;
10475     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10476     llvm::Type *Tys[2] = { Ty, VTy };
10477     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10478     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10479     return Builder.CreateTrunc(Ops[0], Int8Ty);
10480   }
10481   case NEON::BI__builtin_neon_vaddvq_u16:
10482     usgn = true;
10483     LLVM_FALLTHROUGH;
10484   case NEON::BI__builtin_neon_vaddvq_s16: {
10485     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10486     Ty = Int32Ty;
10487     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10488     llvm::Type *Tys[2] = { Ty, VTy };
10489     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10490     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10491     return Builder.CreateTrunc(Ops[0], Int16Ty);
10492   }
10493   case NEON::BI__builtin_neon_vmaxv_u8: {
10494     Int = Intrinsic::aarch64_neon_umaxv;
10495     Ty = Int32Ty;
10496     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10497     llvm::Type *Tys[2] = { Ty, VTy };
10498     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10499     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10500     return Builder.CreateTrunc(Ops[0], Int8Ty);
10501   }
10502   case NEON::BI__builtin_neon_vmaxv_u16: {
10503     Int = Intrinsic::aarch64_neon_umaxv;
10504     Ty = Int32Ty;
10505     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10506     llvm::Type *Tys[2] = { Ty, VTy };
10507     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10508     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10509     return Builder.CreateTrunc(Ops[0], Int16Ty);
10510   }
10511   case NEON::BI__builtin_neon_vmaxvq_u8: {
10512     Int = Intrinsic::aarch64_neon_umaxv;
10513     Ty = Int32Ty;
10514     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10515     llvm::Type *Tys[2] = { Ty, VTy };
10516     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10517     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10518     return Builder.CreateTrunc(Ops[0], Int8Ty);
10519   }
10520   case NEON::BI__builtin_neon_vmaxvq_u16: {
10521     Int = Intrinsic::aarch64_neon_umaxv;
10522     Ty = Int32Ty;
10523     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10524     llvm::Type *Tys[2] = { Ty, VTy };
10525     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10526     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10527     return Builder.CreateTrunc(Ops[0], Int16Ty);
10528   }
10529   case NEON::BI__builtin_neon_vmaxv_s8: {
10530     Int = Intrinsic::aarch64_neon_smaxv;
10531     Ty = Int32Ty;
10532     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10533     llvm::Type *Tys[2] = { Ty, VTy };
10534     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10535     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10536     return Builder.CreateTrunc(Ops[0], Int8Ty);
10537   }
10538   case NEON::BI__builtin_neon_vmaxv_s16: {
10539     Int = Intrinsic::aarch64_neon_smaxv;
10540     Ty = Int32Ty;
10541     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10542     llvm::Type *Tys[2] = { Ty, VTy };
10543     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10544     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10545     return Builder.CreateTrunc(Ops[0], Int16Ty);
10546   }
10547   case NEON::BI__builtin_neon_vmaxvq_s8: {
10548     Int = Intrinsic::aarch64_neon_smaxv;
10549     Ty = Int32Ty;
10550     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10551     llvm::Type *Tys[2] = { Ty, VTy };
10552     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10553     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10554     return Builder.CreateTrunc(Ops[0], Int8Ty);
10555   }
10556   case NEON::BI__builtin_neon_vmaxvq_s16: {
10557     Int = Intrinsic::aarch64_neon_smaxv;
10558     Ty = Int32Ty;
10559     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10560     llvm::Type *Tys[2] = { Ty, VTy };
10561     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10562     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10563     return Builder.CreateTrunc(Ops[0], Int16Ty);
10564   }
10565   case NEON::BI__builtin_neon_vmaxv_f16: {
10566     Int = Intrinsic::aarch64_neon_fmaxv;
10567     Ty = HalfTy;
10568     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10569     llvm::Type *Tys[2] = { Ty, VTy };
10570     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10571     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10572     return Builder.CreateTrunc(Ops[0], HalfTy);
10573   }
10574   case NEON::BI__builtin_neon_vmaxvq_f16: {
10575     Int = Intrinsic::aarch64_neon_fmaxv;
10576     Ty = HalfTy;
10577     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10578     llvm::Type *Tys[2] = { Ty, VTy };
10579     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10580     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10581     return Builder.CreateTrunc(Ops[0], HalfTy);
10582   }
10583   case NEON::BI__builtin_neon_vminv_u8: {
10584     Int = Intrinsic::aarch64_neon_uminv;
10585     Ty = Int32Ty;
10586     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10587     llvm::Type *Tys[2] = { Ty, VTy };
10588     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10589     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10590     return Builder.CreateTrunc(Ops[0], Int8Ty);
10591   }
10592   case NEON::BI__builtin_neon_vminv_u16: {
10593     Int = Intrinsic::aarch64_neon_uminv;
10594     Ty = Int32Ty;
10595     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10596     llvm::Type *Tys[2] = { Ty, VTy };
10597     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10598     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10599     return Builder.CreateTrunc(Ops[0], Int16Ty);
10600   }
10601   case NEON::BI__builtin_neon_vminvq_u8: {
10602     Int = Intrinsic::aarch64_neon_uminv;
10603     Ty = Int32Ty;
10604     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10605     llvm::Type *Tys[2] = { Ty, VTy };
10606     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10607     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10608     return Builder.CreateTrunc(Ops[0], Int8Ty);
10609   }
10610   case NEON::BI__builtin_neon_vminvq_u16: {
10611     Int = Intrinsic::aarch64_neon_uminv;
10612     Ty = Int32Ty;
10613     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10614     llvm::Type *Tys[2] = { Ty, VTy };
10615     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10616     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10617     return Builder.CreateTrunc(Ops[0], Int16Ty);
10618   }
10619   case NEON::BI__builtin_neon_vminv_s8: {
10620     Int = Intrinsic::aarch64_neon_sminv;
10621     Ty = Int32Ty;
10622     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10623     llvm::Type *Tys[2] = { Ty, VTy };
10624     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10625     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10626     return Builder.CreateTrunc(Ops[0], Int8Ty);
10627   }
10628   case NEON::BI__builtin_neon_vminv_s16: {
10629     Int = Intrinsic::aarch64_neon_sminv;
10630     Ty = Int32Ty;
10631     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10632     llvm::Type *Tys[2] = { Ty, VTy };
10633     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10634     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10635     return Builder.CreateTrunc(Ops[0], Int16Ty);
10636   }
10637   case NEON::BI__builtin_neon_vminvq_s8: {
10638     Int = Intrinsic::aarch64_neon_sminv;
10639     Ty = Int32Ty;
10640     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10641     llvm::Type *Tys[2] = { Ty, VTy };
10642     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10643     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10644     return Builder.CreateTrunc(Ops[0], Int8Ty);
10645   }
10646   case NEON::BI__builtin_neon_vminvq_s16: {
10647     Int = Intrinsic::aarch64_neon_sminv;
10648     Ty = Int32Ty;
10649     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10650     llvm::Type *Tys[2] = { Ty, VTy };
10651     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10652     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10653     return Builder.CreateTrunc(Ops[0], Int16Ty);
10654   }
10655   case NEON::BI__builtin_neon_vminv_f16: {
10656     Int = Intrinsic::aarch64_neon_fminv;
10657     Ty = HalfTy;
10658     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10659     llvm::Type *Tys[2] = { Ty, VTy };
10660     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10661     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10662     return Builder.CreateTrunc(Ops[0], HalfTy);
10663   }
10664   case NEON::BI__builtin_neon_vminvq_f16: {
10665     Int = Intrinsic::aarch64_neon_fminv;
10666     Ty = HalfTy;
10667     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10668     llvm::Type *Tys[2] = { Ty, VTy };
10669     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10670     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10671     return Builder.CreateTrunc(Ops[0], HalfTy);
10672   }
10673   case NEON::BI__builtin_neon_vmaxnmv_f16: {
10674     Int = Intrinsic::aarch64_neon_fmaxnmv;
10675     Ty = HalfTy;
10676     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10677     llvm::Type *Tys[2] = { Ty, VTy };
10678     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10679     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10680     return Builder.CreateTrunc(Ops[0], HalfTy);
10681   }
10682   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
10683     Int = Intrinsic::aarch64_neon_fmaxnmv;
10684     Ty = HalfTy;
10685     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10686     llvm::Type *Tys[2] = { Ty, VTy };
10687     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10688     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10689     return Builder.CreateTrunc(Ops[0], HalfTy);
10690   }
10691   case NEON::BI__builtin_neon_vminnmv_f16: {
10692     Int = Intrinsic::aarch64_neon_fminnmv;
10693     Ty = HalfTy;
10694     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10695     llvm::Type *Tys[2] = { Ty, VTy };
10696     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10697     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10698     return Builder.CreateTrunc(Ops[0], HalfTy);
10699   }
10700   case NEON::BI__builtin_neon_vminnmvq_f16: {
10701     Int = Intrinsic::aarch64_neon_fminnmv;
10702     Ty = HalfTy;
10703     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10704     llvm::Type *Tys[2] = { Ty, VTy };
10705     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10706     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10707     return Builder.CreateTrunc(Ops[0], HalfTy);
10708   }
10709   case NEON::BI__builtin_neon_vmul_n_f64: {
10710     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10711     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
10712     return Builder.CreateFMul(Ops[0], RHS);
10713   }
10714   case NEON::BI__builtin_neon_vaddlv_u8: {
10715     Int = Intrinsic::aarch64_neon_uaddlv;
10716     Ty = Int32Ty;
10717     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10718     llvm::Type *Tys[2] = { Ty, VTy };
10719     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10720     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10721     return Builder.CreateTrunc(Ops[0], Int16Ty);
10722   }
10723   case NEON::BI__builtin_neon_vaddlv_u16: {
10724     Int = Intrinsic::aarch64_neon_uaddlv;
10725     Ty = Int32Ty;
10726     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10727     llvm::Type *Tys[2] = { Ty, VTy };
10728     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10729     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10730   }
10731   case NEON::BI__builtin_neon_vaddlvq_u8: {
10732     Int = Intrinsic::aarch64_neon_uaddlv;
10733     Ty = Int32Ty;
10734     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10735     llvm::Type *Tys[2] = { Ty, VTy };
10736     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10737     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10738     return Builder.CreateTrunc(Ops[0], Int16Ty);
10739   }
10740   case NEON::BI__builtin_neon_vaddlvq_u16: {
10741     Int = Intrinsic::aarch64_neon_uaddlv;
10742     Ty = Int32Ty;
10743     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10744     llvm::Type *Tys[2] = { Ty, VTy };
10745     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10746     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10747   }
10748   case NEON::BI__builtin_neon_vaddlv_s8: {
10749     Int = Intrinsic::aarch64_neon_saddlv;
10750     Ty = Int32Ty;
10751     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10752     llvm::Type *Tys[2] = { Ty, VTy };
10753     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10754     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10755     return Builder.CreateTrunc(Ops[0], Int16Ty);
10756   }
10757   case NEON::BI__builtin_neon_vaddlv_s16: {
10758     Int = Intrinsic::aarch64_neon_saddlv;
10759     Ty = Int32Ty;
10760     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10761     llvm::Type *Tys[2] = { Ty, VTy };
10762     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10763     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10764   }
10765   case NEON::BI__builtin_neon_vaddlvq_s8: {
10766     Int = Intrinsic::aarch64_neon_saddlv;
10767     Ty = Int32Ty;
10768     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10769     llvm::Type *Tys[2] = { Ty, VTy };
10770     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10771     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10772     return Builder.CreateTrunc(Ops[0], Int16Ty);
10773   }
10774   case NEON::BI__builtin_neon_vaddlvq_s16: {
10775     Int = Intrinsic::aarch64_neon_saddlv;
10776     Ty = Int32Ty;
10777     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10778     llvm::Type *Tys[2] = { Ty, VTy };
10779     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10780     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10781   }
10782   case NEON::BI__builtin_neon_vsri_n_v:
10783   case NEON::BI__builtin_neon_vsriq_n_v: {
10784     Int = Intrinsic::aarch64_neon_vsri;
10785     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10786     return EmitNeonCall(Intrin, Ops, "vsri_n");
10787   }
10788   case NEON::BI__builtin_neon_vsli_n_v:
10789   case NEON::BI__builtin_neon_vsliq_n_v: {
10790     Int = Intrinsic::aarch64_neon_vsli;
10791     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10792     return EmitNeonCall(Intrin, Ops, "vsli_n");
10793   }
10794   case NEON::BI__builtin_neon_vsra_n_v:
10795   case NEON::BI__builtin_neon_vsraq_n_v:
10796     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10797     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
10798     return Builder.CreateAdd(Ops[0], Ops[1]);
10799   case NEON::BI__builtin_neon_vrsra_n_v:
10800   case NEON::BI__builtin_neon_vrsraq_n_v: {
10801     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
10802     SmallVector<llvm::Value*,2> TmpOps;
10803     TmpOps.push_back(Ops[1]);
10804     TmpOps.push_back(Ops[2]);
10805     Function* F = CGM.getIntrinsic(Int, Ty);
10806     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
10807     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
10808     return Builder.CreateAdd(Ops[0], tmp);
10809   }
10810   case NEON::BI__builtin_neon_vld1_v:
10811   case NEON::BI__builtin_neon_vld1q_v: {
10812     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10813     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
10814   }
10815   case NEON::BI__builtin_neon_vst1_v:
10816   case NEON::BI__builtin_neon_vst1q_v:
10817     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10818     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10819     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
10820   case NEON::BI__builtin_neon_vld1_lane_v:
10821   case NEON::BI__builtin_neon_vld1q_lane_v: {
10822     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10823     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10824     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10825     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10826                                        PtrOp0.getAlignment());
10827     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
10828   }
10829   case NEON::BI__builtin_neon_vld1_dup_v:
10830   case NEON::BI__builtin_neon_vld1q_dup_v: {
10831     Value *V = UndefValue::get(Ty);
10832     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10833     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10834     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10835                                        PtrOp0.getAlignment());
10836     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
10837     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
10838     return EmitNeonSplat(Ops[0], CI);
10839   }
10840   case NEON::BI__builtin_neon_vst1_lane_v:
10841   case NEON::BI__builtin_neon_vst1q_lane_v:
10842     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10843     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
10844     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10845     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
10846                                       PtrOp0.getAlignment());
10847   case NEON::BI__builtin_neon_vld2_v:
10848   case NEON::BI__builtin_neon_vld2q_v: {
10849     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10850     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10851     llvm::Type *Tys[2] = { VTy, PTy };
10852     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
10853     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10854     Ops[0] = Builder.CreateBitCast(Ops[0],
10855                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10856     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10857   }
10858   case NEON::BI__builtin_neon_vld3_v:
10859   case NEON::BI__builtin_neon_vld3q_v: {
10860     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10861     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10862     llvm::Type *Tys[2] = { VTy, PTy };
10863     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
10864     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10865     Ops[0] = Builder.CreateBitCast(Ops[0],
10866                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10867     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10868   }
10869   case NEON::BI__builtin_neon_vld4_v:
10870   case NEON::BI__builtin_neon_vld4q_v: {
10871     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10872     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10873     llvm::Type *Tys[2] = { VTy, PTy };
10874     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
10875     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10876     Ops[0] = Builder.CreateBitCast(Ops[0],
10877                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10878     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10879   }
10880   case NEON::BI__builtin_neon_vld2_dup_v:
10881   case NEON::BI__builtin_neon_vld2q_dup_v: {
10882     llvm::Type *PTy =
10883       llvm::PointerType::getUnqual(VTy->getElementType());
10884     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10885     llvm::Type *Tys[2] = { VTy, PTy };
10886     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
10887     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10888     Ops[0] = Builder.CreateBitCast(Ops[0],
10889                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10890     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10891   }
10892   case NEON::BI__builtin_neon_vld3_dup_v:
10893   case NEON::BI__builtin_neon_vld3q_dup_v: {
10894     llvm::Type *PTy =
10895       llvm::PointerType::getUnqual(VTy->getElementType());
10896     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10897     llvm::Type *Tys[2] = { VTy, PTy };
10898     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
10899     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10900     Ops[0] = Builder.CreateBitCast(Ops[0],
10901                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10902     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10903   }
10904   case NEON::BI__builtin_neon_vld4_dup_v:
10905   case NEON::BI__builtin_neon_vld4q_dup_v: {
10906     llvm::Type *PTy =
10907       llvm::PointerType::getUnqual(VTy->getElementType());
10908     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10909     llvm::Type *Tys[2] = { VTy, PTy };
10910     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
10911     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10912     Ops[0] = Builder.CreateBitCast(Ops[0],
10913                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10914     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10915   }
10916   case NEON::BI__builtin_neon_vld2_lane_v:
10917   case NEON::BI__builtin_neon_vld2q_lane_v: {
10918     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10919     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
10920     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
10921     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10922     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10923     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10924     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
10925     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10926     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10927     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10928   }
10929   case NEON::BI__builtin_neon_vld3_lane_v:
10930   case NEON::BI__builtin_neon_vld3q_lane_v: {
10931     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10932     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
10933     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
10934     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10935     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10936     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10937     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10938     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
10939     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10940     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10941     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10942   }
10943   case NEON::BI__builtin_neon_vld4_lane_v:
10944   case NEON::BI__builtin_neon_vld4q_lane_v: {
10945     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10946     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
10947     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
10948     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10949     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10950     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10951     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
10952     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
10953     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
10954     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10955     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10956     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10957   }
10958   case NEON::BI__builtin_neon_vst2_v:
10959   case NEON::BI__builtin_neon_vst2q_v: {
10960     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
10961     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
10962     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
10963                         Ops, "");
10964   }
10965   case NEON::BI__builtin_neon_vst2_lane_v:
10966   case NEON::BI__builtin_neon_vst2q_lane_v: {
10967     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
10968     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
10969     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10970     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
10971                         Ops, "");
10972   }
10973   case NEON::BI__builtin_neon_vst3_v:
10974   case NEON::BI__builtin_neon_vst3q_v: {
10975     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
10976     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10977     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
10978                         Ops, "");
10979   }
10980   case NEON::BI__builtin_neon_vst3_lane_v:
10981   case NEON::BI__builtin_neon_vst3q_lane_v: {
10982     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
10983     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10984     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10985     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
10986                         Ops, "");
10987   }
10988   case NEON::BI__builtin_neon_vst4_v:
10989   case NEON::BI__builtin_neon_vst4q_v: {
10990     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
10991     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10992     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
10993                         Ops, "");
10994   }
10995   case NEON::BI__builtin_neon_vst4_lane_v:
10996   case NEON::BI__builtin_neon_vst4q_lane_v: {
10997     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
10998     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10999     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11000     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11001                         Ops, "");
11002   }
11003   case NEON::BI__builtin_neon_vtrn_v:
11004   case NEON::BI__builtin_neon_vtrnq_v: {
11005     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11006     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11007     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11008     Value *SV = nullptr;
11009 
11010     for (unsigned vi = 0; vi != 2; ++vi) {
11011       SmallVector<int, 16> Indices;
11012       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11013         Indices.push_back(i+vi);
11014         Indices.push_back(i+e+vi);
11015       }
11016       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11017       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11018       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11019     }
11020     return SV;
11021   }
11022   case NEON::BI__builtin_neon_vuzp_v:
11023   case NEON::BI__builtin_neon_vuzpq_v: {
11024     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11025     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11026     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11027     Value *SV = nullptr;
11028 
11029     for (unsigned vi = 0; vi != 2; ++vi) {
11030       SmallVector<int, 16> Indices;
11031       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11032         Indices.push_back(2*i+vi);
11033 
11034       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11035       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11036       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11037     }
11038     return SV;
11039   }
11040   case NEON::BI__builtin_neon_vzip_v:
11041   case NEON::BI__builtin_neon_vzipq_v: {
11042     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11043     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11044     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11045     Value *SV = nullptr;
11046 
11047     for (unsigned vi = 0; vi != 2; ++vi) {
11048       SmallVector<int, 16> Indices;
11049       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11050         Indices.push_back((i + vi*e) >> 1);
11051         Indices.push_back(((i + vi*e) >> 1)+e);
11052       }
11053       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11054       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11055       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11056     }
11057     return SV;
11058   }
11059   case NEON::BI__builtin_neon_vqtbl1q_v: {
11060     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11061                         Ops, "vtbl1");
11062   }
11063   case NEON::BI__builtin_neon_vqtbl2q_v: {
11064     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11065                         Ops, "vtbl2");
11066   }
11067   case NEON::BI__builtin_neon_vqtbl3q_v: {
11068     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11069                         Ops, "vtbl3");
11070   }
11071   case NEON::BI__builtin_neon_vqtbl4q_v: {
11072     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11073                         Ops, "vtbl4");
11074   }
11075   case NEON::BI__builtin_neon_vqtbx1q_v: {
11076     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11077                         Ops, "vtbx1");
11078   }
11079   case NEON::BI__builtin_neon_vqtbx2q_v: {
11080     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11081                         Ops, "vtbx2");
11082   }
11083   case NEON::BI__builtin_neon_vqtbx3q_v: {
11084     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11085                         Ops, "vtbx3");
11086   }
11087   case NEON::BI__builtin_neon_vqtbx4q_v: {
11088     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11089                         Ops, "vtbx4");
11090   }
11091   case NEON::BI__builtin_neon_vsqadd_v:
11092   case NEON::BI__builtin_neon_vsqaddq_v: {
11093     Int = Intrinsic::aarch64_neon_usqadd;
11094     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11095   }
11096   case NEON::BI__builtin_neon_vuqadd_v:
11097   case NEON::BI__builtin_neon_vuqaddq_v: {
11098     Int = Intrinsic::aarch64_neon_suqadd;
11099     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11100   }
11101   }
11102 }
11103 
EmitBPFBuiltinExpr(unsigned BuiltinID,const CallExpr * E)11104 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11105                                            const CallExpr *E) {
11106   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11107           BuiltinID == BPF::BI__builtin_btf_type_id ||
11108           BuiltinID == BPF::BI__builtin_preserve_type_info ||
11109           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11110          "unexpected BPF builtin");
11111 
11112   // A sequence number, injected into IR builtin functions, to
11113   // prevent CSE given the only difference of the funciton
11114   // may just be the debuginfo metadata.
11115   static uint32_t BuiltinSeqNum;
11116 
11117   switch (BuiltinID) {
11118   default:
11119     llvm_unreachable("Unexpected BPF builtin");
11120   case BPF::BI__builtin_preserve_field_info: {
11121     const Expr *Arg = E->getArg(0);
11122     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11123 
11124     if (!getDebugInfo()) {
11125       CGM.Error(E->getExprLoc(),
11126                 "using __builtin_preserve_field_info() without -g");
11127       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11128                         : EmitLValue(Arg).getPointer(*this);
11129     }
11130 
11131     // Enable underlying preserve_*_access_index() generation.
11132     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11133     IsInPreservedAIRegion = true;
11134     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11135                                   : EmitLValue(Arg).getPointer(*this);
11136     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11137 
11138     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11139     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11140 
11141     // Built the IR for the preserve_field_info intrinsic.
11142     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11143         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11144         {FieldAddr->getType()});
11145     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11146   }
11147   case BPF::BI__builtin_btf_type_id:
11148   case BPF::BI__builtin_preserve_type_info: {
11149     if (!getDebugInfo()) {
11150       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11151       return nullptr;
11152     }
11153 
11154     const Expr *Arg0 = E->getArg(0);
11155     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11156         Arg0->getType(), Arg0->getExprLoc());
11157 
11158     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11159     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11160     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11161 
11162     llvm::Function *FnDecl;
11163     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11164       FnDecl = llvm::Intrinsic::getDeclaration(
11165           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11166     else
11167       FnDecl = llvm::Intrinsic::getDeclaration(
11168           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11169     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11170     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11171     return Fn;
11172   }
11173   case BPF::BI__builtin_preserve_enum_value: {
11174     if (!getDebugInfo()) {
11175       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11176       return nullptr;
11177     }
11178 
11179     const Expr *Arg0 = E->getArg(0);
11180     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11181         Arg0->getType(), Arg0->getExprLoc());
11182 
11183     // Find enumerator
11184     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11185     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11186     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11187     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11188 
11189     auto &InitVal = Enumerator->getInitVal();
11190     std::string InitValStr;
11191     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11192       InitValStr = std::to_string(InitVal.getSExtValue());
11193     else
11194       InitValStr = std::to_string(InitVal.getZExtValue());
11195     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11196     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11197 
11198     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11199     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11200     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11201 
11202     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11203         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11204     CallInst *Fn =
11205         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11206     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11207     return Fn;
11208   }
11209   }
11210 }
11211 
11212 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)11213 BuildVector(ArrayRef<llvm::Value*> Ops) {
11214   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11215          "Not a power-of-two sized vector!");
11216   bool AllConstants = true;
11217   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11218     AllConstants &= isa<Constant>(Ops[i]);
11219 
11220   // If this is a constant vector, create a ConstantVector.
11221   if (AllConstants) {
11222     SmallVector<llvm::Constant*, 16> CstOps;
11223     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11224       CstOps.push_back(cast<Constant>(Ops[i]));
11225     return llvm::ConstantVector::get(CstOps);
11226   }
11227 
11228   // Otherwise, insertelement the values to build the vector.
11229   Value *Result = llvm::UndefValue::get(
11230       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11231 
11232   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11233     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11234 
11235   return Result;
11236 }
11237 
11238 // Convert the mask from an integer type to a vector of i1.
getMaskVecValue(CodeGenFunction & CGF,Value * Mask,unsigned NumElts)11239 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11240                               unsigned NumElts) {
11241 
11242   auto *MaskTy = llvm::FixedVectorType::get(
11243       CGF.Builder.getInt1Ty(),
11244       cast<IntegerType>(Mask->getType())->getBitWidth());
11245   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11246 
11247   // If we have less than 8 elements, then the starting mask was an i8 and
11248   // we need to extract down to the right number of elements.
11249   if (NumElts < 8) {
11250     int Indices[4];
11251     for (unsigned i = 0; i != NumElts; ++i)
11252       Indices[i] = i;
11253     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11254                                              makeArrayRef(Indices, NumElts),
11255                                              "extract");
11256   }
11257   return MaskVec;
11258 }
11259 
EmitX86MaskedStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11260 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11261                                  Align Alignment) {
11262   // Cast the pointer to right type.
11263   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11264                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11265 
11266   Value *MaskVec = getMaskVecValue(
11267       CGF, Ops[2],
11268       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11269 
11270   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11271 }
11272 
EmitX86MaskedLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11273 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11274                                 Align Alignment) {
11275   // Cast the pointer to right type.
11276   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11277                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11278 
11279   Value *MaskVec = getMaskVecValue(
11280       CGF, Ops[2],
11281       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11282 
11283   return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11284 }
11285 
EmitX86ExpandLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11286 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11287                                 ArrayRef<Value *> Ops) {
11288   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11289   llvm::Type *PtrTy = ResultTy->getElementType();
11290 
11291   // Cast the pointer to element type.
11292   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11293                                          llvm::PointerType::getUnqual(PtrTy));
11294 
11295   Value *MaskVec = getMaskVecValue(
11296       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11297 
11298   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11299                                            ResultTy);
11300   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11301 }
11302 
EmitX86CompressExpand(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsCompress)11303 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11304                                     ArrayRef<Value *> Ops,
11305                                     bool IsCompress) {
11306   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11307 
11308   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11309 
11310   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11311                                  : Intrinsic::x86_avx512_mask_expand;
11312   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11313   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11314 }
11315 
EmitX86CompressStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11316 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11317                                    ArrayRef<Value *> Ops) {
11318   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11319   llvm::Type *PtrTy = ResultTy->getElementType();
11320 
11321   // Cast the pointer to element type.
11322   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11323                                          llvm::PointerType::getUnqual(PtrTy));
11324 
11325   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11326 
11327   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11328                                            ResultTy);
11329   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11330 }
11331 
EmitX86MaskLogic(CodeGenFunction & CGF,Instruction::BinaryOps Opc,ArrayRef<Value * > Ops,bool InvertLHS=false)11332 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11333                               ArrayRef<Value *> Ops,
11334                               bool InvertLHS = false) {
11335   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11336   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11337   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11338 
11339   if (InvertLHS)
11340     LHS = CGF.Builder.CreateNot(LHS);
11341 
11342   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11343                                    Ops[0]->getType());
11344 }
11345 
EmitX86FunnelShift(CodeGenFunction & CGF,Value * Op0,Value * Op1,Value * Amt,bool IsRight)11346 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11347                                  Value *Amt, bool IsRight) {
11348   llvm::Type *Ty = Op0->getType();
11349 
11350   // Amount may be scalar immediate, in which case create a splat vector.
11351   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11352   // we only care about the lowest log2 bits anyway.
11353   if (Amt->getType() != Ty) {
11354     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11355     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11356     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11357   }
11358 
11359   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11360   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11361   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11362 }
11363 
EmitX86vpcom(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)11364 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11365                            bool IsSigned) {
11366   Value *Op0 = Ops[0];
11367   Value *Op1 = Ops[1];
11368   llvm::Type *Ty = Op0->getType();
11369   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11370 
11371   CmpInst::Predicate Pred;
11372   switch (Imm) {
11373   case 0x0:
11374     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11375     break;
11376   case 0x1:
11377     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11378     break;
11379   case 0x2:
11380     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11381     break;
11382   case 0x3:
11383     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11384     break;
11385   case 0x4:
11386     Pred = ICmpInst::ICMP_EQ;
11387     break;
11388   case 0x5:
11389     Pred = ICmpInst::ICMP_NE;
11390     break;
11391   case 0x6:
11392     return llvm::Constant::getNullValue(Ty); // FALSE
11393   case 0x7:
11394     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11395   default:
11396     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11397   }
11398 
11399   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11400   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11401   return Res;
11402 }
11403 
EmitX86Select(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11404 static Value *EmitX86Select(CodeGenFunction &CGF,
11405                             Value *Mask, Value *Op0, Value *Op1) {
11406 
11407   // If the mask is all ones just return first argument.
11408   if (const auto *C = dyn_cast<Constant>(Mask))
11409     if (C->isAllOnesValue())
11410       return Op0;
11411 
11412   Mask = getMaskVecValue(
11413       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11414 
11415   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11416 }
11417 
EmitX86ScalarSelect(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11418 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11419                                   Value *Mask, Value *Op0, Value *Op1) {
11420   // If the mask is all ones just return first argument.
11421   if (const auto *C = dyn_cast<Constant>(Mask))
11422     if (C->isAllOnesValue())
11423       return Op0;
11424 
11425   auto *MaskTy = llvm::FixedVectorType::get(
11426       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11427   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11428   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11429   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11430 }
11431 
EmitX86MaskedCompareResult(CodeGenFunction & CGF,Value * Cmp,unsigned NumElts,Value * MaskIn)11432 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11433                                          unsigned NumElts, Value *MaskIn) {
11434   if (MaskIn) {
11435     const auto *C = dyn_cast<Constant>(MaskIn);
11436     if (!C || !C->isAllOnesValue())
11437       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11438   }
11439 
11440   if (NumElts < 8) {
11441     int Indices[8];
11442     for (unsigned i = 0; i != NumElts; ++i)
11443       Indices[i] = i;
11444     for (unsigned i = NumElts; i != 8; ++i)
11445       Indices[i] = i % NumElts + NumElts;
11446     Cmp = CGF.Builder.CreateShuffleVector(
11447         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11448   }
11449 
11450   return CGF.Builder.CreateBitCast(Cmp,
11451                                    IntegerType::get(CGF.getLLVMContext(),
11452                                                     std::max(NumElts, 8U)));
11453 }
11454 
EmitX86MaskedCompare(CodeGenFunction & CGF,unsigned CC,bool Signed,ArrayRef<Value * > Ops)11455 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11456                                    bool Signed, ArrayRef<Value *> Ops) {
11457   assert((Ops.size() == 2 || Ops.size() == 4) &&
11458          "Unexpected number of arguments");
11459   unsigned NumElts =
11460       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11461   Value *Cmp;
11462 
11463   if (CC == 3) {
11464     Cmp = Constant::getNullValue(
11465         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11466   } else if (CC == 7) {
11467     Cmp = Constant::getAllOnesValue(
11468         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11469   } else {
11470     ICmpInst::Predicate Pred;
11471     switch (CC) {
11472     default: llvm_unreachable("Unknown condition code");
11473     case 0: Pred = ICmpInst::ICMP_EQ;  break;
11474     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11475     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11476     case 4: Pred = ICmpInst::ICMP_NE;  break;
11477     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11478     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11479     }
11480     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11481   }
11482 
11483   Value *MaskIn = nullptr;
11484   if (Ops.size() == 4)
11485     MaskIn = Ops[3];
11486 
11487   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11488 }
11489 
EmitX86ConvertToMask(CodeGenFunction & CGF,Value * In)11490 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11491   Value *Zero = Constant::getNullValue(In->getType());
11492   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11493 }
11494 
EmitX86ConvertIntToFp(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)11495 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
11496                                     ArrayRef<Value *> Ops, bool IsSigned) {
11497   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11498   llvm::Type *Ty = Ops[1]->getType();
11499 
11500   Value *Res;
11501   if (Rnd != 4) {
11502     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11503                                  : Intrinsic::x86_avx512_uitofp_round;
11504     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11505     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11506   } else {
11507     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11508                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11509   }
11510 
11511   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11512 }
11513 
11514 // Lowers X86 FMA intrinsics to IR.
EmitX86FMAExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,unsigned BuiltinID,bool IsAddSub)11515 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11516                              unsigned BuiltinID, bool IsAddSub) {
11517 
11518   bool Subtract = false;
11519   Intrinsic::ID IID = Intrinsic::not_intrinsic;
11520   switch (BuiltinID) {
11521   default: break;
11522   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11523     Subtract = true;
11524     LLVM_FALLTHROUGH;
11525   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11526   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11527   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11528     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11529   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11530     Subtract = true;
11531     LLVM_FALLTHROUGH;
11532   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11533   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11534   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11535     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11536   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11537     Subtract = true;
11538     LLVM_FALLTHROUGH;
11539   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11540   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11541   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11542     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11543     break;
11544   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11545     Subtract = true;
11546     LLVM_FALLTHROUGH;
11547   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11548   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11549   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11550     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11551     break;
11552   }
11553 
11554   Value *A = Ops[0];
11555   Value *B = Ops[1];
11556   Value *C = Ops[2];
11557 
11558   if (Subtract)
11559     C = CGF.Builder.CreateFNeg(C);
11560 
11561   Value *Res;
11562 
11563   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
11564   if (IID != Intrinsic::not_intrinsic &&
11565       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
11566        IsAddSub)) {
11567     Function *Intr = CGF.CGM.getIntrinsic(IID);
11568     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
11569   } else {
11570     llvm::Type *Ty = A->getType();
11571     Function *FMA;
11572     if (CGF.Builder.getIsFPConstrained()) {
11573       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
11574       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
11575     } else {
11576       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
11577       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
11578     }
11579   }
11580 
11581   // Handle any required masking.
11582   Value *MaskFalseVal = nullptr;
11583   switch (BuiltinID) {
11584   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11585   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11586   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11587   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11588     MaskFalseVal = Ops[0];
11589     break;
11590   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11591   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11592   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11593   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11594     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
11595     break;
11596   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11597   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11598   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11599   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11600   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11601   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11602   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11603   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11604     MaskFalseVal = Ops[2];
11605     break;
11606   }
11607 
11608   if (MaskFalseVal)
11609     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
11610 
11611   return Res;
11612 }
11613 
11614 static Value *
EmitScalarFMAExpr(CodeGenFunction & CGF,MutableArrayRef<Value * > Ops,Value * Upper,bool ZeroMask=false,unsigned PTIdx=0,bool NegAcc=false)11615 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
11616                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
11617                   bool NegAcc = false) {
11618   unsigned Rnd = 4;
11619   if (Ops.size() > 4)
11620     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11621 
11622   if (NegAcc)
11623     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
11624 
11625   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11626   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11627   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11628   Value *Res;
11629   if (Rnd != 4) {
11630     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
11631                         Intrinsic::x86_avx512_vfmadd_f32 :
11632                         Intrinsic::x86_avx512_vfmadd_f64;
11633     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11634                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
11635   } else if (CGF.Builder.getIsFPConstrained()) {
11636     Function *FMA = CGF.CGM.getIntrinsic(
11637         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
11638     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
11639   } else {
11640     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
11641     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
11642   }
11643   // If we have more than 3 arguments, we need to do masking.
11644   if (Ops.size() > 3) {
11645     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
11646                                : Ops[PTIdx];
11647 
11648     // If we negated the accumulator and the its the PassThru value we need to
11649     // bypass the negate. Conveniently Upper should be the same thing in this
11650     // case.
11651     if (NegAcc && PTIdx == 2)
11652       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
11653 
11654     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
11655   }
11656   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
11657 }
11658 
EmitX86Muldq(CodeGenFunction & CGF,bool IsSigned,ArrayRef<Value * > Ops)11659 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
11660                            ArrayRef<Value *> Ops) {
11661   llvm::Type *Ty = Ops[0]->getType();
11662   // Arguments have a vXi32 type so cast to vXi64.
11663   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
11664                                   Ty->getPrimitiveSizeInBits() / 64);
11665   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
11666   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
11667 
11668   if (IsSigned) {
11669     // Shift left then arithmetic shift right.
11670     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
11671     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
11672     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
11673     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
11674     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
11675   } else {
11676     // Clear the upper bits.
11677     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
11678     LHS = CGF.Builder.CreateAnd(LHS, Mask);
11679     RHS = CGF.Builder.CreateAnd(RHS, Mask);
11680   }
11681 
11682   return CGF.Builder.CreateMul(LHS, RHS);
11683 }
11684 
11685 // Emit a masked pternlog intrinsic. This only exists because the header has to
11686 // use a macro and we aren't able to pass the input argument to a pternlog
11687 // builtin and a select builtin without evaluating it twice.
EmitX86Ternlog(CodeGenFunction & CGF,bool ZeroMask,ArrayRef<Value * > Ops)11688 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
11689                              ArrayRef<Value *> Ops) {
11690   llvm::Type *Ty = Ops[0]->getType();
11691 
11692   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
11693   unsigned EltWidth = Ty->getScalarSizeInBits();
11694   Intrinsic::ID IID;
11695   if (VecWidth == 128 && EltWidth == 32)
11696     IID = Intrinsic::x86_avx512_pternlog_d_128;
11697   else if (VecWidth == 256 && EltWidth == 32)
11698     IID = Intrinsic::x86_avx512_pternlog_d_256;
11699   else if (VecWidth == 512 && EltWidth == 32)
11700     IID = Intrinsic::x86_avx512_pternlog_d_512;
11701   else if (VecWidth == 128 && EltWidth == 64)
11702     IID = Intrinsic::x86_avx512_pternlog_q_128;
11703   else if (VecWidth == 256 && EltWidth == 64)
11704     IID = Intrinsic::x86_avx512_pternlog_q_256;
11705   else if (VecWidth == 512 && EltWidth == 64)
11706     IID = Intrinsic::x86_avx512_pternlog_q_512;
11707   else
11708     llvm_unreachable("Unexpected intrinsic");
11709 
11710   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11711                                           Ops.drop_back());
11712   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
11713   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
11714 }
11715 
EmitX86SExtMask(CodeGenFunction & CGF,Value * Op,llvm::Type * DstTy)11716 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
11717                               llvm::Type *DstTy) {
11718   unsigned NumberOfElements =
11719       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
11720   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
11721   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
11722 }
11723 
11724 // Emit binary intrinsic with the same type used in result/args.
EmitX86BinaryIntrinsic(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Intrinsic::ID IID)11725 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
11726                                      ArrayRef<Value *> Ops, Intrinsic::ID IID) {
11727   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
11728   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
11729 }
11730 
EmitX86CpuIs(const CallExpr * E)11731 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
11732   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
11733   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
11734   return EmitX86CpuIs(CPUStr);
11735 }
11736 
11737 // Convert F16 halfs to floats.
EmitX86CvtF16ToFloatExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,llvm::Type * DstTy)11738 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
11739                                        ArrayRef<Value *> Ops,
11740                                        llvm::Type *DstTy) {
11741   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
11742          "Unknown cvtph2ps intrinsic");
11743 
11744   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
11745   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
11746     Function *F =
11747         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
11748     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
11749   }
11750 
11751   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
11752   Value *Src = Ops[0];
11753 
11754   // Extract the subvector.
11755   if (NumDstElts !=
11756       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
11757     assert(NumDstElts == 4 && "Unexpected vector size");
11758     Src = CGF.Builder.CreateShuffleVector(Src, UndefValue::get(Src->getType()),
11759                                           ArrayRef<int>{0, 1, 2, 3});
11760   }
11761 
11762   // Bitcast from vXi16 to vXf16.
11763   auto *HalfTy = llvm::FixedVectorType::get(
11764       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
11765   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
11766 
11767   // Perform the fp-extension.
11768   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
11769 
11770   if (Ops.size() >= 3)
11771     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11772   return Res;
11773 }
11774 
11775 // Convert a BF16 to a float.
EmitX86CvtBF16ToFloatExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops)11776 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
11777                                         const CallExpr *E,
11778                                         ArrayRef<Value *> Ops) {
11779   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
11780   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
11781   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
11782   llvm::Type *ResultType = CGF.ConvertType(E->getType());
11783   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
11784   return BitCast;
11785 }
11786 
EmitX86CpuIs(StringRef CPUStr)11787 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
11788 
11789   llvm::Type *Int32Ty = Builder.getInt32Ty();
11790 
11791   // Matching the struct layout from the compiler-rt/libgcc structure that is
11792   // filled in:
11793   // unsigned int __cpu_vendor;
11794   // unsigned int __cpu_type;
11795   // unsigned int __cpu_subtype;
11796   // unsigned int __cpu_features[1];
11797   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11798                                           llvm::ArrayType::get(Int32Ty, 1));
11799 
11800   // Grab the global __cpu_model.
11801   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11802   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11803 
11804   // Calculate the index needed to access the correct field based on the
11805   // range. Also adjust the expected value.
11806   unsigned Index;
11807   unsigned Value;
11808   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
11809 #define X86_VENDOR(ENUM, STRING)                                               \
11810   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
11811 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
11812   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11813 #define X86_CPU_TYPE(ENUM, STR)                                                \
11814   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11815 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
11816   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
11817 #include "llvm/Support/X86TargetParser.def"
11818                                .Default({0, 0});
11819   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
11820 
11821   // Grab the appropriate field from __cpu_model.
11822   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
11823                          ConstantInt::get(Int32Ty, Index)};
11824   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
11825   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
11826 
11827   // Check the value of the field against the requested value.
11828   return Builder.CreateICmpEQ(CpuValue,
11829                                   llvm::ConstantInt::get(Int32Ty, Value));
11830 }
11831 
EmitX86CpuSupports(const CallExpr * E)11832 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
11833   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
11834   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
11835   return EmitX86CpuSupports(FeatureStr);
11836 }
11837 
11838 uint64_t
GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs)11839 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
11840   // Processor features and mapping to processor feature value.
11841   uint64_t FeaturesMask = 0;
11842   for (const StringRef &FeatureStr : FeatureStrs) {
11843     unsigned Feature =
11844         StringSwitch<unsigned>(FeatureStr)
11845 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
11846 #include "llvm/Support/X86TargetParser.def"
11847         ;
11848     FeaturesMask |= (1ULL << Feature);
11849   }
11850   return FeaturesMask;
11851 }
11852 
EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs)11853 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
11854   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
11855 }
11856 
EmitX86CpuSupports(uint64_t FeaturesMask)11857 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
11858   uint32_t Features1 = Lo_32(FeaturesMask);
11859   uint32_t Features2 = Hi_32(FeaturesMask);
11860 
11861   Value *Result = Builder.getTrue();
11862 
11863   if (Features1 != 0) {
11864     // Matching the struct layout from the compiler-rt/libgcc structure that is
11865     // filled in:
11866     // unsigned int __cpu_vendor;
11867     // unsigned int __cpu_type;
11868     // unsigned int __cpu_subtype;
11869     // unsigned int __cpu_features[1];
11870     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11871                                             llvm::ArrayType::get(Int32Ty, 1));
11872 
11873     // Grab the global __cpu_model.
11874     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11875     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11876 
11877     // Grab the first (0th) element from the field __cpu_features off of the
11878     // global in the struct STy.
11879     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
11880                      Builder.getInt32(0)};
11881     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
11882     Value *Features =
11883         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
11884 
11885     // Check the value of the bit corresponding to the feature requested.
11886     Value *Mask = Builder.getInt32(Features1);
11887     Value *Bitset = Builder.CreateAnd(Features, Mask);
11888     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11889     Result = Builder.CreateAnd(Result, Cmp);
11890   }
11891 
11892   if (Features2 != 0) {
11893     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
11894                                                              "__cpu_features2");
11895     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
11896 
11897     Value *Features =
11898         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
11899 
11900     // Check the value of the bit corresponding to the feature requested.
11901     Value *Mask = Builder.getInt32(Features2);
11902     Value *Bitset = Builder.CreateAnd(Features, Mask);
11903     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11904     Result = Builder.CreateAnd(Result, Cmp);
11905   }
11906 
11907   return Result;
11908 }
11909 
EmitX86CpuInit()11910 Value *CodeGenFunction::EmitX86CpuInit() {
11911   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
11912                                                     /*Variadic*/ false);
11913   llvm::FunctionCallee Func =
11914       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
11915   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
11916   cast<llvm::GlobalValue>(Func.getCallee())
11917       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
11918   return Builder.CreateCall(Func);
11919 }
11920 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)11921 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
11922                                            const CallExpr *E) {
11923   if (BuiltinID == X86::BI__builtin_cpu_is)
11924     return EmitX86CpuIs(E);
11925   if (BuiltinID == X86::BI__builtin_cpu_supports)
11926     return EmitX86CpuSupports(E);
11927   if (BuiltinID == X86::BI__builtin_cpu_init)
11928     return EmitX86CpuInit();
11929 
11930   // Handle MSVC intrinsics before argument evaluation to prevent double
11931   // evaluation.
11932   if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
11933     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
11934 
11935   SmallVector<Value*, 4> Ops;
11936   bool IsMaskFCmp = false;
11937 
11938   // Find out if any arguments are required to be integer constant expressions.
11939   unsigned ICEArguments = 0;
11940   ASTContext::GetBuiltinTypeError Error;
11941   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11942   assert(Error == ASTContext::GE_None && "Should not codegen an error");
11943 
11944   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
11945     // If this is a normal argument, just emit it as a scalar.
11946     if ((ICEArguments & (1 << i)) == 0) {
11947       Ops.push_back(EmitScalarExpr(E->getArg(i)));
11948       continue;
11949     }
11950 
11951     // If this is required to be a constant, constant fold it so that we know
11952     // that the generated intrinsic gets a ConstantInt.
11953     Ops.push_back(llvm::ConstantInt::get(
11954         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
11955   }
11956 
11957   // These exist so that the builtin that takes an immediate can be bounds
11958   // checked by clang to avoid passing bad immediates to the backend. Since
11959   // AVX has a larger immediate than SSE we would need separate builtins to
11960   // do the different bounds checking. Rather than create a clang specific
11961   // SSE only builtin, this implements eight separate builtins to match gcc
11962   // implementation.
11963   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
11964     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
11965     llvm::Function *F = CGM.getIntrinsic(ID);
11966     return Builder.CreateCall(F, Ops);
11967   };
11968 
11969   // For the vector forms of FP comparisons, translate the builtins directly to
11970   // IR.
11971   // TODO: The builtins could be removed if the SSE header files used vector
11972   // extension comparisons directly (vector ordered/unordered may need
11973   // additional support via __builtin_isnan()).
11974   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred,
11975                                       bool IsSignaling) {
11976     Value *Cmp;
11977     if (IsSignaling)
11978       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
11979     else
11980       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11981     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
11982     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
11983     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
11984     return Builder.CreateBitCast(Sext, FPVecTy);
11985   };
11986 
11987   switch (BuiltinID) {
11988   default: return nullptr;
11989   case X86::BI_mm_prefetch: {
11990     Value *Address = Ops[0];
11991     ConstantInt *C = cast<ConstantInt>(Ops[1]);
11992     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
11993     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
11994     Value *Data = ConstantInt::get(Int32Ty, 1);
11995     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11996     return Builder.CreateCall(F, {Address, RW, Locality, Data});
11997   }
11998   case X86::BI_mm_clflush: {
11999     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12000                               Ops[0]);
12001   }
12002   case X86::BI_mm_lfence: {
12003     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12004   }
12005   case X86::BI_mm_mfence: {
12006     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12007   }
12008   case X86::BI_mm_sfence: {
12009     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12010   }
12011   case X86::BI_mm_pause: {
12012     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12013   }
12014   case X86::BI__rdtsc: {
12015     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12016   }
12017   case X86::BI__builtin_ia32_rdtscp: {
12018     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12019     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12020                                       Ops[0]);
12021     return Builder.CreateExtractValue(Call, 0);
12022   }
12023   case X86::BI__builtin_ia32_lzcnt_u16:
12024   case X86::BI__builtin_ia32_lzcnt_u32:
12025   case X86::BI__builtin_ia32_lzcnt_u64: {
12026     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12027     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12028   }
12029   case X86::BI__builtin_ia32_tzcnt_u16:
12030   case X86::BI__builtin_ia32_tzcnt_u32:
12031   case X86::BI__builtin_ia32_tzcnt_u64: {
12032     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12033     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12034   }
12035   case X86::BI__builtin_ia32_undef128:
12036   case X86::BI__builtin_ia32_undef256:
12037   case X86::BI__builtin_ia32_undef512:
12038     // The x86 definition of "undef" is not the same as the LLVM definition
12039     // (PR32176). We leave optimizing away an unnecessary zero constant to the
12040     // IR optimizer and backend.
12041     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12042     // value, we should use that here instead of a zero.
12043     return llvm::Constant::getNullValue(ConvertType(E->getType()));
12044   case X86::BI__builtin_ia32_vec_init_v8qi:
12045   case X86::BI__builtin_ia32_vec_init_v4hi:
12046   case X86::BI__builtin_ia32_vec_init_v2si:
12047     return Builder.CreateBitCast(BuildVector(Ops),
12048                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
12049   case X86::BI__builtin_ia32_vec_ext_v2si:
12050   case X86::BI__builtin_ia32_vec_ext_v16qi:
12051   case X86::BI__builtin_ia32_vec_ext_v8hi:
12052   case X86::BI__builtin_ia32_vec_ext_v4si:
12053   case X86::BI__builtin_ia32_vec_ext_v4sf:
12054   case X86::BI__builtin_ia32_vec_ext_v2di:
12055   case X86::BI__builtin_ia32_vec_ext_v32qi:
12056   case X86::BI__builtin_ia32_vec_ext_v16hi:
12057   case X86::BI__builtin_ia32_vec_ext_v8si:
12058   case X86::BI__builtin_ia32_vec_ext_v4di: {
12059     unsigned NumElts =
12060         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12061     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12062     Index &= NumElts - 1;
12063     // These builtins exist so we can ensure the index is an ICE and in range.
12064     // Otherwise we could just do this in the header file.
12065     return Builder.CreateExtractElement(Ops[0], Index);
12066   }
12067   case X86::BI__builtin_ia32_vec_set_v16qi:
12068   case X86::BI__builtin_ia32_vec_set_v8hi:
12069   case X86::BI__builtin_ia32_vec_set_v4si:
12070   case X86::BI__builtin_ia32_vec_set_v2di:
12071   case X86::BI__builtin_ia32_vec_set_v32qi:
12072   case X86::BI__builtin_ia32_vec_set_v16hi:
12073   case X86::BI__builtin_ia32_vec_set_v8si:
12074   case X86::BI__builtin_ia32_vec_set_v4di: {
12075     unsigned NumElts =
12076         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12077     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12078     Index &= NumElts - 1;
12079     // These builtins exist so we can ensure the index is an ICE and in range.
12080     // Otherwise we could just do this in the header file.
12081     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12082   }
12083   case X86::BI_mm_setcsr:
12084   case X86::BI__builtin_ia32_ldmxcsr: {
12085     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12086     Builder.CreateStore(Ops[0], Tmp);
12087     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12088                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12089   }
12090   case X86::BI_mm_getcsr:
12091   case X86::BI__builtin_ia32_stmxcsr: {
12092     Address Tmp = CreateMemTemp(E->getType());
12093     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12094                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12095     return Builder.CreateLoad(Tmp, "stmxcsr");
12096   }
12097   case X86::BI__builtin_ia32_xsave:
12098   case X86::BI__builtin_ia32_xsave64:
12099   case X86::BI__builtin_ia32_xrstor:
12100   case X86::BI__builtin_ia32_xrstor64:
12101   case X86::BI__builtin_ia32_xsaveopt:
12102   case X86::BI__builtin_ia32_xsaveopt64:
12103   case X86::BI__builtin_ia32_xrstors:
12104   case X86::BI__builtin_ia32_xrstors64:
12105   case X86::BI__builtin_ia32_xsavec:
12106   case X86::BI__builtin_ia32_xsavec64:
12107   case X86::BI__builtin_ia32_xsaves:
12108   case X86::BI__builtin_ia32_xsaves64:
12109   case X86::BI__builtin_ia32_xsetbv:
12110   case X86::BI_xsetbv: {
12111     Intrinsic::ID ID;
12112 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12113     case X86::BI__builtin_ia32_##NAME: \
12114       ID = Intrinsic::x86_##NAME; \
12115       break
12116     switch (BuiltinID) {
12117     default: llvm_unreachable("Unsupported intrinsic!");
12118     INTRINSIC_X86_XSAVE_ID(xsave);
12119     INTRINSIC_X86_XSAVE_ID(xsave64);
12120     INTRINSIC_X86_XSAVE_ID(xrstor);
12121     INTRINSIC_X86_XSAVE_ID(xrstor64);
12122     INTRINSIC_X86_XSAVE_ID(xsaveopt);
12123     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12124     INTRINSIC_X86_XSAVE_ID(xrstors);
12125     INTRINSIC_X86_XSAVE_ID(xrstors64);
12126     INTRINSIC_X86_XSAVE_ID(xsavec);
12127     INTRINSIC_X86_XSAVE_ID(xsavec64);
12128     INTRINSIC_X86_XSAVE_ID(xsaves);
12129     INTRINSIC_X86_XSAVE_ID(xsaves64);
12130     INTRINSIC_X86_XSAVE_ID(xsetbv);
12131     case X86::BI_xsetbv:
12132       ID = Intrinsic::x86_xsetbv;
12133       break;
12134     }
12135 #undef INTRINSIC_X86_XSAVE_ID
12136     Value *Mhi = Builder.CreateTrunc(
12137       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12138     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12139     Ops[1] = Mhi;
12140     Ops.push_back(Mlo);
12141     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12142   }
12143   case X86::BI__builtin_ia32_xgetbv:
12144   case X86::BI_xgetbv:
12145     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12146   case X86::BI__builtin_ia32_storedqudi128_mask:
12147   case X86::BI__builtin_ia32_storedqusi128_mask:
12148   case X86::BI__builtin_ia32_storedquhi128_mask:
12149   case X86::BI__builtin_ia32_storedquqi128_mask:
12150   case X86::BI__builtin_ia32_storeupd128_mask:
12151   case X86::BI__builtin_ia32_storeups128_mask:
12152   case X86::BI__builtin_ia32_storedqudi256_mask:
12153   case X86::BI__builtin_ia32_storedqusi256_mask:
12154   case X86::BI__builtin_ia32_storedquhi256_mask:
12155   case X86::BI__builtin_ia32_storedquqi256_mask:
12156   case X86::BI__builtin_ia32_storeupd256_mask:
12157   case X86::BI__builtin_ia32_storeups256_mask:
12158   case X86::BI__builtin_ia32_storedqudi512_mask:
12159   case X86::BI__builtin_ia32_storedqusi512_mask:
12160   case X86::BI__builtin_ia32_storedquhi512_mask:
12161   case X86::BI__builtin_ia32_storedquqi512_mask:
12162   case X86::BI__builtin_ia32_storeupd512_mask:
12163   case X86::BI__builtin_ia32_storeups512_mask:
12164     return EmitX86MaskedStore(*this, Ops, Align(1));
12165 
12166   case X86::BI__builtin_ia32_storess128_mask:
12167   case X86::BI__builtin_ia32_storesd128_mask:
12168     return EmitX86MaskedStore(*this, Ops, Align(1));
12169 
12170   case X86::BI__builtin_ia32_vpopcntb_128:
12171   case X86::BI__builtin_ia32_vpopcntd_128:
12172   case X86::BI__builtin_ia32_vpopcntq_128:
12173   case X86::BI__builtin_ia32_vpopcntw_128:
12174   case X86::BI__builtin_ia32_vpopcntb_256:
12175   case X86::BI__builtin_ia32_vpopcntd_256:
12176   case X86::BI__builtin_ia32_vpopcntq_256:
12177   case X86::BI__builtin_ia32_vpopcntw_256:
12178   case X86::BI__builtin_ia32_vpopcntb_512:
12179   case X86::BI__builtin_ia32_vpopcntd_512:
12180   case X86::BI__builtin_ia32_vpopcntq_512:
12181   case X86::BI__builtin_ia32_vpopcntw_512: {
12182     llvm::Type *ResultType = ConvertType(E->getType());
12183     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12184     return Builder.CreateCall(F, Ops);
12185   }
12186   case X86::BI__builtin_ia32_cvtmask2b128:
12187   case X86::BI__builtin_ia32_cvtmask2b256:
12188   case X86::BI__builtin_ia32_cvtmask2b512:
12189   case X86::BI__builtin_ia32_cvtmask2w128:
12190   case X86::BI__builtin_ia32_cvtmask2w256:
12191   case X86::BI__builtin_ia32_cvtmask2w512:
12192   case X86::BI__builtin_ia32_cvtmask2d128:
12193   case X86::BI__builtin_ia32_cvtmask2d256:
12194   case X86::BI__builtin_ia32_cvtmask2d512:
12195   case X86::BI__builtin_ia32_cvtmask2q128:
12196   case X86::BI__builtin_ia32_cvtmask2q256:
12197   case X86::BI__builtin_ia32_cvtmask2q512:
12198     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12199 
12200   case X86::BI__builtin_ia32_cvtb2mask128:
12201   case X86::BI__builtin_ia32_cvtb2mask256:
12202   case X86::BI__builtin_ia32_cvtb2mask512:
12203   case X86::BI__builtin_ia32_cvtw2mask128:
12204   case X86::BI__builtin_ia32_cvtw2mask256:
12205   case X86::BI__builtin_ia32_cvtw2mask512:
12206   case X86::BI__builtin_ia32_cvtd2mask128:
12207   case X86::BI__builtin_ia32_cvtd2mask256:
12208   case X86::BI__builtin_ia32_cvtd2mask512:
12209   case X86::BI__builtin_ia32_cvtq2mask128:
12210   case X86::BI__builtin_ia32_cvtq2mask256:
12211   case X86::BI__builtin_ia32_cvtq2mask512:
12212     return EmitX86ConvertToMask(*this, Ops[0]);
12213 
12214   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12215   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12216   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12217     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
12218   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12219   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12220   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12221     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
12222 
12223   case X86::BI__builtin_ia32_vfmaddss3:
12224   case X86::BI__builtin_ia32_vfmaddsd3:
12225   case X86::BI__builtin_ia32_vfmaddss3_mask:
12226   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12227     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
12228   case X86::BI__builtin_ia32_vfmaddss:
12229   case X86::BI__builtin_ia32_vfmaddsd:
12230     return EmitScalarFMAExpr(*this, Ops,
12231                              Constant::getNullValue(Ops[0]->getType()));
12232   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12233   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12234     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
12235   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12236   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12237     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
12238   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12239   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12240     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
12241                              /*NegAcc*/true);
12242   case X86::BI__builtin_ia32_vfmaddps:
12243   case X86::BI__builtin_ia32_vfmaddpd:
12244   case X86::BI__builtin_ia32_vfmaddps256:
12245   case X86::BI__builtin_ia32_vfmaddpd256:
12246   case X86::BI__builtin_ia32_vfmaddps512_mask:
12247   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12248   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12249   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12250   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12251   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12252   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12253   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12254     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
12255   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12256   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12257   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12258   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12259   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12260   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12261   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12262   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12263     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
12264 
12265   case X86::BI__builtin_ia32_movdqa32store128_mask:
12266   case X86::BI__builtin_ia32_movdqa64store128_mask:
12267   case X86::BI__builtin_ia32_storeaps128_mask:
12268   case X86::BI__builtin_ia32_storeapd128_mask:
12269   case X86::BI__builtin_ia32_movdqa32store256_mask:
12270   case X86::BI__builtin_ia32_movdqa64store256_mask:
12271   case X86::BI__builtin_ia32_storeaps256_mask:
12272   case X86::BI__builtin_ia32_storeapd256_mask:
12273   case X86::BI__builtin_ia32_movdqa32store512_mask:
12274   case X86::BI__builtin_ia32_movdqa64store512_mask:
12275   case X86::BI__builtin_ia32_storeaps512_mask:
12276   case X86::BI__builtin_ia32_storeapd512_mask:
12277     return EmitX86MaskedStore(
12278         *this, Ops,
12279         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12280 
12281   case X86::BI__builtin_ia32_loadups128_mask:
12282   case X86::BI__builtin_ia32_loadups256_mask:
12283   case X86::BI__builtin_ia32_loadups512_mask:
12284   case X86::BI__builtin_ia32_loadupd128_mask:
12285   case X86::BI__builtin_ia32_loadupd256_mask:
12286   case X86::BI__builtin_ia32_loadupd512_mask:
12287   case X86::BI__builtin_ia32_loaddquqi128_mask:
12288   case X86::BI__builtin_ia32_loaddquqi256_mask:
12289   case X86::BI__builtin_ia32_loaddquqi512_mask:
12290   case X86::BI__builtin_ia32_loaddquhi128_mask:
12291   case X86::BI__builtin_ia32_loaddquhi256_mask:
12292   case X86::BI__builtin_ia32_loaddquhi512_mask:
12293   case X86::BI__builtin_ia32_loaddqusi128_mask:
12294   case X86::BI__builtin_ia32_loaddqusi256_mask:
12295   case X86::BI__builtin_ia32_loaddqusi512_mask:
12296   case X86::BI__builtin_ia32_loaddqudi128_mask:
12297   case X86::BI__builtin_ia32_loaddqudi256_mask:
12298   case X86::BI__builtin_ia32_loaddqudi512_mask:
12299     return EmitX86MaskedLoad(*this, Ops, Align(1));
12300 
12301   case X86::BI__builtin_ia32_loadss128_mask:
12302   case X86::BI__builtin_ia32_loadsd128_mask:
12303     return EmitX86MaskedLoad(*this, Ops, Align(1));
12304 
12305   case X86::BI__builtin_ia32_loadaps128_mask:
12306   case X86::BI__builtin_ia32_loadaps256_mask:
12307   case X86::BI__builtin_ia32_loadaps512_mask:
12308   case X86::BI__builtin_ia32_loadapd128_mask:
12309   case X86::BI__builtin_ia32_loadapd256_mask:
12310   case X86::BI__builtin_ia32_loadapd512_mask:
12311   case X86::BI__builtin_ia32_movdqa32load128_mask:
12312   case X86::BI__builtin_ia32_movdqa32load256_mask:
12313   case X86::BI__builtin_ia32_movdqa32load512_mask:
12314   case X86::BI__builtin_ia32_movdqa64load128_mask:
12315   case X86::BI__builtin_ia32_movdqa64load256_mask:
12316   case X86::BI__builtin_ia32_movdqa64load512_mask:
12317     return EmitX86MaskedLoad(
12318         *this, Ops,
12319         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12320 
12321   case X86::BI__builtin_ia32_expandloaddf128_mask:
12322   case X86::BI__builtin_ia32_expandloaddf256_mask:
12323   case X86::BI__builtin_ia32_expandloaddf512_mask:
12324   case X86::BI__builtin_ia32_expandloadsf128_mask:
12325   case X86::BI__builtin_ia32_expandloadsf256_mask:
12326   case X86::BI__builtin_ia32_expandloadsf512_mask:
12327   case X86::BI__builtin_ia32_expandloaddi128_mask:
12328   case X86::BI__builtin_ia32_expandloaddi256_mask:
12329   case X86::BI__builtin_ia32_expandloaddi512_mask:
12330   case X86::BI__builtin_ia32_expandloadsi128_mask:
12331   case X86::BI__builtin_ia32_expandloadsi256_mask:
12332   case X86::BI__builtin_ia32_expandloadsi512_mask:
12333   case X86::BI__builtin_ia32_expandloadhi128_mask:
12334   case X86::BI__builtin_ia32_expandloadhi256_mask:
12335   case X86::BI__builtin_ia32_expandloadhi512_mask:
12336   case X86::BI__builtin_ia32_expandloadqi128_mask:
12337   case X86::BI__builtin_ia32_expandloadqi256_mask:
12338   case X86::BI__builtin_ia32_expandloadqi512_mask:
12339     return EmitX86ExpandLoad(*this, Ops);
12340 
12341   case X86::BI__builtin_ia32_compressstoredf128_mask:
12342   case X86::BI__builtin_ia32_compressstoredf256_mask:
12343   case X86::BI__builtin_ia32_compressstoredf512_mask:
12344   case X86::BI__builtin_ia32_compressstoresf128_mask:
12345   case X86::BI__builtin_ia32_compressstoresf256_mask:
12346   case X86::BI__builtin_ia32_compressstoresf512_mask:
12347   case X86::BI__builtin_ia32_compressstoredi128_mask:
12348   case X86::BI__builtin_ia32_compressstoredi256_mask:
12349   case X86::BI__builtin_ia32_compressstoredi512_mask:
12350   case X86::BI__builtin_ia32_compressstoresi128_mask:
12351   case X86::BI__builtin_ia32_compressstoresi256_mask:
12352   case X86::BI__builtin_ia32_compressstoresi512_mask:
12353   case X86::BI__builtin_ia32_compressstorehi128_mask:
12354   case X86::BI__builtin_ia32_compressstorehi256_mask:
12355   case X86::BI__builtin_ia32_compressstorehi512_mask:
12356   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12357   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12358   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12359     return EmitX86CompressStore(*this, Ops);
12360 
12361   case X86::BI__builtin_ia32_expanddf128_mask:
12362   case X86::BI__builtin_ia32_expanddf256_mask:
12363   case X86::BI__builtin_ia32_expanddf512_mask:
12364   case X86::BI__builtin_ia32_expandsf128_mask:
12365   case X86::BI__builtin_ia32_expandsf256_mask:
12366   case X86::BI__builtin_ia32_expandsf512_mask:
12367   case X86::BI__builtin_ia32_expanddi128_mask:
12368   case X86::BI__builtin_ia32_expanddi256_mask:
12369   case X86::BI__builtin_ia32_expanddi512_mask:
12370   case X86::BI__builtin_ia32_expandsi128_mask:
12371   case X86::BI__builtin_ia32_expandsi256_mask:
12372   case X86::BI__builtin_ia32_expandsi512_mask:
12373   case X86::BI__builtin_ia32_expandhi128_mask:
12374   case X86::BI__builtin_ia32_expandhi256_mask:
12375   case X86::BI__builtin_ia32_expandhi512_mask:
12376   case X86::BI__builtin_ia32_expandqi128_mask:
12377   case X86::BI__builtin_ia32_expandqi256_mask:
12378   case X86::BI__builtin_ia32_expandqi512_mask:
12379     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12380 
12381   case X86::BI__builtin_ia32_compressdf128_mask:
12382   case X86::BI__builtin_ia32_compressdf256_mask:
12383   case X86::BI__builtin_ia32_compressdf512_mask:
12384   case X86::BI__builtin_ia32_compresssf128_mask:
12385   case X86::BI__builtin_ia32_compresssf256_mask:
12386   case X86::BI__builtin_ia32_compresssf512_mask:
12387   case X86::BI__builtin_ia32_compressdi128_mask:
12388   case X86::BI__builtin_ia32_compressdi256_mask:
12389   case X86::BI__builtin_ia32_compressdi512_mask:
12390   case X86::BI__builtin_ia32_compresssi128_mask:
12391   case X86::BI__builtin_ia32_compresssi256_mask:
12392   case X86::BI__builtin_ia32_compresssi512_mask:
12393   case X86::BI__builtin_ia32_compresshi128_mask:
12394   case X86::BI__builtin_ia32_compresshi256_mask:
12395   case X86::BI__builtin_ia32_compresshi512_mask:
12396   case X86::BI__builtin_ia32_compressqi128_mask:
12397   case X86::BI__builtin_ia32_compressqi256_mask:
12398   case X86::BI__builtin_ia32_compressqi512_mask:
12399     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12400 
12401   case X86::BI__builtin_ia32_gather3div2df:
12402   case X86::BI__builtin_ia32_gather3div2di:
12403   case X86::BI__builtin_ia32_gather3div4df:
12404   case X86::BI__builtin_ia32_gather3div4di:
12405   case X86::BI__builtin_ia32_gather3div4sf:
12406   case X86::BI__builtin_ia32_gather3div4si:
12407   case X86::BI__builtin_ia32_gather3div8sf:
12408   case X86::BI__builtin_ia32_gather3div8si:
12409   case X86::BI__builtin_ia32_gather3siv2df:
12410   case X86::BI__builtin_ia32_gather3siv2di:
12411   case X86::BI__builtin_ia32_gather3siv4df:
12412   case X86::BI__builtin_ia32_gather3siv4di:
12413   case X86::BI__builtin_ia32_gather3siv4sf:
12414   case X86::BI__builtin_ia32_gather3siv4si:
12415   case X86::BI__builtin_ia32_gather3siv8sf:
12416   case X86::BI__builtin_ia32_gather3siv8si:
12417   case X86::BI__builtin_ia32_gathersiv8df:
12418   case X86::BI__builtin_ia32_gathersiv16sf:
12419   case X86::BI__builtin_ia32_gatherdiv8df:
12420   case X86::BI__builtin_ia32_gatherdiv16sf:
12421   case X86::BI__builtin_ia32_gathersiv8di:
12422   case X86::BI__builtin_ia32_gathersiv16si:
12423   case X86::BI__builtin_ia32_gatherdiv8di:
12424   case X86::BI__builtin_ia32_gatherdiv16si: {
12425     Intrinsic::ID IID;
12426     switch (BuiltinID) {
12427     default: llvm_unreachable("Unexpected builtin");
12428     case X86::BI__builtin_ia32_gather3div2df:
12429       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12430       break;
12431     case X86::BI__builtin_ia32_gather3div2di:
12432       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12433       break;
12434     case X86::BI__builtin_ia32_gather3div4df:
12435       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12436       break;
12437     case X86::BI__builtin_ia32_gather3div4di:
12438       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12439       break;
12440     case X86::BI__builtin_ia32_gather3div4sf:
12441       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12442       break;
12443     case X86::BI__builtin_ia32_gather3div4si:
12444       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12445       break;
12446     case X86::BI__builtin_ia32_gather3div8sf:
12447       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12448       break;
12449     case X86::BI__builtin_ia32_gather3div8si:
12450       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12451       break;
12452     case X86::BI__builtin_ia32_gather3siv2df:
12453       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12454       break;
12455     case X86::BI__builtin_ia32_gather3siv2di:
12456       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12457       break;
12458     case X86::BI__builtin_ia32_gather3siv4df:
12459       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12460       break;
12461     case X86::BI__builtin_ia32_gather3siv4di:
12462       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12463       break;
12464     case X86::BI__builtin_ia32_gather3siv4sf:
12465       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12466       break;
12467     case X86::BI__builtin_ia32_gather3siv4si:
12468       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12469       break;
12470     case X86::BI__builtin_ia32_gather3siv8sf:
12471       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12472       break;
12473     case X86::BI__builtin_ia32_gather3siv8si:
12474       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12475       break;
12476     case X86::BI__builtin_ia32_gathersiv8df:
12477       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12478       break;
12479     case X86::BI__builtin_ia32_gathersiv16sf:
12480       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12481       break;
12482     case X86::BI__builtin_ia32_gatherdiv8df:
12483       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12484       break;
12485     case X86::BI__builtin_ia32_gatherdiv16sf:
12486       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12487       break;
12488     case X86::BI__builtin_ia32_gathersiv8di:
12489       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12490       break;
12491     case X86::BI__builtin_ia32_gathersiv16si:
12492       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12493       break;
12494     case X86::BI__builtin_ia32_gatherdiv8di:
12495       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12496       break;
12497     case X86::BI__builtin_ia32_gatherdiv16si:
12498       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12499       break;
12500     }
12501 
12502     unsigned MinElts = std::min(
12503         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
12504         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
12505     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12506     Function *Intr = CGM.getIntrinsic(IID);
12507     return Builder.CreateCall(Intr, Ops);
12508   }
12509 
12510   case X86::BI__builtin_ia32_scattersiv8df:
12511   case X86::BI__builtin_ia32_scattersiv16sf:
12512   case X86::BI__builtin_ia32_scatterdiv8df:
12513   case X86::BI__builtin_ia32_scatterdiv16sf:
12514   case X86::BI__builtin_ia32_scattersiv8di:
12515   case X86::BI__builtin_ia32_scattersiv16si:
12516   case X86::BI__builtin_ia32_scatterdiv8di:
12517   case X86::BI__builtin_ia32_scatterdiv16si:
12518   case X86::BI__builtin_ia32_scatterdiv2df:
12519   case X86::BI__builtin_ia32_scatterdiv2di:
12520   case X86::BI__builtin_ia32_scatterdiv4df:
12521   case X86::BI__builtin_ia32_scatterdiv4di:
12522   case X86::BI__builtin_ia32_scatterdiv4sf:
12523   case X86::BI__builtin_ia32_scatterdiv4si:
12524   case X86::BI__builtin_ia32_scatterdiv8sf:
12525   case X86::BI__builtin_ia32_scatterdiv8si:
12526   case X86::BI__builtin_ia32_scattersiv2df:
12527   case X86::BI__builtin_ia32_scattersiv2di:
12528   case X86::BI__builtin_ia32_scattersiv4df:
12529   case X86::BI__builtin_ia32_scattersiv4di:
12530   case X86::BI__builtin_ia32_scattersiv4sf:
12531   case X86::BI__builtin_ia32_scattersiv4si:
12532   case X86::BI__builtin_ia32_scattersiv8sf:
12533   case X86::BI__builtin_ia32_scattersiv8si: {
12534     Intrinsic::ID IID;
12535     switch (BuiltinID) {
12536     default: llvm_unreachable("Unexpected builtin");
12537     case X86::BI__builtin_ia32_scattersiv8df:
12538       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12539       break;
12540     case X86::BI__builtin_ia32_scattersiv16sf:
12541       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12542       break;
12543     case X86::BI__builtin_ia32_scatterdiv8df:
12544       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12545       break;
12546     case X86::BI__builtin_ia32_scatterdiv16sf:
12547       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12548       break;
12549     case X86::BI__builtin_ia32_scattersiv8di:
12550       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12551       break;
12552     case X86::BI__builtin_ia32_scattersiv16si:
12553       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
12554       break;
12555     case X86::BI__builtin_ia32_scatterdiv8di:
12556       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
12557       break;
12558     case X86::BI__builtin_ia32_scatterdiv16si:
12559       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
12560       break;
12561     case X86::BI__builtin_ia32_scatterdiv2df:
12562       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
12563       break;
12564     case X86::BI__builtin_ia32_scatterdiv2di:
12565       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
12566       break;
12567     case X86::BI__builtin_ia32_scatterdiv4df:
12568       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
12569       break;
12570     case X86::BI__builtin_ia32_scatterdiv4di:
12571       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
12572       break;
12573     case X86::BI__builtin_ia32_scatterdiv4sf:
12574       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
12575       break;
12576     case X86::BI__builtin_ia32_scatterdiv4si:
12577       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
12578       break;
12579     case X86::BI__builtin_ia32_scatterdiv8sf:
12580       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
12581       break;
12582     case X86::BI__builtin_ia32_scatterdiv8si:
12583       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
12584       break;
12585     case X86::BI__builtin_ia32_scattersiv2df:
12586       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
12587       break;
12588     case X86::BI__builtin_ia32_scattersiv2di:
12589       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
12590       break;
12591     case X86::BI__builtin_ia32_scattersiv4df:
12592       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
12593       break;
12594     case X86::BI__builtin_ia32_scattersiv4di:
12595       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
12596       break;
12597     case X86::BI__builtin_ia32_scattersiv4sf:
12598       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
12599       break;
12600     case X86::BI__builtin_ia32_scattersiv4si:
12601       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
12602       break;
12603     case X86::BI__builtin_ia32_scattersiv8sf:
12604       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
12605       break;
12606     case X86::BI__builtin_ia32_scattersiv8si:
12607       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
12608       break;
12609     }
12610 
12611     unsigned MinElts = std::min(
12612         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
12613         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
12614     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
12615     Function *Intr = CGM.getIntrinsic(IID);
12616     return Builder.CreateCall(Intr, Ops);
12617   }
12618 
12619   case X86::BI__builtin_ia32_vextractf128_pd256:
12620   case X86::BI__builtin_ia32_vextractf128_ps256:
12621   case X86::BI__builtin_ia32_vextractf128_si256:
12622   case X86::BI__builtin_ia32_extract128i256:
12623   case X86::BI__builtin_ia32_extractf64x4_mask:
12624   case X86::BI__builtin_ia32_extractf32x4_mask:
12625   case X86::BI__builtin_ia32_extracti64x4_mask:
12626   case X86::BI__builtin_ia32_extracti32x4_mask:
12627   case X86::BI__builtin_ia32_extractf32x8_mask:
12628   case X86::BI__builtin_ia32_extracti32x8_mask:
12629   case X86::BI__builtin_ia32_extractf32x4_256_mask:
12630   case X86::BI__builtin_ia32_extracti32x4_256_mask:
12631   case X86::BI__builtin_ia32_extractf64x2_256_mask:
12632   case X86::BI__builtin_ia32_extracti64x2_256_mask:
12633   case X86::BI__builtin_ia32_extractf64x2_512_mask:
12634   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
12635     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
12636     unsigned NumElts = DstTy->getNumElements();
12637     unsigned SrcNumElts =
12638         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12639     unsigned SubVectors = SrcNumElts / NumElts;
12640     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12641     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12642     Index &= SubVectors - 1; // Remove any extra bits.
12643     Index *= NumElts;
12644 
12645     int Indices[16];
12646     for (unsigned i = 0; i != NumElts; ++i)
12647       Indices[i] = i + Index;
12648 
12649     Value *Res = Builder.CreateShuffleVector(Ops[0],
12650                                              UndefValue::get(Ops[0]->getType()),
12651                                              makeArrayRef(Indices, NumElts),
12652                                              "extract");
12653 
12654     if (Ops.size() == 4)
12655       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
12656 
12657     return Res;
12658   }
12659   case X86::BI__builtin_ia32_vinsertf128_pd256:
12660   case X86::BI__builtin_ia32_vinsertf128_ps256:
12661   case X86::BI__builtin_ia32_vinsertf128_si256:
12662   case X86::BI__builtin_ia32_insert128i256:
12663   case X86::BI__builtin_ia32_insertf64x4:
12664   case X86::BI__builtin_ia32_insertf32x4:
12665   case X86::BI__builtin_ia32_inserti64x4:
12666   case X86::BI__builtin_ia32_inserti32x4:
12667   case X86::BI__builtin_ia32_insertf32x8:
12668   case X86::BI__builtin_ia32_inserti32x8:
12669   case X86::BI__builtin_ia32_insertf32x4_256:
12670   case X86::BI__builtin_ia32_inserti32x4_256:
12671   case X86::BI__builtin_ia32_insertf64x2_256:
12672   case X86::BI__builtin_ia32_inserti64x2_256:
12673   case X86::BI__builtin_ia32_insertf64x2_512:
12674   case X86::BI__builtin_ia32_inserti64x2_512: {
12675     unsigned DstNumElts =
12676         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12677     unsigned SrcNumElts =
12678         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
12679     unsigned SubVectors = DstNumElts / SrcNumElts;
12680     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12681     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12682     Index &= SubVectors - 1; // Remove any extra bits.
12683     Index *= SrcNumElts;
12684 
12685     int Indices[16];
12686     for (unsigned i = 0; i != DstNumElts; ++i)
12687       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
12688 
12689     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
12690                                              UndefValue::get(Ops[1]->getType()),
12691                                              makeArrayRef(Indices, DstNumElts),
12692                                              "widen");
12693 
12694     for (unsigned i = 0; i != DstNumElts; ++i) {
12695       if (i >= Index && i < (Index + SrcNumElts))
12696         Indices[i] = (i - Index) + DstNumElts;
12697       else
12698         Indices[i] = i;
12699     }
12700 
12701     return Builder.CreateShuffleVector(Ops[0], Op1,
12702                                        makeArrayRef(Indices, DstNumElts),
12703                                        "insert");
12704   }
12705   case X86::BI__builtin_ia32_pmovqd512_mask:
12706   case X86::BI__builtin_ia32_pmovwb512_mask: {
12707     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12708     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12709   }
12710   case X86::BI__builtin_ia32_pmovdb512_mask:
12711   case X86::BI__builtin_ia32_pmovdw512_mask:
12712   case X86::BI__builtin_ia32_pmovqw512_mask: {
12713     if (const auto *C = dyn_cast<Constant>(Ops[2]))
12714       if (C->isAllOnesValue())
12715         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12716 
12717     Intrinsic::ID IID;
12718     switch (BuiltinID) {
12719     default: llvm_unreachable("Unsupported intrinsic!");
12720     case X86::BI__builtin_ia32_pmovdb512_mask:
12721       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
12722       break;
12723     case X86::BI__builtin_ia32_pmovdw512_mask:
12724       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
12725       break;
12726     case X86::BI__builtin_ia32_pmovqw512_mask:
12727       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
12728       break;
12729     }
12730 
12731     Function *Intr = CGM.getIntrinsic(IID);
12732     return Builder.CreateCall(Intr, Ops);
12733   }
12734   case X86::BI__builtin_ia32_pblendw128:
12735   case X86::BI__builtin_ia32_blendpd:
12736   case X86::BI__builtin_ia32_blendps:
12737   case X86::BI__builtin_ia32_blendpd256:
12738   case X86::BI__builtin_ia32_blendps256:
12739   case X86::BI__builtin_ia32_pblendw256:
12740   case X86::BI__builtin_ia32_pblendd128:
12741   case X86::BI__builtin_ia32_pblendd256: {
12742     unsigned NumElts =
12743         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12744     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12745 
12746     int Indices[16];
12747     // If there are more than 8 elements, the immediate is used twice so make
12748     // sure we handle that.
12749     for (unsigned i = 0; i != NumElts; ++i)
12750       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
12751 
12752     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12753                                        makeArrayRef(Indices, NumElts),
12754                                        "blend");
12755   }
12756   case X86::BI__builtin_ia32_pshuflw:
12757   case X86::BI__builtin_ia32_pshuflw256:
12758   case X86::BI__builtin_ia32_pshuflw512: {
12759     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12760     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12761     unsigned NumElts = Ty->getNumElements();
12762 
12763     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12764     Imm = (Imm & 0xff) * 0x01010101;
12765 
12766     int Indices[32];
12767     for (unsigned l = 0; l != NumElts; l += 8) {
12768       for (unsigned i = 0; i != 4; ++i) {
12769         Indices[l + i] = l + (Imm & 3);
12770         Imm >>= 2;
12771       }
12772       for (unsigned i = 4; i != 8; ++i)
12773         Indices[l + i] = l + i;
12774     }
12775 
12776     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12777                                        makeArrayRef(Indices, NumElts),
12778                                        "pshuflw");
12779   }
12780   case X86::BI__builtin_ia32_pshufhw:
12781   case X86::BI__builtin_ia32_pshufhw256:
12782   case X86::BI__builtin_ia32_pshufhw512: {
12783     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12784     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12785     unsigned NumElts = Ty->getNumElements();
12786 
12787     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12788     Imm = (Imm & 0xff) * 0x01010101;
12789 
12790     int Indices[32];
12791     for (unsigned l = 0; l != NumElts; l += 8) {
12792       for (unsigned i = 0; i != 4; ++i)
12793         Indices[l + i] = l + i;
12794       for (unsigned i = 4; i != 8; ++i) {
12795         Indices[l + i] = l + 4 + (Imm & 3);
12796         Imm >>= 2;
12797       }
12798     }
12799 
12800     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12801                                        makeArrayRef(Indices, NumElts),
12802                                        "pshufhw");
12803   }
12804   case X86::BI__builtin_ia32_pshufd:
12805   case X86::BI__builtin_ia32_pshufd256:
12806   case X86::BI__builtin_ia32_pshufd512:
12807   case X86::BI__builtin_ia32_vpermilpd:
12808   case X86::BI__builtin_ia32_vpermilps:
12809   case X86::BI__builtin_ia32_vpermilpd256:
12810   case X86::BI__builtin_ia32_vpermilps256:
12811   case X86::BI__builtin_ia32_vpermilpd512:
12812   case X86::BI__builtin_ia32_vpermilps512: {
12813     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12814     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12815     unsigned NumElts = Ty->getNumElements();
12816     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12817     unsigned NumLaneElts = NumElts / NumLanes;
12818 
12819     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12820     Imm = (Imm & 0xff) * 0x01010101;
12821 
12822     int Indices[16];
12823     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12824       for (unsigned i = 0; i != NumLaneElts; ++i) {
12825         Indices[i + l] = (Imm % NumLaneElts) + l;
12826         Imm /= NumLaneElts;
12827       }
12828     }
12829 
12830     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12831                                        makeArrayRef(Indices, NumElts),
12832                                        "permil");
12833   }
12834   case X86::BI__builtin_ia32_shufpd:
12835   case X86::BI__builtin_ia32_shufpd256:
12836   case X86::BI__builtin_ia32_shufpd512:
12837   case X86::BI__builtin_ia32_shufps:
12838   case X86::BI__builtin_ia32_shufps256:
12839   case X86::BI__builtin_ia32_shufps512: {
12840     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12841     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12842     unsigned NumElts = Ty->getNumElements();
12843     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12844     unsigned NumLaneElts = NumElts / NumLanes;
12845 
12846     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12847     Imm = (Imm & 0xff) * 0x01010101;
12848 
12849     int Indices[16];
12850     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12851       for (unsigned i = 0; i != NumLaneElts; ++i) {
12852         unsigned Index = Imm % NumLaneElts;
12853         Imm /= NumLaneElts;
12854         if (i >= (NumLaneElts / 2))
12855           Index += NumElts;
12856         Indices[l + i] = l + Index;
12857       }
12858     }
12859 
12860     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12861                                        makeArrayRef(Indices, NumElts),
12862                                        "shufp");
12863   }
12864   case X86::BI__builtin_ia32_permdi256:
12865   case X86::BI__builtin_ia32_permdf256:
12866   case X86::BI__builtin_ia32_permdi512:
12867   case X86::BI__builtin_ia32_permdf512: {
12868     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12869     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12870     unsigned NumElts = Ty->getNumElements();
12871 
12872     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
12873     int Indices[8];
12874     for (unsigned l = 0; l != NumElts; l += 4)
12875       for (unsigned i = 0; i != 4; ++i)
12876         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
12877 
12878     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12879                                        makeArrayRef(Indices, NumElts),
12880                                        "perm");
12881   }
12882   case X86::BI__builtin_ia32_palignr128:
12883   case X86::BI__builtin_ia32_palignr256:
12884   case X86::BI__builtin_ia32_palignr512: {
12885     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12886 
12887     unsigned NumElts =
12888         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12889     assert(NumElts % 16 == 0);
12890 
12891     // If palignr is shifting the pair of vectors more than the size of two
12892     // lanes, emit zero.
12893     if (ShiftVal >= 32)
12894       return llvm::Constant::getNullValue(ConvertType(E->getType()));
12895 
12896     // If palignr is shifting the pair of input vectors more than one lane,
12897     // but less than two lanes, convert to shifting in zeroes.
12898     if (ShiftVal > 16) {
12899       ShiftVal -= 16;
12900       Ops[1] = Ops[0];
12901       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
12902     }
12903 
12904     int Indices[64];
12905     // 256-bit palignr operates on 128-bit lanes so we need to handle that
12906     for (unsigned l = 0; l != NumElts; l += 16) {
12907       for (unsigned i = 0; i != 16; ++i) {
12908         unsigned Idx = ShiftVal + i;
12909         if (Idx >= 16)
12910           Idx += NumElts - 16; // End of lane, switch operand.
12911         Indices[l + i] = Idx + l;
12912       }
12913     }
12914 
12915     return Builder.CreateShuffleVector(Ops[1], Ops[0],
12916                                        makeArrayRef(Indices, NumElts),
12917                                        "palignr");
12918   }
12919   case X86::BI__builtin_ia32_alignd128:
12920   case X86::BI__builtin_ia32_alignd256:
12921   case X86::BI__builtin_ia32_alignd512:
12922   case X86::BI__builtin_ia32_alignq128:
12923   case X86::BI__builtin_ia32_alignq256:
12924   case X86::BI__builtin_ia32_alignq512: {
12925     unsigned NumElts =
12926         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12927     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12928 
12929     // Mask the shift amount to width of two vectors.
12930     ShiftVal &= (2 * NumElts) - 1;
12931 
12932     int Indices[16];
12933     for (unsigned i = 0; i != NumElts; ++i)
12934       Indices[i] = i + ShiftVal;
12935 
12936     return Builder.CreateShuffleVector(Ops[1], Ops[0],
12937                                        makeArrayRef(Indices, NumElts),
12938                                        "valign");
12939   }
12940   case X86::BI__builtin_ia32_shuf_f32x4_256:
12941   case X86::BI__builtin_ia32_shuf_f64x2_256:
12942   case X86::BI__builtin_ia32_shuf_i32x4_256:
12943   case X86::BI__builtin_ia32_shuf_i64x2_256:
12944   case X86::BI__builtin_ia32_shuf_f32x4:
12945   case X86::BI__builtin_ia32_shuf_f64x2:
12946   case X86::BI__builtin_ia32_shuf_i32x4:
12947   case X86::BI__builtin_ia32_shuf_i64x2: {
12948     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12949     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12950     unsigned NumElts = Ty->getNumElements();
12951     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
12952     unsigned NumLaneElts = NumElts / NumLanes;
12953 
12954     int Indices[16];
12955     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12956       unsigned Index = (Imm % NumLanes) * NumLaneElts;
12957       Imm /= NumLanes; // Discard the bits we just used.
12958       if (l >= (NumElts / 2))
12959         Index += NumElts; // Switch to other source.
12960       for (unsigned i = 0; i != NumLaneElts; ++i) {
12961         Indices[l + i] = Index + i;
12962       }
12963     }
12964 
12965     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12966                                        makeArrayRef(Indices, NumElts),
12967                                        "shuf");
12968   }
12969 
12970   case X86::BI__builtin_ia32_vperm2f128_pd256:
12971   case X86::BI__builtin_ia32_vperm2f128_ps256:
12972   case X86::BI__builtin_ia32_vperm2f128_si256:
12973   case X86::BI__builtin_ia32_permti256: {
12974     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12975     unsigned NumElts =
12976         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12977 
12978     // This takes a very simple approach since there are two lanes and a
12979     // shuffle can have 2 inputs. So we reserve the first input for the first
12980     // lane and the second input for the second lane. This may result in
12981     // duplicate sources, but this can be dealt with in the backend.
12982 
12983     Value *OutOps[2];
12984     int Indices[8];
12985     for (unsigned l = 0; l != 2; ++l) {
12986       // Determine the source for this lane.
12987       if (Imm & (1 << ((l * 4) + 3)))
12988         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
12989       else if (Imm & (1 << ((l * 4) + 1)))
12990         OutOps[l] = Ops[1];
12991       else
12992         OutOps[l] = Ops[0];
12993 
12994       for (unsigned i = 0; i != NumElts/2; ++i) {
12995         // Start with ith element of the source for this lane.
12996         unsigned Idx = (l * NumElts) + i;
12997         // If bit 0 of the immediate half is set, switch to the high half of
12998         // the source.
12999         if (Imm & (1 << (l * 4)))
13000           Idx += NumElts/2;
13001         Indices[(l * (NumElts/2)) + i] = Idx;
13002       }
13003     }
13004 
13005     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13006                                        makeArrayRef(Indices, NumElts),
13007                                        "vperm");
13008   }
13009 
13010   case X86::BI__builtin_ia32_pslldqi128_byteshift:
13011   case X86::BI__builtin_ia32_pslldqi256_byteshift:
13012   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13013     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13014     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13015     // Builtin type is vXi64 so multiply by 8 to get bytes.
13016     unsigned NumElts = ResultType->getNumElements() * 8;
13017 
13018     // If pslldq is shifting the vector more than 15 bytes, emit zero.
13019     if (ShiftVal >= 16)
13020       return llvm::Constant::getNullValue(ResultType);
13021 
13022     int Indices[64];
13023     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13024     for (unsigned l = 0; l != NumElts; l += 16) {
13025       for (unsigned i = 0; i != 16; ++i) {
13026         unsigned Idx = NumElts + i - ShiftVal;
13027         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13028         Indices[l + i] = Idx + l;
13029       }
13030     }
13031 
13032     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13033     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13034     Value *Zero = llvm::Constant::getNullValue(VecTy);
13035     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13036                                             makeArrayRef(Indices, NumElts),
13037                                             "pslldq");
13038     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13039   }
13040   case X86::BI__builtin_ia32_psrldqi128_byteshift:
13041   case X86::BI__builtin_ia32_psrldqi256_byteshift:
13042   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13043     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13044     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13045     // Builtin type is vXi64 so multiply by 8 to get bytes.
13046     unsigned NumElts = ResultType->getNumElements() * 8;
13047 
13048     // If psrldq is shifting the vector more than 15 bytes, emit zero.
13049     if (ShiftVal >= 16)
13050       return llvm::Constant::getNullValue(ResultType);
13051 
13052     int Indices[64];
13053     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13054     for (unsigned l = 0; l != NumElts; l += 16) {
13055       for (unsigned i = 0; i != 16; ++i) {
13056         unsigned Idx = i + ShiftVal;
13057         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13058         Indices[l + i] = Idx + l;
13059       }
13060     }
13061 
13062     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13063     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13064     Value *Zero = llvm::Constant::getNullValue(VecTy);
13065     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13066                                             makeArrayRef(Indices, NumElts),
13067                                             "psrldq");
13068     return Builder.CreateBitCast(SV, ResultType, "cast");
13069   }
13070   case X86::BI__builtin_ia32_kshiftliqi:
13071   case X86::BI__builtin_ia32_kshiftlihi:
13072   case X86::BI__builtin_ia32_kshiftlisi:
13073   case X86::BI__builtin_ia32_kshiftlidi: {
13074     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13075     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13076 
13077     if (ShiftVal >= NumElts)
13078       return llvm::Constant::getNullValue(Ops[0]->getType());
13079 
13080     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13081 
13082     int Indices[64];
13083     for (unsigned i = 0; i != NumElts; ++i)
13084       Indices[i] = NumElts + i - ShiftVal;
13085 
13086     Value *Zero = llvm::Constant::getNullValue(In->getType());
13087     Value *SV = Builder.CreateShuffleVector(Zero, In,
13088                                             makeArrayRef(Indices, NumElts),
13089                                             "kshiftl");
13090     return Builder.CreateBitCast(SV, Ops[0]->getType());
13091   }
13092   case X86::BI__builtin_ia32_kshiftriqi:
13093   case X86::BI__builtin_ia32_kshiftrihi:
13094   case X86::BI__builtin_ia32_kshiftrisi:
13095   case X86::BI__builtin_ia32_kshiftridi: {
13096     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13097     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13098 
13099     if (ShiftVal >= NumElts)
13100       return llvm::Constant::getNullValue(Ops[0]->getType());
13101 
13102     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13103 
13104     int Indices[64];
13105     for (unsigned i = 0; i != NumElts; ++i)
13106       Indices[i] = i + ShiftVal;
13107 
13108     Value *Zero = llvm::Constant::getNullValue(In->getType());
13109     Value *SV = Builder.CreateShuffleVector(In, Zero,
13110                                             makeArrayRef(Indices, NumElts),
13111                                             "kshiftr");
13112     return Builder.CreateBitCast(SV, Ops[0]->getType());
13113   }
13114   case X86::BI__builtin_ia32_movnti:
13115   case X86::BI__builtin_ia32_movnti64:
13116   case X86::BI__builtin_ia32_movntsd:
13117   case X86::BI__builtin_ia32_movntss: {
13118     llvm::MDNode *Node = llvm::MDNode::get(
13119         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13120 
13121     Value *Ptr = Ops[0];
13122     Value *Src = Ops[1];
13123 
13124     // Extract the 0'th element of the source vector.
13125     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13126         BuiltinID == X86::BI__builtin_ia32_movntss)
13127       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13128 
13129     // Convert the type of the pointer to a pointer to the stored type.
13130     Value *BC = Builder.CreateBitCast(
13131         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13132 
13133     // Unaligned nontemporal store of the scalar value.
13134     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13135     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13136     SI->setAlignment(llvm::Align(1));
13137     return SI;
13138   }
13139   // Rotate is a special case of funnel shift - 1st 2 args are the same.
13140   case X86::BI__builtin_ia32_vprotb:
13141   case X86::BI__builtin_ia32_vprotw:
13142   case X86::BI__builtin_ia32_vprotd:
13143   case X86::BI__builtin_ia32_vprotq:
13144   case X86::BI__builtin_ia32_vprotbi:
13145   case X86::BI__builtin_ia32_vprotwi:
13146   case X86::BI__builtin_ia32_vprotdi:
13147   case X86::BI__builtin_ia32_vprotqi:
13148   case X86::BI__builtin_ia32_prold128:
13149   case X86::BI__builtin_ia32_prold256:
13150   case X86::BI__builtin_ia32_prold512:
13151   case X86::BI__builtin_ia32_prolq128:
13152   case X86::BI__builtin_ia32_prolq256:
13153   case X86::BI__builtin_ia32_prolq512:
13154   case X86::BI__builtin_ia32_prolvd128:
13155   case X86::BI__builtin_ia32_prolvd256:
13156   case X86::BI__builtin_ia32_prolvd512:
13157   case X86::BI__builtin_ia32_prolvq128:
13158   case X86::BI__builtin_ia32_prolvq256:
13159   case X86::BI__builtin_ia32_prolvq512:
13160     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13161   case X86::BI__builtin_ia32_prord128:
13162   case X86::BI__builtin_ia32_prord256:
13163   case X86::BI__builtin_ia32_prord512:
13164   case X86::BI__builtin_ia32_prorq128:
13165   case X86::BI__builtin_ia32_prorq256:
13166   case X86::BI__builtin_ia32_prorq512:
13167   case X86::BI__builtin_ia32_prorvd128:
13168   case X86::BI__builtin_ia32_prorvd256:
13169   case X86::BI__builtin_ia32_prorvd512:
13170   case X86::BI__builtin_ia32_prorvq128:
13171   case X86::BI__builtin_ia32_prorvq256:
13172   case X86::BI__builtin_ia32_prorvq512:
13173     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13174   case X86::BI__builtin_ia32_selectb_128:
13175   case X86::BI__builtin_ia32_selectb_256:
13176   case X86::BI__builtin_ia32_selectb_512:
13177   case X86::BI__builtin_ia32_selectw_128:
13178   case X86::BI__builtin_ia32_selectw_256:
13179   case X86::BI__builtin_ia32_selectw_512:
13180   case X86::BI__builtin_ia32_selectd_128:
13181   case X86::BI__builtin_ia32_selectd_256:
13182   case X86::BI__builtin_ia32_selectd_512:
13183   case X86::BI__builtin_ia32_selectq_128:
13184   case X86::BI__builtin_ia32_selectq_256:
13185   case X86::BI__builtin_ia32_selectq_512:
13186   case X86::BI__builtin_ia32_selectps_128:
13187   case X86::BI__builtin_ia32_selectps_256:
13188   case X86::BI__builtin_ia32_selectps_512:
13189   case X86::BI__builtin_ia32_selectpd_128:
13190   case X86::BI__builtin_ia32_selectpd_256:
13191   case X86::BI__builtin_ia32_selectpd_512:
13192     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13193   case X86::BI__builtin_ia32_selectss_128:
13194   case X86::BI__builtin_ia32_selectsd_128: {
13195     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13196     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13197     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13198     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13199   }
13200   case X86::BI__builtin_ia32_cmpb128_mask:
13201   case X86::BI__builtin_ia32_cmpb256_mask:
13202   case X86::BI__builtin_ia32_cmpb512_mask:
13203   case X86::BI__builtin_ia32_cmpw128_mask:
13204   case X86::BI__builtin_ia32_cmpw256_mask:
13205   case X86::BI__builtin_ia32_cmpw512_mask:
13206   case X86::BI__builtin_ia32_cmpd128_mask:
13207   case X86::BI__builtin_ia32_cmpd256_mask:
13208   case X86::BI__builtin_ia32_cmpd512_mask:
13209   case X86::BI__builtin_ia32_cmpq128_mask:
13210   case X86::BI__builtin_ia32_cmpq256_mask:
13211   case X86::BI__builtin_ia32_cmpq512_mask: {
13212     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13213     return EmitX86MaskedCompare(*this, CC, true, Ops);
13214   }
13215   case X86::BI__builtin_ia32_ucmpb128_mask:
13216   case X86::BI__builtin_ia32_ucmpb256_mask:
13217   case X86::BI__builtin_ia32_ucmpb512_mask:
13218   case X86::BI__builtin_ia32_ucmpw128_mask:
13219   case X86::BI__builtin_ia32_ucmpw256_mask:
13220   case X86::BI__builtin_ia32_ucmpw512_mask:
13221   case X86::BI__builtin_ia32_ucmpd128_mask:
13222   case X86::BI__builtin_ia32_ucmpd256_mask:
13223   case X86::BI__builtin_ia32_ucmpd512_mask:
13224   case X86::BI__builtin_ia32_ucmpq128_mask:
13225   case X86::BI__builtin_ia32_ucmpq256_mask:
13226   case X86::BI__builtin_ia32_ucmpq512_mask: {
13227     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13228     return EmitX86MaskedCompare(*this, CC, false, Ops);
13229   }
13230   case X86::BI__builtin_ia32_vpcomb:
13231   case X86::BI__builtin_ia32_vpcomw:
13232   case X86::BI__builtin_ia32_vpcomd:
13233   case X86::BI__builtin_ia32_vpcomq:
13234     return EmitX86vpcom(*this, Ops, true);
13235   case X86::BI__builtin_ia32_vpcomub:
13236   case X86::BI__builtin_ia32_vpcomuw:
13237   case X86::BI__builtin_ia32_vpcomud:
13238   case X86::BI__builtin_ia32_vpcomuq:
13239     return EmitX86vpcom(*this, Ops, false);
13240 
13241   case X86::BI__builtin_ia32_kortestcqi:
13242   case X86::BI__builtin_ia32_kortestchi:
13243   case X86::BI__builtin_ia32_kortestcsi:
13244   case X86::BI__builtin_ia32_kortestcdi: {
13245     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13246     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13247     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13248     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13249   }
13250   case X86::BI__builtin_ia32_kortestzqi:
13251   case X86::BI__builtin_ia32_kortestzhi:
13252   case X86::BI__builtin_ia32_kortestzsi:
13253   case X86::BI__builtin_ia32_kortestzdi: {
13254     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13255     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13256     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13257     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13258   }
13259 
13260   case X86::BI__builtin_ia32_ktestcqi:
13261   case X86::BI__builtin_ia32_ktestzqi:
13262   case X86::BI__builtin_ia32_ktestchi:
13263   case X86::BI__builtin_ia32_ktestzhi:
13264   case X86::BI__builtin_ia32_ktestcsi:
13265   case X86::BI__builtin_ia32_ktestzsi:
13266   case X86::BI__builtin_ia32_ktestcdi:
13267   case X86::BI__builtin_ia32_ktestzdi: {
13268     Intrinsic::ID IID;
13269     switch (BuiltinID) {
13270     default: llvm_unreachable("Unsupported intrinsic!");
13271     case X86::BI__builtin_ia32_ktestcqi:
13272       IID = Intrinsic::x86_avx512_ktestc_b;
13273       break;
13274     case X86::BI__builtin_ia32_ktestzqi:
13275       IID = Intrinsic::x86_avx512_ktestz_b;
13276       break;
13277     case X86::BI__builtin_ia32_ktestchi:
13278       IID = Intrinsic::x86_avx512_ktestc_w;
13279       break;
13280     case X86::BI__builtin_ia32_ktestzhi:
13281       IID = Intrinsic::x86_avx512_ktestz_w;
13282       break;
13283     case X86::BI__builtin_ia32_ktestcsi:
13284       IID = Intrinsic::x86_avx512_ktestc_d;
13285       break;
13286     case X86::BI__builtin_ia32_ktestzsi:
13287       IID = Intrinsic::x86_avx512_ktestz_d;
13288       break;
13289     case X86::BI__builtin_ia32_ktestcdi:
13290       IID = Intrinsic::x86_avx512_ktestc_q;
13291       break;
13292     case X86::BI__builtin_ia32_ktestzdi:
13293       IID = Intrinsic::x86_avx512_ktestz_q;
13294       break;
13295     }
13296 
13297     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13298     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13299     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13300     Function *Intr = CGM.getIntrinsic(IID);
13301     return Builder.CreateCall(Intr, {LHS, RHS});
13302   }
13303 
13304   case X86::BI__builtin_ia32_kaddqi:
13305   case X86::BI__builtin_ia32_kaddhi:
13306   case X86::BI__builtin_ia32_kaddsi:
13307   case X86::BI__builtin_ia32_kadddi: {
13308     Intrinsic::ID IID;
13309     switch (BuiltinID) {
13310     default: llvm_unreachable("Unsupported intrinsic!");
13311     case X86::BI__builtin_ia32_kaddqi:
13312       IID = Intrinsic::x86_avx512_kadd_b;
13313       break;
13314     case X86::BI__builtin_ia32_kaddhi:
13315       IID = Intrinsic::x86_avx512_kadd_w;
13316       break;
13317     case X86::BI__builtin_ia32_kaddsi:
13318       IID = Intrinsic::x86_avx512_kadd_d;
13319       break;
13320     case X86::BI__builtin_ia32_kadddi:
13321       IID = Intrinsic::x86_avx512_kadd_q;
13322       break;
13323     }
13324 
13325     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13326     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13327     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13328     Function *Intr = CGM.getIntrinsic(IID);
13329     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13330     return Builder.CreateBitCast(Res, Ops[0]->getType());
13331   }
13332   case X86::BI__builtin_ia32_kandqi:
13333   case X86::BI__builtin_ia32_kandhi:
13334   case X86::BI__builtin_ia32_kandsi:
13335   case X86::BI__builtin_ia32_kanddi:
13336     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13337   case X86::BI__builtin_ia32_kandnqi:
13338   case X86::BI__builtin_ia32_kandnhi:
13339   case X86::BI__builtin_ia32_kandnsi:
13340   case X86::BI__builtin_ia32_kandndi:
13341     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13342   case X86::BI__builtin_ia32_korqi:
13343   case X86::BI__builtin_ia32_korhi:
13344   case X86::BI__builtin_ia32_korsi:
13345   case X86::BI__builtin_ia32_kordi:
13346     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13347   case X86::BI__builtin_ia32_kxnorqi:
13348   case X86::BI__builtin_ia32_kxnorhi:
13349   case X86::BI__builtin_ia32_kxnorsi:
13350   case X86::BI__builtin_ia32_kxnordi:
13351     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13352   case X86::BI__builtin_ia32_kxorqi:
13353   case X86::BI__builtin_ia32_kxorhi:
13354   case X86::BI__builtin_ia32_kxorsi:
13355   case X86::BI__builtin_ia32_kxordi:
13356     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13357   case X86::BI__builtin_ia32_knotqi:
13358   case X86::BI__builtin_ia32_knothi:
13359   case X86::BI__builtin_ia32_knotsi:
13360   case X86::BI__builtin_ia32_knotdi: {
13361     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13362     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13363     return Builder.CreateBitCast(Builder.CreateNot(Res),
13364                                  Ops[0]->getType());
13365   }
13366   case X86::BI__builtin_ia32_kmovb:
13367   case X86::BI__builtin_ia32_kmovw:
13368   case X86::BI__builtin_ia32_kmovd:
13369   case X86::BI__builtin_ia32_kmovq: {
13370     // Bitcast to vXi1 type and then back to integer. This gets the mask
13371     // register type into the IR, but might be optimized out depending on
13372     // what's around it.
13373     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13374     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13375     return Builder.CreateBitCast(Res, Ops[0]->getType());
13376   }
13377 
13378   case X86::BI__builtin_ia32_kunpckdi:
13379   case X86::BI__builtin_ia32_kunpcksi:
13380   case X86::BI__builtin_ia32_kunpckhi: {
13381     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13382     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13383     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13384     int Indices[64];
13385     for (unsigned i = 0; i != NumElts; ++i)
13386       Indices[i] = i;
13387 
13388     // First extract half of each vector. This gives better codegen than
13389     // doing it in a single shuffle.
13390     LHS = Builder.CreateShuffleVector(LHS, LHS,
13391                                       makeArrayRef(Indices, NumElts / 2));
13392     RHS = Builder.CreateShuffleVector(RHS, RHS,
13393                                       makeArrayRef(Indices, NumElts / 2));
13394     // Concat the vectors.
13395     // NOTE: Operands are swapped to match the intrinsic definition.
13396     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13397                                              makeArrayRef(Indices, NumElts));
13398     return Builder.CreateBitCast(Res, Ops[0]->getType());
13399   }
13400 
13401   case X86::BI__builtin_ia32_vplzcntd_128:
13402   case X86::BI__builtin_ia32_vplzcntd_256:
13403   case X86::BI__builtin_ia32_vplzcntd_512:
13404   case X86::BI__builtin_ia32_vplzcntq_128:
13405   case X86::BI__builtin_ia32_vplzcntq_256:
13406   case X86::BI__builtin_ia32_vplzcntq_512: {
13407     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13408     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13409   }
13410   case X86::BI__builtin_ia32_sqrtss:
13411   case X86::BI__builtin_ia32_sqrtsd: {
13412     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13413     Function *F;
13414     if (Builder.getIsFPConstrained()) {
13415       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13416                            A->getType());
13417       A = Builder.CreateConstrainedFPCall(F, {A});
13418     } else {
13419       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13420       A = Builder.CreateCall(F, {A});
13421     }
13422     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13423   }
13424   case X86::BI__builtin_ia32_sqrtsd_round_mask:
13425   case X86::BI__builtin_ia32_sqrtss_round_mask: {
13426     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13427     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13428     // otherwise keep the intrinsic.
13429     if (CC != 4) {
13430       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13431                           Intrinsic::x86_avx512_mask_sqrt_sd :
13432                           Intrinsic::x86_avx512_mask_sqrt_ss;
13433       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13434     }
13435     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13436     Function *F;
13437     if (Builder.getIsFPConstrained()) {
13438       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13439                            A->getType());
13440       A = Builder.CreateConstrainedFPCall(F, A);
13441     } else {
13442       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13443       A = Builder.CreateCall(F, A);
13444     }
13445     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13446     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13447     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13448   }
13449   case X86::BI__builtin_ia32_sqrtpd256:
13450   case X86::BI__builtin_ia32_sqrtpd:
13451   case X86::BI__builtin_ia32_sqrtps256:
13452   case X86::BI__builtin_ia32_sqrtps:
13453   case X86::BI__builtin_ia32_sqrtps512:
13454   case X86::BI__builtin_ia32_sqrtpd512: {
13455     if (Ops.size() == 2) {
13456       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13457       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13458       // otherwise keep the intrinsic.
13459       if (CC != 4) {
13460         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13461                             Intrinsic::x86_avx512_sqrt_ps_512 :
13462                             Intrinsic::x86_avx512_sqrt_pd_512;
13463         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13464       }
13465     }
13466     if (Builder.getIsFPConstrained()) {
13467       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13468                                      Ops[0]->getType());
13469       return Builder.CreateConstrainedFPCall(F, Ops[0]);
13470     } else {
13471       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13472       return Builder.CreateCall(F, Ops[0]);
13473     }
13474   }
13475   case X86::BI__builtin_ia32_pabsb128:
13476   case X86::BI__builtin_ia32_pabsw128:
13477   case X86::BI__builtin_ia32_pabsd128:
13478   case X86::BI__builtin_ia32_pabsb256:
13479   case X86::BI__builtin_ia32_pabsw256:
13480   case X86::BI__builtin_ia32_pabsd256:
13481   case X86::BI__builtin_ia32_pabsq128:
13482   case X86::BI__builtin_ia32_pabsq256:
13483   case X86::BI__builtin_ia32_pabsb512:
13484   case X86::BI__builtin_ia32_pabsw512:
13485   case X86::BI__builtin_ia32_pabsd512:
13486   case X86::BI__builtin_ia32_pabsq512: {
13487     Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
13488     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13489   }
13490   case X86::BI__builtin_ia32_pmaxsb128:
13491   case X86::BI__builtin_ia32_pmaxsw128:
13492   case X86::BI__builtin_ia32_pmaxsd128:
13493   case X86::BI__builtin_ia32_pmaxsq128:
13494   case X86::BI__builtin_ia32_pmaxsb256:
13495   case X86::BI__builtin_ia32_pmaxsw256:
13496   case X86::BI__builtin_ia32_pmaxsd256:
13497   case X86::BI__builtin_ia32_pmaxsq256:
13498   case X86::BI__builtin_ia32_pmaxsb512:
13499   case X86::BI__builtin_ia32_pmaxsw512:
13500   case X86::BI__builtin_ia32_pmaxsd512:
13501   case X86::BI__builtin_ia32_pmaxsq512:
13502     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
13503   case X86::BI__builtin_ia32_pmaxub128:
13504   case X86::BI__builtin_ia32_pmaxuw128:
13505   case X86::BI__builtin_ia32_pmaxud128:
13506   case X86::BI__builtin_ia32_pmaxuq128:
13507   case X86::BI__builtin_ia32_pmaxub256:
13508   case X86::BI__builtin_ia32_pmaxuw256:
13509   case X86::BI__builtin_ia32_pmaxud256:
13510   case X86::BI__builtin_ia32_pmaxuq256:
13511   case X86::BI__builtin_ia32_pmaxub512:
13512   case X86::BI__builtin_ia32_pmaxuw512:
13513   case X86::BI__builtin_ia32_pmaxud512:
13514   case X86::BI__builtin_ia32_pmaxuq512:
13515     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
13516   case X86::BI__builtin_ia32_pminsb128:
13517   case X86::BI__builtin_ia32_pminsw128:
13518   case X86::BI__builtin_ia32_pminsd128:
13519   case X86::BI__builtin_ia32_pminsq128:
13520   case X86::BI__builtin_ia32_pminsb256:
13521   case X86::BI__builtin_ia32_pminsw256:
13522   case X86::BI__builtin_ia32_pminsd256:
13523   case X86::BI__builtin_ia32_pminsq256:
13524   case X86::BI__builtin_ia32_pminsb512:
13525   case X86::BI__builtin_ia32_pminsw512:
13526   case X86::BI__builtin_ia32_pminsd512:
13527   case X86::BI__builtin_ia32_pminsq512:
13528     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
13529   case X86::BI__builtin_ia32_pminub128:
13530   case X86::BI__builtin_ia32_pminuw128:
13531   case X86::BI__builtin_ia32_pminud128:
13532   case X86::BI__builtin_ia32_pminuq128:
13533   case X86::BI__builtin_ia32_pminub256:
13534   case X86::BI__builtin_ia32_pminuw256:
13535   case X86::BI__builtin_ia32_pminud256:
13536   case X86::BI__builtin_ia32_pminuq256:
13537   case X86::BI__builtin_ia32_pminub512:
13538   case X86::BI__builtin_ia32_pminuw512:
13539   case X86::BI__builtin_ia32_pminud512:
13540   case X86::BI__builtin_ia32_pminuq512:
13541     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
13542 
13543   case X86::BI__builtin_ia32_pmuludq128:
13544   case X86::BI__builtin_ia32_pmuludq256:
13545   case X86::BI__builtin_ia32_pmuludq512:
13546     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13547 
13548   case X86::BI__builtin_ia32_pmuldq128:
13549   case X86::BI__builtin_ia32_pmuldq256:
13550   case X86::BI__builtin_ia32_pmuldq512:
13551     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13552 
13553   case X86::BI__builtin_ia32_pternlogd512_mask:
13554   case X86::BI__builtin_ia32_pternlogq512_mask:
13555   case X86::BI__builtin_ia32_pternlogd128_mask:
13556   case X86::BI__builtin_ia32_pternlogd256_mask:
13557   case X86::BI__builtin_ia32_pternlogq128_mask:
13558   case X86::BI__builtin_ia32_pternlogq256_mask:
13559     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
13560 
13561   case X86::BI__builtin_ia32_pternlogd512_maskz:
13562   case X86::BI__builtin_ia32_pternlogq512_maskz:
13563   case X86::BI__builtin_ia32_pternlogd128_maskz:
13564   case X86::BI__builtin_ia32_pternlogd256_maskz:
13565   case X86::BI__builtin_ia32_pternlogq128_maskz:
13566   case X86::BI__builtin_ia32_pternlogq256_maskz:
13567     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
13568 
13569   case X86::BI__builtin_ia32_vpshldd128:
13570   case X86::BI__builtin_ia32_vpshldd256:
13571   case X86::BI__builtin_ia32_vpshldd512:
13572   case X86::BI__builtin_ia32_vpshldq128:
13573   case X86::BI__builtin_ia32_vpshldq256:
13574   case X86::BI__builtin_ia32_vpshldq512:
13575   case X86::BI__builtin_ia32_vpshldw128:
13576   case X86::BI__builtin_ia32_vpshldw256:
13577   case X86::BI__builtin_ia32_vpshldw512:
13578     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13579 
13580   case X86::BI__builtin_ia32_vpshrdd128:
13581   case X86::BI__builtin_ia32_vpshrdd256:
13582   case X86::BI__builtin_ia32_vpshrdd512:
13583   case X86::BI__builtin_ia32_vpshrdq128:
13584   case X86::BI__builtin_ia32_vpshrdq256:
13585   case X86::BI__builtin_ia32_vpshrdq512:
13586   case X86::BI__builtin_ia32_vpshrdw128:
13587   case X86::BI__builtin_ia32_vpshrdw256:
13588   case X86::BI__builtin_ia32_vpshrdw512:
13589     // Ops 0 and 1 are swapped.
13590     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13591 
13592   case X86::BI__builtin_ia32_vpshldvd128:
13593   case X86::BI__builtin_ia32_vpshldvd256:
13594   case X86::BI__builtin_ia32_vpshldvd512:
13595   case X86::BI__builtin_ia32_vpshldvq128:
13596   case X86::BI__builtin_ia32_vpshldvq256:
13597   case X86::BI__builtin_ia32_vpshldvq512:
13598   case X86::BI__builtin_ia32_vpshldvw128:
13599   case X86::BI__builtin_ia32_vpshldvw256:
13600   case X86::BI__builtin_ia32_vpshldvw512:
13601     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13602 
13603   case X86::BI__builtin_ia32_vpshrdvd128:
13604   case X86::BI__builtin_ia32_vpshrdvd256:
13605   case X86::BI__builtin_ia32_vpshrdvd512:
13606   case X86::BI__builtin_ia32_vpshrdvq128:
13607   case X86::BI__builtin_ia32_vpshrdvq256:
13608   case X86::BI__builtin_ia32_vpshrdvq512:
13609   case X86::BI__builtin_ia32_vpshrdvw128:
13610   case X86::BI__builtin_ia32_vpshrdvw256:
13611   case X86::BI__builtin_ia32_vpshrdvw512:
13612     // Ops 0 and 1 are swapped.
13613     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13614 
13615   // Reductions
13616   case X86::BI__builtin_ia32_reduce_add_d512:
13617   case X86::BI__builtin_ia32_reduce_add_q512: {
13618     Function *F =
13619         CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
13620     return Builder.CreateCall(F, {Ops[0]});
13621   }
13622   case X86::BI__builtin_ia32_reduce_and_d512:
13623   case X86::BI__builtin_ia32_reduce_and_q512: {
13624     Function *F =
13625         CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
13626     return Builder.CreateCall(F, {Ops[0]});
13627   }
13628   case X86::BI__builtin_ia32_reduce_mul_d512:
13629   case X86::BI__builtin_ia32_reduce_mul_q512: {
13630     Function *F =
13631         CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
13632     return Builder.CreateCall(F, {Ops[0]});
13633   }
13634   case X86::BI__builtin_ia32_reduce_or_d512:
13635   case X86::BI__builtin_ia32_reduce_or_q512: {
13636     Function *F =
13637         CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
13638     return Builder.CreateCall(F, {Ops[0]});
13639   }
13640   case X86::BI__builtin_ia32_reduce_smax_d512:
13641   case X86::BI__builtin_ia32_reduce_smax_q512: {
13642     Function *F =
13643         CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
13644     return Builder.CreateCall(F, {Ops[0]});
13645   }
13646   case X86::BI__builtin_ia32_reduce_smin_d512:
13647   case X86::BI__builtin_ia32_reduce_smin_q512: {
13648     Function *F =
13649         CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
13650     return Builder.CreateCall(F, {Ops[0]});
13651   }
13652   case X86::BI__builtin_ia32_reduce_umax_d512:
13653   case X86::BI__builtin_ia32_reduce_umax_q512: {
13654     Function *F =
13655         CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
13656     return Builder.CreateCall(F, {Ops[0]});
13657   }
13658   case X86::BI__builtin_ia32_reduce_umin_d512:
13659   case X86::BI__builtin_ia32_reduce_umin_q512: {
13660     Function *F =
13661         CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
13662     return Builder.CreateCall(F, {Ops[0]});
13663   }
13664 
13665   // 3DNow!
13666   case X86::BI__builtin_ia32_pswapdsf:
13667   case X86::BI__builtin_ia32_pswapdsi: {
13668     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
13669     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
13670     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
13671     return Builder.CreateCall(F, Ops, "pswapd");
13672   }
13673   case X86::BI__builtin_ia32_rdrand16_step:
13674   case X86::BI__builtin_ia32_rdrand32_step:
13675   case X86::BI__builtin_ia32_rdrand64_step:
13676   case X86::BI__builtin_ia32_rdseed16_step:
13677   case X86::BI__builtin_ia32_rdseed32_step:
13678   case X86::BI__builtin_ia32_rdseed64_step: {
13679     Intrinsic::ID ID;
13680     switch (BuiltinID) {
13681     default: llvm_unreachable("Unsupported intrinsic!");
13682     case X86::BI__builtin_ia32_rdrand16_step:
13683       ID = Intrinsic::x86_rdrand_16;
13684       break;
13685     case X86::BI__builtin_ia32_rdrand32_step:
13686       ID = Intrinsic::x86_rdrand_32;
13687       break;
13688     case X86::BI__builtin_ia32_rdrand64_step:
13689       ID = Intrinsic::x86_rdrand_64;
13690       break;
13691     case X86::BI__builtin_ia32_rdseed16_step:
13692       ID = Intrinsic::x86_rdseed_16;
13693       break;
13694     case X86::BI__builtin_ia32_rdseed32_step:
13695       ID = Intrinsic::x86_rdseed_32;
13696       break;
13697     case X86::BI__builtin_ia32_rdseed64_step:
13698       ID = Intrinsic::x86_rdseed_64;
13699       break;
13700     }
13701 
13702     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
13703     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
13704                                       Ops[0]);
13705     return Builder.CreateExtractValue(Call, 1);
13706   }
13707   case X86::BI__builtin_ia32_addcarryx_u32:
13708   case X86::BI__builtin_ia32_addcarryx_u64:
13709   case X86::BI__builtin_ia32_subborrow_u32:
13710   case X86::BI__builtin_ia32_subborrow_u64: {
13711     Intrinsic::ID IID;
13712     switch (BuiltinID) {
13713     default: llvm_unreachable("Unsupported intrinsic!");
13714     case X86::BI__builtin_ia32_addcarryx_u32:
13715       IID = Intrinsic::x86_addcarry_32;
13716       break;
13717     case X86::BI__builtin_ia32_addcarryx_u64:
13718       IID = Intrinsic::x86_addcarry_64;
13719       break;
13720     case X86::BI__builtin_ia32_subborrow_u32:
13721       IID = Intrinsic::x86_subborrow_32;
13722       break;
13723     case X86::BI__builtin_ia32_subborrow_u64:
13724       IID = Intrinsic::x86_subborrow_64;
13725       break;
13726     }
13727 
13728     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
13729                                      { Ops[0], Ops[1], Ops[2] });
13730     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13731                                       Ops[3]);
13732     return Builder.CreateExtractValue(Call, 0);
13733   }
13734 
13735   case X86::BI__builtin_ia32_fpclassps128_mask:
13736   case X86::BI__builtin_ia32_fpclassps256_mask:
13737   case X86::BI__builtin_ia32_fpclassps512_mask:
13738   case X86::BI__builtin_ia32_fpclasspd128_mask:
13739   case X86::BI__builtin_ia32_fpclasspd256_mask:
13740   case X86::BI__builtin_ia32_fpclasspd512_mask: {
13741     unsigned NumElts =
13742         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13743     Value *MaskIn = Ops[2];
13744     Ops.erase(&Ops[2]);
13745 
13746     Intrinsic::ID ID;
13747     switch (BuiltinID) {
13748     default: llvm_unreachable("Unsupported intrinsic!");
13749     case X86::BI__builtin_ia32_fpclassps128_mask:
13750       ID = Intrinsic::x86_avx512_fpclass_ps_128;
13751       break;
13752     case X86::BI__builtin_ia32_fpclassps256_mask:
13753       ID = Intrinsic::x86_avx512_fpclass_ps_256;
13754       break;
13755     case X86::BI__builtin_ia32_fpclassps512_mask:
13756       ID = Intrinsic::x86_avx512_fpclass_ps_512;
13757       break;
13758     case X86::BI__builtin_ia32_fpclasspd128_mask:
13759       ID = Intrinsic::x86_avx512_fpclass_pd_128;
13760       break;
13761     case X86::BI__builtin_ia32_fpclasspd256_mask:
13762       ID = Intrinsic::x86_avx512_fpclass_pd_256;
13763       break;
13764     case X86::BI__builtin_ia32_fpclasspd512_mask:
13765       ID = Intrinsic::x86_avx512_fpclass_pd_512;
13766       break;
13767     }
13768 
13769     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13770     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
13771   }
13772 
13773   case X86::BI__builtin_ia32_vp2intersect_q_512:
13774   case X86::BI__builtin_ia32_vp2intersect_q_256:
13775   case X86::BI__builtin_ia32_vp2intersect_q_128:
13776   case X86::BI__builtin_ia32_vp2intersect_d_512:
13777   case X86::BI__builtin_ia32_vp2intersect_d_256:
13778   case X86::BI__builtin_ia32_vp2intersect_d_128: {
13779     unsigned NumElts =
13780         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13781     Intrinsic::ID ID;
13782 
13783     switch (BuiltinID) {
13784     default: llvm_unreachable("Unsupported intrinsic!");
13785     case X86::BI__builtin_ia32_vp2intersect_q_512:
13786       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
13787       break;
13788     case X86::BI__builtin_ia32_vp2intersect_q_256:
13789       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
13790       break;
13791     case X86::BI__builtin_ia32_vp2intersect_q_128:
13792       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
13793       break;
13794     case X86::BI__builtin_ia32_vp2intersect_d_512:
13795       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
13796       break;
13797     case X86::BI__builtin_ia32_vp2intersect_d_256:
13798       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
13799       break;
13800     case X86::BI__builtin_ia32_vp2intersect_d_128:
13801       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
13802       break;
13803     }
13804 
13805     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
13806     Value *Result = Builder.CreateExtractValue(Call, 0);
13807     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13808     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
13809 
13810     Result = Builder.CreateExtractValue(Call, 1);
13811     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13812     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
13813   }
13814 
13815   case X86::BI__builtin_ia32_vpmultishiftqb128:
13816   case X86::BI__builtin_ia32_vpmultishiftqb256:
13817   case X86::BI__builtin_ia32_vpmultishiftqb512: {
13818     Intrinsic::ID ID;
13819     switch (BuiltinID) {
13820     default: llvm_unreachable("Unsupported intrinsic!");
13821     case X86::BI__builtin_ia32_vpmultishiftqb128:
13822       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
13823       break;
13824     case X86::BI__builtin_ia32_vpmultishiftqb256:
13825       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
13826       break;
13827     case X86::BI__builtin_ia32_vpmultishiftqb512:
13828       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
13829       break;
13830     }
13831 
13832     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13833   }
13834 
13835   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13836   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13837   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
13838     unsigned NumElts =
13839         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13840     Value *MaskIn = Ops[2];
13841     Ops.erase(&Ops[2]);
13842 
13843     Intrinsic::ID ID;
13844     switch (BuiltinID) {
13845     default: llvm_unreachable("Unsupported intrinsic!");
13846     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13847       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
13848       break;
13849     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13850       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
13851       break;
13852     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
13853       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
13854       break;
13855     }
13856 
13857     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13858     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
13859   }
13860 
13861   // packed comparison intrinsics
13862   case X86::BI__builtin_ia32_cmpeqps:
13863   case X86::BI__builtin_ia32_cmpeqpd:
13864     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
13865   case X86::BI__builtin_ia32_cmpltps:
13866   case X86::BI__builtin_ia32_cmpltpd:
13867     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
13868   case X86::BI__builtin_ia32_cmpleps:
13869   case X86::BI__builtin_ia32_cmplepd:
13870     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
13871   case X86::BI__builtin_ia32_cmpunordps:
13872   case X86::BI__builtin_ia32_cmpunordpd:
13873     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
13874   case X86::BI__builtin_ia32_cmpneqps:
13875   case X86::BI__builtin_ia32_cmpneqpd:
13876     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
13877   case X86::BI__builtin_ia32_cmpnltps:
13878   case X86::BI__builtin_ia32_cmpnltpd:
13879     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
13880   case X86::BI__builtin_ia32_cmpnleps:
13881   case X86::BI__builtin_ia32_cmpnlepd:
13882     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
13883   case X86::BI__builtin_ia32_cmpordps:
13884   case X86::BI__builtin_ia32_cmpordpd:
13885     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
13886   case X86::BI__builtin_ia32_cmpps128_mask:
13887   case X86::BI__builtin_ia32_cmpps256_mask:
13888   case X86::BI__builtin_ia32_cmpps512_mask:
13889   case X86::BI__builtin_ia32_cmppd128_mask:
13890   case X86::BI__builtin_ia32_cmppd256_mask:
13891   case X86::BI__builtin_ia32_cmppd512_mask:
13892     IsMaskFCmp = true;
13893     LLVM_FALLTHROUGH;
13894   case X86::BI__builtin_ia32_cmpps:
13895   case X86::BI__builtin_ia32_cmpps256:
13896   case X86::BI__builtin_ia32_cmppd:
13897   case X86::BI__builtin_ia32_cmppd256: {
13898     // Lowering vector comparisons to fcmp instructions, while
13899     // ignoring signalling behaviour requested
13900     // ignoring rounding mode requested
13901     // This is is only possible as long as FENV_ACCESS is not implemented.
13902     // See also: https://reviews.llvm.org/D45616
13903 
13904     // The third argument is the comparison condition, and integer in the
13905     // range [0, 31]
13906     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
13907 
13908     // Lowering to IR fcmp instruction.
13909     // Ignoring requested signaling behaviour,
13910     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
13911     FCmpInst::Predicate Pred;
13912     bool IsSignaling;
13913     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
13914     // behavior is inverted. We'll handle that after the switch.
13915     switch (CC & 0xf) {
13916     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
13917     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
13918     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
13919     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
13920     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
13921     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
13922     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
13923     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
13924     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
13925     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
13926     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
13927     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
13928     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
13929     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
13930     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
13931     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
13932     default: llvm_unreachable("Unhandled CC");
13933     }
13934 
13935     // Invert the signalling behavior for 16-31.
13936     if (CC & 0x10)
13937       IsSignaling = !IsSignaling;
13938 
13939     // If the predicate is true or false and we're using constrained intrinsics,
13940     // we don't have a compare intrinsic we can use. Just use the legacy X86
13941     // specific intrinsic.
13942     // If the intrinsic is mask enabled and we're using constrained intrinsics,
13943     // use the legacy X86 specific intrinsic.
13944     if (Builder.getIsFPConstrained() &&
13945         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
13946          IsMaskFCmp)) {
13947 
13948       Intrinsic::ID IID;
13949       switch (BuiltinID) {
13950       default: llvm_unreachable("Unexpected builtin");
13951       case X86::BI__builtin_ia32_cmpps:
13952         IID = Intrinsic::x86_sse_cmp_ps;
13953         break;
13954       case X86::BI__builtin_ia32_cmpps256:
13955         IID = Intrinsic::x86_avx_cmp_ps_256;
13956         break;
13957       case X86::BI__builtin_ia32_cmppd:
13958         IID = Intrinsic::x86_sse2_cmp_pd;
13959         break;
13960       case X86::BI__builtin_ia32_cmppd256:
13961         IID = Intrinsic::x86_avx_cmp_pd_256;
13962         break;
13963       case X86::BI__builtin_ia32_cmpps512_mask:
13964         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
13965         break;
13966       case X86::BI__builtin_ia32_cmppd512_mask:
13967         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
13968         break;
13969       case X86::BI__builtin_ia32_cmpps128_mask:
13970         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
13971         break;
13972       case X86::BI__builtin_ia32_cmpps256_mask:
13973         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
13974         break;
13975       case X86::BI__builtin_ia32_cmppd128_mask:
13976         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
13977         break;
13978       case X86::BI__builtin_ia32_cmppd256_mask:
13979         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
13980         break;
13981       }
13982 
13983       Function *Intr = CGM.getIntrinsic(IID);
13984       if (IsMaskFCmp) {
13985         unsigned NumElts =
13986             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13987         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
13988         Value *Cmp = Builder.CreateCall(Intr, Ops);
13989         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
13990       }
13991 
13992       return Builder.CreateCall(Intr, Ops);
13993     }
13994 
13995     // Builtins without the _mask suffix return a vector of integers
13996     // of the same width as the input vectors
13997     if (IsMaskFCmp) {
13998       // We ignore SAE if strict FP is disabled. We only keep precise
13999       // exception behavior under strict FP.
14000       unsigned NumElts =
14001           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14002       Value *Cmp;
14003       if (IsSignaling)
14004         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14005       else
14006         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14007       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14008     }
14009 
14010     return getVectorFCmpIR(Pred, IsSignaling);
14011   }
14012 
14013   // SSE scalar comparison intrinsics
14014   case X86::BI__builtin_ia32_cmpeqss:
14015     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14016   case X86::BI__builtin_ia32_cmpltss:
14017     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14018   case X86::BI__builtin_ia32_cmpless:
14019     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14020   case X86::BI__builtin_ia32_cmpunordss:
14021     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14022   case X86::BI__builtin_ia32_cmpneqss:
14023     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14024   case X86::BI__builtin_ia32_cmpnltss:
14025     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14026   case X86::BI__builtin_ia32_cmpnless:
14027     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14028   case X86::BI__builtin_ia32_cmpordss:
14029     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14030   case X86::BI__builtin_ia32_cmpeqsd:
14031     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14032   case X86::BI__builtin_ia32_cmpltsd:
14033     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14034   case X86::BI__builtin_ia32_cmplesd:
14035     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14036   case X86::BI__builtin_ia32_cmpunordsd:
14037     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14038   case X86::BI__builtin_ia32_cmpneqsd:
14039     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14040   case X86::BI__builtin_ia32_cmpnltsd:
14041     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14042   case X86::BI__builtin_ia32_cmpnlesd:
14043     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14044   case X86::BI__builtin_ia32_cmpordsd:
14045     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14046 
14047   // f16c half2float intrinsics
14048   case X86::BI__builtin_ia32_vcvtph2ps:
14049   case X86::BI__builtin_ia32_vcvtph2ps256:
14050   case X86::BI__builtin_ia32_vcvtph2ps_mask:
14051   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14052   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
14053     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14054 
14055 // AVX512 bf16 intrinsics
14056   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14057     Ops[2] = getMaskVecValue(
14058         *this, Ops[2],
14059         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14060     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14061     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14062   }
14063   case X86::BI__builtin_ia32_cvtsbf162ss_32:
14064     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14065 
14066   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14067   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14068     Intrinsic::ID IID;
14069     switch (BuiltinID) {
14070     default: llvm_unreachable("Unsupported intrinsic!");
14071     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14072       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14073       break;
14074     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14075       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14076       break;
14077     }
14078     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14079     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14080   }
14081 
14082   case X86::BI__emul:
14083   case X86::BI__emulu: {
14084     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14085     bool isSigned = (BuiltinID == X86::BI__emul);
14086     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14087     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14088     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14089   }
14090   case X86::BI__mulh:
14091   case X86::BI__umulh:
14092   case X86::BI_mul128:
14093   case X86::BI_umul128: {
14094     llvm::Type *ResType = ConvertType(E->getType());
14095     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14096 
14097     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14098     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14099     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14100 
14101     Value *MulResult, *HigherBits;
14102     if (IsSigned) {
14103       MulResult = Builder.CreateNSWMul(LHS, RHS);
14104       HigherBits = Builder.CreateAShr(MulResult, 64);
14105     } else {
14106       MulResult = Builder.CreateNUWMul(LHS, RHS);
14107       HigherBits = Builder.CreateLShr(MulResult, 64);
14108     }
14109     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14110 
14111     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14112       return HigherBits;
14113 
14114     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14115     Builder.CreateStore(HigherBits, HighBitsAddress);
14116     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14117   }
14118 
14119   case X86::BI__faststorefence: {
14120     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14121                                llvm::SyncScope::System);
14122   }
14123   case X86::BI__shiftleft128:
14124   case X86::BI__shiftright128: {
14125     llvm::Function *F = CGM.getIntrinsic(
14126         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14127         Int64Ty);
14128     // Flip low/high ops and zero-extend amount to matching type.
14129     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14130     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14131     std::swap(Ops[0], Ops[1]);
14132     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14133     return Builder.CreateCall(F, Ops);
14134   }
14135   case X86::BI_ReadWriteBarrier:
14136   case X86::BI_ReadBarrier:
14137   case X86::BI_WriteBarrier: {
14138     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14139                                llvm::SyncScope::SingleThread);
14140   }
14141 
14142   case X86::BI_AddressOfReturnAddress: {
14143     Function *F =
14144         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14145     return Builder.CreateCall(F);
14146   }
14147   case X86::BI__stosb: {
14148     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14149     // instruction, but it will create a memset that won't be optimized away.
14150     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14151   }
14152   case X86::BI__ud2:
14153     // llvm.trap makes a ud2a instruction on x86.
14154     return EmitTrapCall(Intrinsic::trap);
14155   case X86::BI__int2c: {
14156     // This syscall signals a driver assertion failure in x86 NT kernels.
14157     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14158     llvm::InlineAsm *IA =
14159         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14160     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14161         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14162         llvm::Attribute::NoReturn);
14163     llvm::CallInst *CI = Builder.CreateCall(IA);
14164     CI->setAttributes(NoReturnAttr);
14165     return CI;
14166   }
14167   case X86::BI__readfsbyte:
14168   case X86::BI__readfsword:
14169   case X86::BI__readfsdword:
14170   case X86::BI__readfsqword: {
14171     llvm::Type *IntTy = ConvertType(E->getType());
14172     Value *Ptr =
14173         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14174     LoadInst *Load = Builder.CreateAlignedLoad(
14175         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14176     Load->setVolatile(true);
14177     return Load;
14178   }
14179   case X86::BI__readgsbyte:
14180   case X86::BI__readgsword:
14181   case X86::BI__readgsdword:
14182   case X86::BI__readgsqword: {
14183     llvm::Type *IntTy = ConvertType(E->getType());
14184     Value *Ptr =
14185         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14186     LoadInst *Load = Builder.CreateAlignedLoad(
14187         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14188     Load->setVolatile(true);
14189     return Load;
14190   }
14191   case X86::BI__builtin_ia32_paddsb512:
14192   case X86::BI__builtin_ia32_paddsw512:
14193   case X86::BI__builtin_ia32_paddsb256:
14194   case X86::BI__builtin_ia32_paddsw256:
14195   case X86::BI__builtin_ia32_paddsb128:
14196   case X86::BI__builtin_ia32_paddsw128:
14197     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14198   case X86::BI__builtin_ia32_paddusb512:
14199   case X86::BI__builtin_ia32_paddusw512:
14200   case X86::BI__builtin_ia32_paddusb256:
14201   case X86::BI__builtin_ia32_paddusw256:
14202   case X86::BI__builtin_ia32_paddusb128:
14203   case X86::BI__builtin_ia32_paddusw128:
14204     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14205   case X86::BI__builtin_ia32_psubsb512:
14206   case X86::BI__builtin_ia32_psubsw512:
14207   case X86::BI__builtin_ia32_psubsb256:
14208   case X86::BI__builtin_ia32_psubsw256:
14209   case X86::BI__builtin_ia32_psubsb128:
14210   case X86::BI__builtin_ia32_psubsw128:
14211     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14212   case X86::BI__builtin_ia32_psubusb512:
14213   case X86::BI__builtin_ia32_psubusw512:
14214   case X86::BI__builtin_ia32_psubusb256:
14215   case X86::BI__builtin_ia32_psubusw256:
14216   case X86::BI__builtin_ia32_psubusb128:
14217   case X86::BI__builtin_ia32_psubusw128:
14218     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14219   case X86::BI__builtin_ia32_encodekey128_u32: {
14220     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14221 
14222     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14223 
14224     for (int i = 0; i < 6; ++i) {
14225       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14226       Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16);
14227       Ptr = Builder.CreateBitCast(
14228           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14229       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14230     }
14231 
14232     return Builder.CreateExtractValue(Call, 0);
14233   }
14234   case X86::BI__builtin_ia32_encodekey256_u32: {
14235     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14236 
14237     Value *Call =
14238         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14239 
14240     for (int i = 0; i < 7; ++i) {
14241       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14242       Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16);
14243       Ptr = Builder.CreateBitCast(
14244           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14245       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14246     }
14247 
14248     return Builder.CreateExtractValue(Call, 0);
14249   }
14250   case X86::BI__builtin_ia32_aesenc128kl_u8:
14251   case X86::BI__builtin_ia32_aesdec128kl_u8:
14252   case X86::BI__builtin_ia32_aesenc256kl_u8:
14253   case X86::BI__builtin_ia32_aesdec256kl_u8: {
14254     Intrinsic::ID IID;
14255     switch (BuiltinID) {
14256     default: llvm_unreachable("Unexpected builtin");
14257     case X86::BI__builtin_ia32_aesenc128kl_u8:
14258       IID = Intrinsic::x86_aesenc128kl;
14259       break;
14260     case X86::BI__builtin_ia32_aesdec128kl_u8:
14261       IID = Intrinsic::x86_aesdec128kl;
14262       break;
14263     case X86::BI__builtin_ia32_aesenc256kl_u8:
14264       IID = Intrinsic::x86_aesenc256kl;
14265       break;
14266     case X86::BI__builtin_ia32_aesdec256kl_u8:
14267       IID = Intrinsic::x86_aesdec256kl;
14268       break;
14269     }
14270 
14271     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14272 
14273     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14274                                       Ops[0]);
14275 
14276     return Builder.CreateExtractValue(Call, 0);
14277   }
14278   case X86::BI__builtin_ia32_aesencwide128kl_u8:
14279   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14280   case X86::BI__builtin_ia32_aesencwide256kl_u8:
14281   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14282     Intrinsic::ID IID;
14283     switch (BuiltinID) {
14284     case X86::BI__builtin_ia32_aesencwide128kl_u8:
14285       IID = Intrinsic::x86_aesencwide128kl;
14286       break;
14287     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14288       IID = Intrinsic::x86_aesdecwide128kl;
14289       break;
14290     case X86::BI__builtin_ia32_aesencwide256kl_u8:
14291       IID = Intrinsic::x86_aesencwide256kl;
14292       break;
14293     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14294       IID = Intrinsic::x86_aesdecwide256kl;
14295       break;
14296     }
14297 
14298     Value *InOps[9];
14299     InOps[0] = Ops[2];
14300     for (int i = 0; i != 8; ++i) {
14301       Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i);
14302       InOps[i + 1] = Builder.CreateAlignedLoad(Ptr, Align(16));
14303     }
14304 
14305     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14306 
14307     for (int i = 0; i != 8; ++i) {
14308       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14309       Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14310       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14311     }
14312 
14313     return Builder.CreateExtractValue(Call, 0);
14314   }
14315   }
14316 }
14317 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)14318 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14319                                            const CallExpr *E) {
14320   SmallVector<Value*, 4> Ops;
14321 
14322   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14323     Ops.push_back(EmitScalarExpr(E->getArg(i)));
14324 
14325   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14326 
14327   switch (BuiltinID) {
14328   default: return nullptr;
14329 
14330   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14331   // call __builtin_readcyclecounter.
14332   case PPC::BI__builtin_ppc_get_timebase:
14333     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14334 
14335   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14336   case PPC::BI__builtin_altivec_lvx:
14337   case PPC::BI__builtin_altivec_lvxl:
14338   case PPC::BI__builtin_altivec_lvebx:
14339   case PPC::BI__builtin_altivec_lvehx:
14340   case PPC::BI__builtin_altivec_lvewx:
14341   case PPC::BI__builtin_altivec_lvsl:
14342   case PPC::BI__builtin_altivec_lvsr:
14343   case PPC::BI__builtin_vsx_lxvd2x:
14344   case PPC::BI__builtin_vsx_lxvw4x:
14345   case PPC::BI__builtin_vsx_lxvd2x_be:
14346   case PPC::BI__builtin_vsx_lxvw4x_be:
14347   case PPC::BI__builtin_vsx_lxvl:
14348   case PPC::BI__builtin_vsx_lxvll:
14349   {
14350     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14351        BuiltinID == PPC::BI__builtin_vsx_lxvll){
14352       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14353     }else {
14354       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14355       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14356       Ops.pop_back();
14357     }
14358 
14359     switch (BuiltinID) {
14360     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14361     case PPC::BI__builtin_altivec_lvx:
14362       ID = Intrinsic::ppc_altivec_lvx;
14363       break;
14364     case PPC::BI__builtin_altivec_lvxl:
14365       ID = Intrinsic::ppc_altivec_lvxl;
14366       break;
14367     case PPC::BI__builtin_altivec_lvebx:
14368       ID = Intrinsic::ppc_altivec_lvebx;
14369       break;
14370     case PPC::BI__builtin_altivec_lvehx:
14371       ID = Intrinsic::ppc_altivec_lvehx;
14372       break;
14373     case PPC::BI__builtin_altivec_lvewx:
14374       ID = Intrinsic::ppc_altivec_lvewx;
14375       break;
14376     case PPC::BI__builtin_altivec_lvsl:
14377       ID = Intrinsic::ppc_altivec_lvsl;
14378       break;
14379     case PPC::BI__builtin_altivec_lvsr:
14380       ID = Intrinsic::ppc_altivec_lvsr;
14381       break;
14382     case PPC::BI__builtin_vsx_lxvd2x:
14383       ID = Intrinsic::ppc_vsx_lxvd2x;
14384       break;
14385     case PPC::BI__builtin_vsx_lxvw4x:
14386       ID = Intrinsic::ppc_vsx_lxvw4x;
14387       break;
14388     case PPC::BI__builtin_vsx_lxvd2x_be:
14389       ID = Intrinsic::ppc_vsx_lxvd2x_be;
14390       break;
14391     case PPC::BI__builtin_vsx_lxvw4x_be:
14392       ID = Intrinsic::ppc_vsx_lxvw4x_be;
14393       break;
14394     case PPC::BI__builtin_vsx_lxvl:
14395       ID = Intrinsic::ppc_vsx_lxvl;
14396       break;
14397     case PPC::BI__builtin_vsx_lxvll:
14398       ID = Intrinsic::ppc_vsx_lxvll;
14399       break;
14400     }
14401     llvm::Function *F = CGM.getIntrinsic(ID);
14402     return Builder.CreateCall(F, Ops, "");
14403   }
14404 
14405   // vec_st, vec_xst_be
14406   case PPC::BI__builtin_altivec_stvx:
14407   case PPC::BI__builtin_altivec_stvxl:
14408   case PPC::BI__builtin_altivec_stvebx:
14409   case PPC::BI__builtin_altivec_stvehx:
14410   case PPC::BI__builtin_altivec_stvewx:
14411   case PPC::BI__builtin_vsx_stxvd2x:
14412   case PPC::BI__builtin_vsx_stxvw4x:
14413   case PPC::BI__builtin_vsx_stxvd2x_be:
14414   case PPC::BI__builtin_vsx_stxvw4x_be:
14415   case PPC::BI__builtin_vsx_stxvl:
14416   case PPC::BI__builtin_vsx_stxvll:
14417   {
14418     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14419       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14420       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14421     }else {
14422       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14423       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14424       Ops.pop_back();
14425     }
14426 
14427     switch (BuiltinID) {
14428     default: llvm_unreachable("Unsupported st intrinsic!");
14429     case PPC::BI__builtin_altivec_stvx:
14430       ID = Intrinsic::ppc_altivec_stvx;
14431       break;
14432     case PPC::BI__builtin_altivec_stvxl:
14433       ID = Intrinsic::ppc_altivec_stvxl;
14434       break;
14435     case PPC::BI__builtin_altivec_stvebx:
14436       ID = Intrinsic::ppc_altivec_stvebx;
14437       break;
14438     case PPC::BI__builtin_altivec_stvehx:
14439       ID = Intrinsic::ppc_altivec_stvehx;
14440       break;
14441     case PPC::BI__builtin_altivec_stvewx:
14442       ID = Intrinsic::ppc_altivec_stvewx;
14443       break;
14444     case PPC::BI__builtin_vsx_stxvd2x:
14445       ID = Intrinsic::ppc_vsx_stxvd2x;
14446       break;
14447     case PPC::BI__builtin_vsx_stxvw4x:
14448       ID = Intrinsic::ppc_vsx_stxvw4x;
14449       break;
14450     case PPC::BI__builtin_vsx_stxvd2x_be:
14451       ID = Intrinsic::ppc_vsx_stxvd2x_be;
14452       break;
14453     case PPC::BI__builtin_vsx_stxvw4x_be:
14454       ID = Intrinsic::ppc_vsx_stxvw4x_be;
14455       break;
14456     case PPC::BI__builtin_vsx_stxvl:
14457       ID = Intrinsic::ppc_vsx_stxvl;
14458       break;
14459     case PPC::BI__builtin_vsx_stxvll:
14460       ID = Intrinsic::ppc_vsx_stxvll;
14461       break;
14462     }
14463     llvm::Function *F = CGM.getIntrinsic(ID);
14464     return Builder.CreateCall(F, Ops, "");
14465   }
14466   // Square root
14467   case PPC::BI__builtin_vsx_xvsqrtsp:
14468   case PPC::BI__builtin_vsx_xvsqrtdp: {
14469     llvm::Type *ResultType = ConvertType(E->getType());
14470     Value *X = EmitScalarExpr(E->getArg(0));
14471     if (Builder.getIsFPConstrained()) {
14472       llvm::Function *F = CGM.getIntrinsic(
14473           Intrinsic::experimental_constrained_sqrt, ResultType);
14474       return Builder.CreateConstrainedFPCall(F, X);
14475     } else {
14476       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14477       return Builder.CreateCall(F, X);
14478     }
14479   }
14480   // Count leading zeros
14481   case PPC::BI__builtin_altivec_vclzb:
14482   case PPC::BI__builtin_altivec_vclzh:
14483   case PPC::BI__builtin_altivec_vclzw:
14484   case PPC::BI__builtin_altivec_vclzd: {
14485     llvm::Type *ResultType = ConvertType(E->getType());
14486     Value *X = EmitScalarExpr(E->getArg(0));
14487     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14488     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14489     return Builder.CreateCall(F, {X, Undef});
14490   }
14491   case PPC::BI__builtin_altivec_vctzb:
14492   case PPC::BI__builtin_altivec_vctzh:
14493   case PPC::BI__builtin_altivec_vctzw:
14494   case PPC::BI__builtin_altivec_vctzd: {
14495     llvm::Type *ResultType = ConvertType(E->getType());
14496     Value *X = EmitScalarExpr(E->getArg(0));
14497     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14498     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14499     return Builder.CreateCall(F, {X, Undef});
14500   }
14501   case PPC::BI__builtin_altivec_vec_replace_elt:
14502   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
14503     // The third argument of vec_replace_elt and vec_replace_unaligned must
14504     // be a compile time constant and will be emitted either to the vinsw
14505     // or vinsd instruction.
14506     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14507     assert(ArgCI &&
14508            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
14509     llvm::Type *ResultType = ConvertType(E->getType());
14510     llvm::Function *F = nullptr;
14511     Value *Call = nullptr;
14512     int64_t ConstArg = ArgCI->getSExtValue();
14513     unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
14514     bool Is32Bit = false;
14515     assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
14516     // The input to vec_replace_elt is an element index, not a byte index.
14517     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
14518       ConstArg *= ArgWidth / 8;
14519     if (ArgWidth == 32) {
14520       Is32Bit = true;
14521       // When the second argument is 32 bits, it can either be an integer or
14522       // a float. The vinsw intrinsic is used in this case.
14523       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
14524       // Fix the constant according to endianess.
14525       if (getTarget().isLittleEndian())
14526         ConstArg = 12 - ConstArg;
14527     } else {
14528       // When the second argument is 64 bits, it can either be a long long or
14529       // a double. The vinsd intrinsic is used in this case.
14530       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
14531       // Fix the constant for little endian.
14532       if (getTarget().isLittleEndian())
14533         ConstArg = 8 - ConstArg;
14534     }
14535     Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
14536     // Depending on ArgWidth, the input vector could be a float or a double.
14537     // If the input vector is a float type, bitcast the inputs to integers. Or,
14538     // if the input vector is a double, bitcast the inputs to 64-bit integers.
14539     if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
14540       Ops[0] = Builder.CreateBitCast(
14541           Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
14542                           : llvm::FixedVectorType::get(Int64Ty, 2));
14543       Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
14544     }
14545     // Emit the call to vinsw or vinsd.
14546     Call = Builder.CreateCall(F, Ops);
14547     // Depending on the builtin, bitcast to the approriate result type.
14548     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
14549         !Ops[1]->getType()->isIntegerTy())
14550       return Builder.CreateBitCast(Call, ResultType);
14551     else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
14552              Ops[1]->getType()->isIntegerTy())
14553       return Call;
14554     else
14555       return Builder.CreateBitCast(Call,
14556                                    llvm::FixedVectorType::get(Int8Ty, 16));
14557   }
14558   case PPC::BI__builtin_altivec_vpopcntb:
14559   case PPC::BI__builtin_altivec_vpopcnth:
14560   case PPC::BI__builtin_altivec_vpopcntw:
14561   case PPC::BI__builtin_altivec_vpopcntd: {
14562     llvm::Type *ResultType = ConvertType(E->getType());
14563     Value *X = EmitScalarExpr(E->getArg(0));
14564     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14565     return Builder.CreateCall(F, X);
14566   }
14567   // Copy sign
14568   case PPC::BI__builtin_vsx_xvcpsgnsp:
14569   case PPC::BI__builtin_vsx_xvcpsgndp: {
14570     llvm::Type *ResultType = ConvertType(E->getType());
14571     Value *X = EmitScalarExpr(E->getArg(0));
14572     Value *Y = EmitScalarExpr(E->getArg(1));
14573     ID = Intrinsic::copysign;
14574     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14575     return Builder.CreateCall(F, {X, Y});
14576   }
14577   // Rounding/truncation
14578   case PPC::BI__builtin_vsx_xvrspip:
14579   case PPC::BI__builtin_vsx_xvrdpip:
14580   case PPC::BI__builtin_vsx_xvrdpim:
14581   case PPC::BI__builtin_vsx_xvrspim:
14582   case PPC::BI__builtin_vsx_xvrdpi:
14583   case PPC::BI__builtin_vsx_xvrspi:
14584   case PPC::BI__builtin_vsx_xvrdpic:
14585   case PPC::BI__builtin_vsx_xvrspic:
14586   case PPC::BI__builtin_vsx_xvrdpiz:
14587   case PPC::BI__builtin_vsx_xvrspiz: {
14588     llvm::Type *ResultType = ConvertType(E->getType());
14589     Value *X = EmitScalarExpr(E->getArg(0));
14590     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
14591         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
14592       ID = Builder.getIsFPConstrained()
14593                ? Intrinsic::experimental_constrained_floor
14594                : Intrinsic::floor;
14595     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
14596              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
14597       ID = Builder.getIsFPConstrained()
14598                ? Intrinsic::experimental_constrained_round
14599                : Intrinsic::round;
14600     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
14601              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
14602       ID = Builder.getIsFPConstrained()
14603                ? Intrinsic::experimental_constrained_rint
14604                : Intrinsic::rint;
14605     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
14606              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
14607       ID = Builder.getIsFPConstrained()
14608                ? Intrinsic::experimental_constrained_ceil
14609                : Intrinsic::ceil;
14610     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
14611              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
14612       ID = Builder.getIsFPConstrained()
14613                ? Intrinsic::experimental_constrained_trunc
14614                : Intrinsic::trunc;
14615     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14616     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
14617                                         : Builder.CreateCall(F, X);
14618   }
14619 
14620   // Absolute value
14621   case PPC::BI__builtin_vsx_xvabsdp:
14622   case PPC::BI__builtin_vsx_xvabssp: {
14623     llvm::Type *ResultType = ConvertType(E->getType());
14624     Value *X = EmitScalarExpr(E->getArg(0));
14625     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
14626     return Builder.CreateCall(F, X);
14627   }
14628 
14629   // FMA variations
14630   case PPC::BI__builtin_vsx_xvmaddadp:
14631   case PPC::BI__builtin_vsx_xvmaddasp:
14632   case PPC::BI__builtin_vsx_xvnmaddadp:
14633   case PPC::BI__builtin_vsx_xvnmaddasp:
14634   case PPC::BI__builtin_vsx_xvmsubadp:
14635   case PPC::BI__builtin_vsx_xvmsubasp:
14636   case PPC::BI__builtin_vsx_xvnmsubadp:
14637   case PPC::BI__builtin_vsx_xvnmsubasp: {
14638     llvm::Type *ResultType = ConvertType(E->getType());
14639     Value *X = EmitScalarExpr(E->getArg(0));
14640     Value *Y = EmitScalarExpr(E->getArg(1));
14641     Value *Z = EmitScalarExpr(E->getArg(2));
14642     llvm::Function *F;
14643     if (Builder.getIsFPConstrained())
14644       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
14645     else
14646       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
14647     switch (BuiltinID) {
14648       case PPC::BI__builtin_vsx_xvmaddadp:
14649       case PPC::BI__builtin_vsx_xvmaddasp:
14650         if (Builder.getIsFPConstrained())
14651           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
14652         else
14653           return Builder.CreateCall(F, {X, Y, Z});
14654       case PPC::BI__builtin_vsx_xvnmaddadp:
14655       case PPC::BI__builtin_vsx_xvnmaddasp:
14656         if (Builder.getIsFPConstrained())
14657           return Builder.CreateFNeg(
14658               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
14659         else
14660           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
14661       case PPC::BI__builtin_vsx_xvmsubadp:
14662       case PPC::BI__builtin_vsx_xvmsubasp:
14663         if (Builder.getIsFPConstrained())
14664           return Builder.CreateConstrainedFPCall(
14665               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14666         else
14667           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14668       case PPC::BI__builtin_vsx_xvnmsubadp:
14669       case PPC::BI__builtin_vsx_xvnmsubasp:
14670         if (Builder.getIsFPConstrained())
14671           return Builder.CreateFNeg(
14672               Builder.CreateConstrainedFPCall(
14673                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14674               "neg");
14675         else
14676           return Builder.CreateFNeg(
14677               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14678               "neg");
14679     }
14680     llvm_unreachable("Unknown FMA operation");
14681     return nullptr; // Suppress no-return warning
14682   }
14683 
14684   case PPC::BI__builtin_vsx_insertword: {
14685     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
14686 
14687     // Third argument is a compile time constant int. It must be clamped to
14688     // to the range [0, 12].
14689     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14690     assert(ArgCI &&
14691            "Third arg to xxinsertw intrinsic must be constant integer");
14692     const int64_t MaxIndex = 12;
14693     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14694 
14695     // The builtin semantics don't exactly match the xxinsertw instructions
14696     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
14697     // word from the first argument, and inserts it in the second argument. The
14698     // instruction extracts the word from its second input register and inserts
14699     // it into its first input register, so swap the first and second arguments.
14700     std::swap(Ops[0], Ops[1]);
14701 
14702     // Need to cast the second argument from a vector of unsigned int to a
14703     // vector of long long.
14704     Ops[1] =
14705         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14706 
14707     if (getTarget().isLittleEndian()) {
14708       // Reverse the double words in the vector we will extract from.
14709       Ops[0] =
14710           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14711       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
14712 
14713       // Reverse the index.
14714       Index = MaxIndex - Index;
14715     }
14716 
14717     // Intrinsic expects the first arg to be a vector of int.
14718     Ops[0] =
14719         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14720     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
14721     return Builder.CreateCall(F, Ops);
14722   }
14723 
14724   case PPC::BI__builtin_vsx_extractuword: {
14725     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
14726 
14727     // Intrinsic expects the first argument to be a vector of doublewords.
14728     Ops[0] =
14729         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14730 
14731     // The second argument is a compile time constant int that needs to
14732     // be clamped to the range [0, 12].
14733     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
14734     assert(ArgCI &&
14735            "Second Arg to xxextractuw intrinsic must be a constant integer!");
14736     const int64_t MaxIndex = 12;
14737     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14738 
14739     if (getTarget().isLittleEndian()) {
14740       // Reverse the index.
14741       Index = MaxIndex - Index;
14742       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14743 
14744       // Emit the call, then reverse the double words of the results vector.
14745       Value *Call = Builder.CreateCall(F, Ops);
14746 
14747       Value *ShuffleCall =
14748           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
14749       return ShuffleCall;
14750     } else {
14751       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14752       return Builder.CreateCall(F, Ops);
14753     }
14754   }
14755 
14756   case PPC::BI__builtin_vsx_xxpermdi: {
14757     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14758     assert(ArgCI && "Third arg must be constant integer!");
14759 
14760     unsigned Index = ArgCI->getZExtValue();
14761     Ops[0] =
14762         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14763     Ops[1] =
14764         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14765 
14766     // Account for endianness by treating this as just a shuffle. So we use the
14767     // same indices for both LE and BE in order to produce expected results in
14768     // both cases.
14769     int ElemIdx0 = (Index & 2) >> 1;
14770     int ElemIdx1 = 2 + (Index & 1);
14771 
14772     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
14773     Value *ShuffleCall =
14774         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14775     QualType BIRetType = E->getType();
14776     auto RetTy = ConvertType(BIRetType);
14777     return Builder.CreateBitCast(ShuffleCall, RetTy);
14778   }
14779 
14780   case PPC::BI__builtin_vsx_xxsldwi: {
14781     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14782     assert(ArgCI && "Third argument must be a compile time constant");
14783     unsigned Index = ArgCI->getZExtValue() & 0x3;
14784     Ops[0] =
14785         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14786     Ops[1] =
14787         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
14788 
14789     // Create a shuffle mask
14790     int ElemIdx0;
14791     int ElemIdx1;
14792     int ElemIdx2;
14793     int ElemIdx3;
14794     if (getTarget().isLittleEndian()) {
14795       // Little endian element N comes from element 8+N-Index of the
14796       // concatenated wide vector (of course, using modulo arithmetic on
14797       // the total number of elements).
14798       ElemIdx0 = (8 - Index) % 8;
14799       ElemIdx1 = (9 - Index) % 8;
14800       ElemIdx2 = (10 - Index) % 8;
14801       ElemIdx3 = (11 - Index) % 8;
14802     } else {
14803       // Big endian ElemIdx<N> = Index + N
14804       ElemIdx0 = Index;
14805       ElemIdx1 = Index + 1;
14806       ElemIdx2 = Index + 2;
14807       ElemIdx3 = Index + 3;
14808     }
14809 
14810     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
14811     Value *ShuffleCall =
14812         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14813     QualType BIRetType = E->getType();
14814     auto RetTy = ConvertType(BIRetType);
14815     return Builder.CreateBitCast(ShuffleCall, RetTy);
14816   }
14817 
14818   case PPC::BI__builtin_pack_vector_int128: {
14819     bool isLittleEndian = getTarget().isLittleEndian();
14820     Value *UndefValue =
14821         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
14822     Value *Res = Builder.CreateInsertElement(
14823         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
14824     Res = Builder.CreateInsertElement(Res, Ops[1],
14825                                       (uint64_t)(isLittleEndian ? 0 : 1));
14826     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
14827   }
14828 
14829   case PPC::BI__builtin_unpack_vector_int128: {
14830     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
14831     Value *Unpacked = Builder.CreateBitCast(
14832         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
14833 
14834     if (getTarget().isLittleEndian())
14835       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
14836 
14837     return Builder.CreateExtractElement(Unpacked, Index);
14838   }
14839 
14840   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
14841   // Some of the MMA instructions accumulate their result into an existing
14842   // accumulator whereas the others generate a new accumulator. So we need to
14843   // use custom code generation to expand a builtin call with a pointer to a
14844   // load (if the corresponding instruction accumulates its result) followed by
14845   // the call to the intrinsic and a store of the result.
14846 #define MMA_BUILTIN(Name, Types, Accumulate) \
14847   case PPC::BI__builtin_mma_##Name:
14848 #include "clang/Basic/BuiltinsPPC.def"
14849   {
14850     // The first argument of these two builtins is a pointer used to store their
14851     // result. However, the llvm intrinsics return their result in multiple
14852     // return values. So, here we emit code extracting these values from the
14853     // intrinsic results and storing them using that pointer.
14854     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
14855         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
14856       unsigned NumVecs = 2;
14857       auto Intrinsic = Intrinsic::ppc_mma_disassemble_pair;
14858       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
14859         NumVecs = 4;
14860         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
14861       }
14862       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
14863       Address Addr = EmitPointerWithAlignment(E->getArg(1));
14864       Value *Vec = Builder.CreateLoad(Addr);
14865       Value *Call = Builder.CreateCall(F, {Vec});
14866       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
14867       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
14868       for (unsigned i=0; i<NumVecs; i++) {
14869         Value *Vec = Builder.CreateExtractValue(Call, i);
14870         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
14871         Value *GEP = Builder.CreateInBoundsGEP(Ptr, Index);
14872         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
14873       }
14874       return Call;
14875     }
14876     bool Accumulate;
14877     switch (BuiltinID) {
14878   #define MMA_BUILTIN(Name, Types, Acc) \
14879     case PPC::BI__builtin_mma_##Name: \
14880       ID = Intrinsic::ppc_mma_##Name; \
14881       Accumulate = Acc; \
14882       break;
14883   #include "clang/Basic/BuiltinsPPC.def"
14884     }
14885     if (BuiltinID == PPC::BI__builtin_mma_lxvp ||
14886         BuiltinID == PPC::BI__builtin_mma_stxvp) {
14887       if (BuiltinID == PPC::BI__builtin_mma_lxvp) {
14888         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14889         Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14890       } else {
14891         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14892         Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14893       }
14894       Ops.pop_back();
14895       llvm::Function *F = CGM.getIntrinsic(ID);
14896       return Builder.CreateCall(F, Ops, "");
14897     }
14898     SmallVector<Value*, 4> CallOps;
14899     if (Accumulate) {
14900       Address Addr = EmitPointerWithAlignment(E->getArg(0));
14901       Value *Acc = Builder.CreateLoad(Addr);
14902       CallOps.push_back(Acc);
14903     }
14904     for (unsigned i=1; i<Ops.size(); i++)
14905       CallOps.push_back(Ops[i]);
14906     llvm::Function *F = CGM.getIntrinsic(ID);
14907     Value *Call = Builder.CreateCall(F, CallOps);
14908     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
14909   }
14910   }
14911 }
14912 
14913 namespace {
14914 // If \p E is not null pointer, insert address space cast to match return
14915 // type of \p E if necessary.
EmitAMDGPUDispatchPtr(CodeGenFunction & CGF,const CallExpr * E=nullptr)14916 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
14917                              const CallExpr *E = nullptr) {
14918   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
14919   auto *Call = CGF.Builder.CreateCall(F);
14920   Call->addAttribute(
14921       AttributeList::ReturnIndex,
14922       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
14923   Call->addAttribute(AttributeList::ReturnIndex,
14924                      Attribute::getWithAlignment(Call->getContext(), Align(4)));
14925   if (!E)
14926     return Call;
14927   QualType BuiltinRetType = E->getType();
14928   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
14929   if (RetTy == Call->getType())
14930     return Call;
14931   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
14932 }
14933 
14934 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUWorkGroupSize(CodeGenFunction & CGF,unsigned Index)14935 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
14936   const unsigned XOffset = 4;
14937   auto *DP = EmitAMDGPUDispatchPtr(CGF);
14938   // Indexing the HSA kernel_dispatch_packet struct.
14939   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
14940   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
14941   auto *DstTy =
14942       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
14943   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
14944   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
14945   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
14946   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
14947       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
14948   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
14949   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
14950       llvm::MDNode::get(CGF.getLLVMContext(), None));
14951   return LD;
14952 }
14953 
14954 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUGridSize(CodeGenFunction & CGF,unsigned Index)14955 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
14956   const unsigned XOffset = 12;
14957   auto *DP = EmitAMDGPUDispatchPtr(CGF);
14958   // Indexing the HSA kernel_dispatch_packet struct.
14959   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
14960   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
14961   auto *DstTy =
14962       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
14963   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
14964   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
14965   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
14966                   llvm::MDNode::get(CGF.getLLVMContext(), None));
14967   return LD;
14968 }
14969 } // namespace
14970 
14971 // For processing memory ordering and memory scope arguments of various
14972 // amdgcn builtins.
14973 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
14974 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
14975 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
14976 // specific SyncScopeID and writes it to \p SSID.
ProcessOrderScopeAMDGCN(Value * Order,Value * Scope,llvm::AtomicOrdering & AO,llvm::SyncScope::ID & SSID)14977 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
14978                                               llvm::AtomicOrdering &AO,
14979                                               llvm::SyncScope::ID &SSID) {
14980   if (isa<llvm::ConstantInt>(Order)) {
14981     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
14982 
14983     // Map C11/C++11 memory ordering to LLVM memory ordering
14984     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
14985     case llvm::AtomicOrderingCABI::acquire:
14986       AO = llvm::AtomicOrdering::Acquire;
14987       break;
14988     case llvm::AtomicOrderingCABI::release:
14989       AO = llvm::AtomicOrdering::Release;
14990       break;
14991     case llvm::AtomicOrderingCABI::acq_rel:
14992       AO = llvm::AtomicOrdering::AcquireRelease;
14993       break;
14994     case llvm::AtomicOrderingCABI::seq_cst:
14995       AO = llvm::AtomicOrdering::SequentiallyConsistent;
14996       break;
14997     case llvm::AtomicOrderingCABI::consume:
14998     case llvm::AtomicOrderingCABI::relaxed:
14999       break;
15000     }
15001 
15002     StringRef scp;
15003     llvm::getConstantStringInfo(Scope, scp);
15004     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
15005     return true;
15006   }
15007   return false;
15008 }
15009 
EmitAMDGPUBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15010 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
15011                                               const CallExpr *E) {
15012   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
15013   llvm::SyncScope::ID SSID;
15014   switch (BuiltinID) {
15015   case AMDGPU::BI__builtin_amdgcn_div_scale:
15016   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
15017     // Translate from the intrinsics's struct return to the builtin's out
15018     // argument.
15019 
15020     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
15021 
15022     llvm::Value *X = EmitScalarExpr(E->getArg(0));
15023     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
15024     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
15025 
15026     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
15027                                            X->getType());
15028 
15029     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
15030 
15031     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
15032     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
15033 
15034     llvm::Type *RealFlagType
15035       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
15036 
15037     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
15038     Builder.CreateStore(FlagExt, FlagOutPtr);
15039     return Result;
15040   }
15041   case AMDGPU::BI__builtin_amdgcn_div_fmas:
15042   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
15043     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15044     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15045     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15046     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15047 
15048     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
15049                                       Src0->getType());
15050     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
15051     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
15052   }
15053 
15054   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
15055     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
15056   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
15057     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
15058   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
15059   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
15060     llvm::SmallVector<llvm::Value *, 6> Args;
15061     for (unsigned I = 0; I != E->getNumArgs(); ++I)
15062       Args.push_back(EmitScalarExpr(E->getArg(I)));
15063     assert(Args.size() == 5 || Args.size() == 6);
15064     if (Args.size() == 5)
15065       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
15066     Function *F =
15067         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
15068     return Builder.CreateCall(F, Args);
15069   }
15070   case AMDGPU::BI__builtin_amdgcn_div_fixup:
15071   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
15072   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
15073     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
15074   case AMDGPU::BI__builtin_amdgcn_trig_preop:
15075   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
15076     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
15077   case AMDGPU::BI__builtin_amdgcn_rcp:
15078   case AMDGPU::BI__builtin_amdgcn_rcpf:
15079   case AMDGPU::BI__builtin_amdgcn_rcph:
15080     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
15081   case AMDGPU::BI__builtin_amdgcn_sqrt:
15082   case AMDGPU::BI__builtin_amdgcn_sqrtf:
15083   case AMDGPU::BI__builtin_amdgcn_sqrth:
15084     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
15085   case AMDGPU::BI__builtin_amdgcn_rsq:
15086   case AMDGPU::BI__builtin_amdgcn_rsqf:
15087   case AMDGPU::BI__builtin_amdgcn_rsqh:
15088     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
15089   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
15090   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
15091     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
15092   case AMDGPU::BI__builtin_amdgcn_sinf:
15093   case AMDGPU::BI__builtin_amdgcn_sinh:
15094     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
15095   case AMDGPU::BI__builtin_amdgcn_cosf:
15096   case AMDGPU::BI__builtin_amdgcn_cosh:
15097     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
15098   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
15099     return EmitAMDGPUDispatchPtr(*this, E);
15100   case AMDGPU::BI__builtin_amdgcn_log_clampf:
15101     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
15102   case AMDGPU::BI__builtin_amdgcn_ldexp:
15103   case AMDGPU::BI__builtin_amdgcn_ldexpf:
15104   case AMDGPU::BI__builtin_amdgcn_ldexph:
15105     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
15106   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
15107   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
15108   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
15109     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
15110   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
15111   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
15112     Value *Src0 = EmitScalarExpr(E->getArg(0));
15113     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15114                                 { Builder.getInt32Ty(), Src0->getType() });
15115     return Builder.CreateCall(F, Src0);
15116   }
15117   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
15118     Value *Src0 = EmitScalarExpr(E->getArg(0));
15119     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15120                                 { Builder.getInt16Ty(), Src0->getType() });
15121     return Builder.CreateCall(F, Src0);
15122   }
15123   case AMDGPU::BI__builtin_amdgcn_fract:
15124   case AMDGPU::BI__builtin_amdgcn_fractf:
15125   case AMDGPU::BI__builtin_amdgcn_fracth:
15126     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
15127   case AMDGPU::BI__builtin_amdgcn_lerp:
15128     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
15129   case AMDGPU::BI__builtin_amdgcn_ubfe:
15130     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
15131   case AMDGPU::BI__builtin_amdgcn_sbfe:
15132     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
15133   case AMDGPU::BI__builtin_amdgcn_uicmp:
15134   case AMDGPU::BI__builtin_amdgcn_uicmpl:
15135   case AMDGPU::BI__builtin_amdgcn_sicmp:
15136   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
15137     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15138     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15139     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15140 
15141     // FIXME-GFX10: How should 32 bit mask be handled?
15142     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
15143       { Builder.getInt64Ty(), Src0->getType() });
15144     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15145   }
15146   case AMDGPU::BI__builtin_amdgcn_fcmp:
15147   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
15148     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15149     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15150     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15151 
15152     // FIXME-GFX10: How should 32 bit mask be handled?
15153     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
15154       { Builder.getInt64Ty(), Src0->getType() });
15155     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15156   }
15157   case AMDGPU::BI__builtin_amdgcn_class:
15158   case AMDGPU::BI__builtin_amdgcn_classf:
15159   case AMDGPU::BI__builtin_amdgcn_classh:
15160     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
15161   case AMDGPU::BI__builtin_amdgcn_fmed3f:
15162   case AMDGPU::BI__builtin_amdgcn_fmed3h:
15163     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
15164   case AMDGPU::BI__builtin_amdgcn_ds_append:
15165   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
15166     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
15167       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
15168     Value *Src0 = EmitScalarExpr(E->getArg(0));
15169     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
15170     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
15171   }
15172   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15173   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15174   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
15175     Intrinsic::ID Intrin;
15176     switch (BuiltinID) {
15177     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15178       Intrin = Intrinsic::amdgcn_ds_fadd;
15179       break;
15180     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15181       Intrin = Intrinsic::amdgcn_ds_fmin;
15182       break;
15183     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
15184       Intrin = Intrinsic::amdgcn_ds_fmax;
15185       break;
15186     }
15187     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15188     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15189     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15190     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15191     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
15192     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
15193     llvm::FunctionType *FTy = F->getFunctionType();
15194     llvm::Type *PTy = FTy->getParamType(0);
15195     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
15196     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
15197   }
15198   case AMDGPU::BI__builtin_amdgcn_read_exec: {
15199     CallInst *CI = cast<CallInst>(
15200       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
15201     CI->setConvergent();
15202     return CI;
15203   }
15204   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
15205   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
15206     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
15207       "exec_lo" : "exec_hi";
15208     CallInst *CI = cast<CallInst>(
15209       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
15210     CI->setConvergent();
15211     return CI;
15212   }
15213   // amdgcn workitem
15214   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
15215     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
15216   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
15217     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
15218   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
15219     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
15220 
15221   // amdgcn workgroup size
15222   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
15223     return EmitAMDGPUWorkGroupSize(*this, 0);
15224   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
15225     return EmitAMDGPUWorkGroupSize(*this, 1);
15226   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
15227     return EmitAMDGPUWorkGroupSize(*this, 2);
15228 
15229   // amdgcn grid size
15230   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
15231     return EmitAMDGPUGridSize(*this, 0);
15232   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
15233     return EmitAMDGPUGridSize(*this, 1);
15234   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
15235     return EmitAMDGPUGridSize(*this, 2);
15236 
15237   // r600 intrinsics
15238   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
15239   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
15240     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
15241   case AMDGPU::BI__builtin_r600_read_tidig_x:
15242     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
15243   case AMDGPU::BI__builtin_r600_read_tidig_y:
15244     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
15245   case AMDGPU::BI__builtin_r600_read_tidig_z:
15246     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
15247   case AMDGPU::BI__builtin_amdgcn_alignbit: {
15248     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15249     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15250     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15251     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
15252     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15253   }
15254 
15255   case AMDGPU::BI__builtin_amdgcn_fence: {
15256     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
15257                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
15258       return Builder.CreateFence(AO, SSID);
15259     LLVM_FALLTHROUGH;
15260   }
15261   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15262   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15263   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15264   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
15265     unsigned BuiltinAtomicOp;
15266     llvm::Type *ResultType = ConvertType(E->getType());
15267 
15268     switch (BuiltinID) {
15269     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15270     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15271       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
15272       break;
15273     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15274     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
15275       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
15276       break;
15277     }
15278 
15279     Value *Ptr = EmitScalarExpr(E->getArg(0));
15280     Value *Val = EmitScalarExpr(E->getArg(1));
15281 
15282     llvm::Function *F =
15283         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
15284 
15285     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
15286                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
15287 
15288       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
15289       // scope as unsigned values
15290       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
15291       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
15292 
15293       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
15294       bool Volatile =
15295           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
15296       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
15297 
15298       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
15299     }
15300     LLVM_FALLTHROUGH;
15301   }
15302   default:
15303     return nullptr;
15304   }
15305 }
15306 
15307 /// Handle a SystemZ function in which the final argument is a pointer
15308 /// to an int that receives the post-instruction CC value.  At the LLVM level
15309 /// this is represented as a function that returns a {result, cc} pair.
EmitSystemZIntrinsicWithCC(CodeGenFunction & CGF,unsigned IntrinsicID,const CallExpr * E)15310 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
15311                                          unsigned IntrinsicID,
15312                                          const CallExpr *E) {
15313   unsigned NumArgs = E->getNumArgs() - 1;
15314   SmallVector<Value *, 8> Args(NumArgs);
15315   for (unsigned I = 0; I < NumArgs; ++I)
15316     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
15317   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
15318   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
15319   Value *Call = CGF.Builder.CreateCall(F, Args);
15320   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
15321   CGF.Builder.CreateStore(CC, CCPtr);
15322   return CGF.Builder.CreateExtractValue(Call, 0);
15323 }
15324 
EmitSystemZBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15325 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
15326                                                const CallExpr *E) {
15327   switch (BuiltinID) {
15328   case SystemZ::BI__builtin_tbegin: {
15329     Value *TDB = EmitScalarExpr(E->getArg(0));
15330     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15331     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
15332     return Builder.CreateCall(F, {TDB, Control});
15333   }
15334   case SystemZ::BI__builtin_tbegin_nofloat: {
15335     Value *TDB = EmitScalarExpr(E->getArg(0));
15336     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15337     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
15338     return Builder.CreateCall(F, {TDB, Control});
15339   }
15340   case SystemZ::BI__builtin_tbeginc: {
15341     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
15342     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
15343     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
15344     return Builder.CreateCall(F, {TDB, Control});
15345   }
15346   case SystemZ::BI__builtin_tabort: {
15347     Value *Data = EmitScalarExpr(E->getArg(0));
15348     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
15349     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
15350   }
15351   case SystemZ::BI__builtin_non_tx_store: {
15352     Value *Address = EmitScalarExpr(E->getArg(0));
15353     Value *Data = EmitScalarExpr(E->getArg(1));
15354     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
15355     return Builder.CreateCall(F, {Data, Address});
15356   }
15357 
15358   // Vector builtins.  Note that most vector builtins are mapped automatically
15359   // to target-specific LLVM intrinsics.  The ones handled specially here can
15360   // be represented via standard LLVM IR, which is preferable to enable common
15361   // LLVM optimizations.
15362 
15363   case SystemZ::BI__builtin_s390_vpopctb:
15364   case SystemZ::BI__builtin_s390_vpopcth:
15365   case SystemZ::BI__builtin_s390_vpopctf:
15366   case SystemZ::BI__builtin_s390_vpopctg: {
15367     llvm::Type *ResultType = ConvertType(E->getType());
15368     Value *X = EmitScalarExpr(E->getArg(0));
15369     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15370     return Builder.CreateCall(F, X);
15371   }
15372 
15373   case SystemZ::BI__builtin_s390_vclzb:
15374   case SystemZ::BI__builtin_s390_vclzh:
15375   case SystemZ::BI__builtin_s390_vclzf:
15376   case SystemZ::BI__builtin_s390_vclzg: {
15377     llvm::Type *ResultType = ConvertType(E->getType());
15378     Value *X = EmitScalarExpr(E->getArg(0));
15379     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15380     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15381     return Builder.CreateCall(F, {X, Undef});
15382   }
15383 
15384   case SystemZ::BI__builtin_s390_vctzb:
15385   case SystemZ::BI__builtin_s390_vctzh:
15386   case SystemZ::BI__builtin_s390_vctzf:
15387   case SystemZ::BI__builtin_s390_vctzg: {
15388     llvm::Type *ResultType = ConvertType(E->getType());
15389     Value *X = EmitScalarExpr(E->getArg(0));
15390     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15391     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15392     return Builder.CreateCall(F, {X, Undef});
15393   }
15394 
15395   case SystemZ::BI__builtin_s390_vfsqsb:
15396   case SystemZ::BI__builtin_s390_vfsqdb: {
15397     llvm::Type *ResultType = ConvertType(E->getType());
15398     Value *X = EmitScalarExpr(E->getArg(0));
15399     if (Builder.getIsFPConstrained()) {
15400       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15401       return Builder.CreateConstrainedFPCall(F, { X });
15402     } else {
15403       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15404       return Builder.CreateCall(F, X);
15405     }
15406   }
15407   case SystemZ::BI__builtin_s390_vfmasb:
15408   case SystemZ::BI__builtin_s390_vfmadb: {
15409     llvm::Type *ResultType = ConvertType(E->getType());
15410     Value *X = EmitScalarExpr(E->getArg(0));
15411     Value *Y = EmitScalarExpr(E->getArg(1));
15412     Value *Z = EmitScalarExpr(E->getArg(2));
15413     if (Builder.getIsFPConstrained()) {
15414       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15415       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15416     } else {
15417       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15418       return Builder.CreateCall(F, {X, Y, Z});
15419     }
15420   }
15421   case SystemZ::BI__builtin_s390_vfmssb:
15422   case SystemZ::BI__builtin_s390_vfmsdb: {
15423     llvm::Type *ResultType = ConvertType(E->getType());
15424     Value *X = EmitScalarExpr(E->getArg(0));
15425     Value *Y = EmitScalarExpr(E->getArg(1));
15426     Value *Z = EmitScalarExpr(E->getArg(2));
15427     if (Builder.getIsFPConstrained()) {
15428       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15429       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15430     } else {
15431       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15432       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15433     }
15434   }
15435   case SystemZ::BI__builtin_s390_vfnmasb:
15436   case SystemZ::BI__builtin_s390_vfnmadb: {
15437     llvm::Type *ResultType = ConvertType(E->getType());
15438     Value *X = EmitScalarExpr(E->getArg(0));
15439     Value *Y = EmitScalarExpr(E->getArg(1));
15440     Value *Z = EmitScalarExpr(E->getArg(2));
15441     if (Builder.getIsFPConstrained()) {
15442       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15443       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
15444     } else {
15445       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15446       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15447     }
15448   }
15449   case SystemZ::BI__builtin_s390_vfnmssb:
15450   case SystemZ::BI__builtin_s390_vfnmsdb: {
15451     llvm::Type *ResultType = ConvertType(E->getType());
15452     Value *X = EmitScalarExpr(E->getArg(0));
15453     Value *Y = EmitScalarExpr(E->getArg(1));
15454     Value *Z = EmitScalarExpr(E->getArg(2));
15455     if (Builder.getIsFPConstrained()) {
15456       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15457       Value *NegZ = Builder.CreateFNeg(Z, "sub");
15458       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15459     } else {
15460       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15461       Value *NegZ = Builder.CreateFNeg(Z, "neg");
15462       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15463     }
15464   }
15465   case SystemZ::BI__builtin_s390_vflpsb:
15466   case SystemZ::BI__builtin_s390_vflpdb: {
15467     llvm::Type *ResultType = ConvertType(E->getType());
15468     Value *X = EmitScalarExpr(E->getArg(0));
15469     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15470     return Builder.CreateCall(F, X);
15471   }
15472   case SystemZ::BI__builtin_s390_vflnsb:
15473   case SystemZ::BI__builtin_s390_vflndb: {
15474     llvm::Type *ResultType = ConvertType(E->getType());
15475     Value *X = EmitScalarExpr(E->getArg(0));
15476     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15477     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15478   }
15479   case SystemZ::BI__builtin_s390_vfisb:
15480   case SystemZ::BI__builtin_s390_vfidb: {
15481     llvm::Type *ResultType = ConvertType(E->getType());
15482     Value *X = EmitScalarExpr(E->getArg(0));
15483     // Constant-fold the M4 and M5 mask arguments.
15484     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
15485     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15486     // Check whether this instance can be represented via a LLVM standard
15487     // intrinsic.  We only support some combinations of M4 and M5.
15488     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15489     Intrinsic::ID CI;
15490     switch (M4.getZExtValue()) {
15491     default: break;
15492     case 0:  // IEEE-inexact exception allowed
15493       switch (M5.getZExtValue()) {
15494       default: break;
15495       case 0: ID = Intrinsic::rint;
15496               CI = Intrinsic::experimental_constrained_rint; break;
15497       }
15498       break;
15499     case 4:  // IEEE-inexact exception suppressed
15500       switch (M5.getZExtValue()) {
15501       default: break;
15502       case 0: ID = Intrinsic::nearbyint;
15503               CI = Intrinsic::experimental_constrained_nearbyint; break;
15504       case 1: ID = Intrinsic::round;
15505               CI = Intrinsic::experimental_constrained_round; break;
15506       case 5: ID = Intrinsic::trunc;
15507               CI = Intrinsic::experimental_constrained_trunc; break;
15508       case 6: ID = Intrinsic::ceil;
15509               CI = Intrinsic::experimental_constrained_ceil; break;
15510       case 7: ID = Intrinsic::floor;
15511               CI = Intrinsic::experimental_constrained_floor; break;
15512       }
15513       break;
15514     }
15515     if (ID != Intrinsic::not_intrinsic) {
15516       if (Builder.getIsFPConstrained()) {
15517         Function *F = CGM.getIntrinsic(CI, ResultType);
15518         return Builder.CreateConstrainedFPCall(F, X);
15519       } else {
15520         Function *F = CGM.getIntrinsic(ID, ResultType);
15521         return Builder.CreateCall(F, X);
15522       }
15523     }
15524     switch (BuiltinID) { // FIXME: constrained version?
15525       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
15526       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
15527       default: llvm_unreachable("Unknown BuiltinID");
15528     }
15529     Function *F = CGM.getIntrinsic(ID);
15530     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15531     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
15532     return Builder.CreateCall(F, {X, M4Value, M5Value});
15533   }
15534   case SystemZ::BI__builtin_s390_vfmaxsb:
15535   case SystemZ::BI__builtin_s390_vfmaxdb: {
15536     llvm::Type *ResultType = ConvertType(E->getType());
15537     Value *X = EmitScalarExpr(E->getArg(0));
15538     Value *Y = EmitScalarExpr(E->getArg(1));
15539     // Constant-fold the M4 mask argument.
15540     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15541     // Check whether this instance can be represented via a LLVM standard
15542     // intrinsic.  We only support some values of M4.
15543     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15544     Intrinsic::ID CI;
15545     switch (M4.getZExtValue()) {
15546     default: break;
15547     case 4: ID = Intrinsic::maxnum;
15548             CI = Intrinsic::experimental_constrained_maxnum; break;
15549     }
15550     if (ID != Intrinsic::not_intrinsic) {
15551       if (Builder.getIsFPConstrained()) {
15552         Function *F = CGM.getIntrinsic(CI, ResultType);
15553         return Builder.CreateConstrainedFPCall(F, {X, Y});
15554       } else {
15555         Function *F = CGM.getIntrinsic(ID, ResultType);
15556         return Builder.CreateCall(F, {X, Y});
15557       }
15558     }
15559     switch (BuiltinID) {
15560       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
15561       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
15562       default: llvm_unreachable("Unknown BuiltinID");
15563     }
15564     Function *F = CGM.getIntrinsic(ID);
15565     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15566     return Builder.CreateCall(F, {X, Y, M4Value});
15567   }
15568   case SystemZ::BI__builtin_s390_vfminsb:
15569   case SystemZ::BI__builtin_s390_vfmindb: {
15570     llvm::Type *ResultType = ConvertType(E->getType());
15571     Value *X = EmitScalarExpr(E->getArg(0));
15572     Value *Y = EmitScalarExpr(E->getArg(1));
15573     // Constant-fold the M4 mask argument.
15574     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15575     // Check whether this instance can be represented via a LLVM standard
15576     // intrinsic.  We only support some values of M4.
15577     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15578     Intrinsic::ID CI;
15579     switch (M4.getZExtValue()) {
15580     default: break;
15581     case 4: ID = Intrinsic::minnum;
15582             CI = Intrinsic::experimental_constrained_minnum; break;
15583     }
15584     if (ID != Intrinsic::not_intrinsic) {
15585       if (Builder.getIsFPConstrained()) {
15586         Function *F = CGM.getIntrinsic(CI, ResultType);
15587         return Builder.CreateConstrainedFPCall(F, {X, Y});
15588       } else {
15589         Function *F = CGM.getIntrinsic(ID, ResultType);
15590         return Builder.CreateCall(F, {X, Y});
15591       }
15592     }
15593     switch (BuiltinID) {
15594       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
15595       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
15596       default: llvm_unreachable("Unknown BuiltinID");
15597     }
15598     Function *F = CGM.getIntrinsic(ID);
15599     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15600     return Builder.CreateCall(F, {X, Y, M4Value});
15601   }
15602 
15603   case SystemZ::BI__builtin_s390_vlbrh:
15604   case SystemZ::BI__builtin_s390_vlbrf:
15605   case SystemZ::BI__builtin_s390_vlbrg: {
15606     llvm::Type *ResultType = ConvertType(E->getType());
15607     Value *X = EmitScalarExpr(E->getArg(0));
15608     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
15609     return Builder.CreateCall(F, X);
15610   }
15611 
15612   // Vector intrinsics that output the post-instruction CC value.
15613 
15614 #define INTRINSIC_WITH_CC(NAME) \
15615     case SystemZ::BI__builtin_##NAME: \
15616       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
15617 
15618   INTRINSIC_WITH_CC(s390_vpkshs);
15619   INTRINSIC_WITH_CC(s390_vpksfs);
15620   INTRINSIC_WITH_CC(s390_vpksgs);
15621 
15622   INTRINSIC_WITH_CC(s390_vpklshs);
15623   INTRINSIC_WITH_CC(s390_vpklsfs);
15624   INTRINSIC_WITH_CC(s390_vpklsgs);
15625 
15626   INTRINSIC_WITH_CC(s390_vceqbs);
15627   INTRINSIC_WITH_CC(s390_vceqhs);
15628   INTRINSIC_WITH_CC(s390_vceqfs);
15629   INTRINSIC_WITH_CC(s390_vceqgs);
15630 
15631   INTRINSIC_WITH_CC(s390_vchbs);
15632   INTRINSIC_WITH_CC(s390_vchhs);
15633   INTRINSIC_WITH_CC(s390_vchfs);
15634   INTRINSIC_WITH_CC(s390_vchgs);
15635 
15636   INTRINSIC_WITH_CC(s390_vchlbs);
15637   INTRINSIC_WITH_CC(s390_vchlhs);
15638   INTRINSIC_WITH_CC(s390_vchlfs);
15639   INTRINSIC_WITH_CC(s390_vchlgs);
15640 
15641   INTRINSIC_WITH_CC(s390_vfaebs);
15642   INTRINSIC_WITH_CC(s390_vfaehs);
15643   INTRINSIC_WITH_CC(s390_vfaefs);
15644 
15645   INTRINSIC_WITH_CC(s390_vfaezbs);
15646   INTRINSIC_WITH_CC(s390_vfaezhs);
15647   INTRINSIC_WITH_CC(s390_vfaezfs);
15648 
15649   INTRINSIC_WITH_CC(s390_vfeebs);
15650   INTRINSIC_WITH_CC(s390_vfeehs);
15651   INTRINSIC_WITH_CC(s390_vfeefs);
15652 
15653   INTRINSIC_WITH_CC(s390_vfeezbs);
15654   INTRINSIC_WITH_CC(s390_vfeezhs);
15655   INTRINSIC_WITH_CC(s390_vfeezfs);
15656 
15657   INTRINSIC_WITH_CC(s390_vfenebs);
15658   INTRINSIC_WITH_CC(s390_vfenehs);
15659   INTRINSIC_WITH_CC(s390_vfenefs);
15660 
15661   INTRINSIC_WITH_CC(s390_vfenezbs);
15662   INTRINSIC_WITH_CC(s390_vfenezhs);
15663   INTRINSIC_WITH_CC(s390_vfenezfs);
15664 
15665   INTRINSIC_WITH_CC(s390_vistrbs);
15666   INTRINSIC_WITH_CC(s390_vistrhs);
15667   INTRINSIC_WITH_CC(s390_vistrfs);
15668 
15669   INTRINSIC_WITH_CC(s390_vstrcbs);
15670   INTRINSIC_WITH_CC(s390_vstrchs);
15671   INTRINSIC_WITH_CC(s390_vstrcfs);
15672 
15673   INTRINSIC_WITH_CC(s390_vstrczbs);
15674   INTRINSIC_WITH_CC(s390_vstrczhs);
15675   INTRINSIC_WITH_CC(s390_vstrczfs);
15676 
15677   INTRINSIC_WITH_CC(s390_vfcesbs);
15678   INTRINSIC_WITH_CC(s390_vfcedbs);
15679   INTRINSIC_WITH_CC(s390_vfchsbs);
15680   INTRINSIC_WITH_CC(s390_vfchdbs);
15681   INTRINSIC_WITH_CC(s390_vfchesbs);
15682   INTRINSIC_WITH_CC(s390_vfchedbs);
15683 
15684   INTRINSIC_WITH_CC(s390_vftcisb);
15685   INTRINSIC_WITH_CC(s390_vftcidb);
15686 
15687   INTRINSIC_WITH_CC(s390_vstrsb);
15688   INTRINSIC_WITH_CC(s390_vstrsh);
15689   INTRINSIC_WITH_CC(s390_vstrsf);
15690 
15691   INTRINSIC_WITH_CC(s390_vstrszb);
15692   INTRINSIC_WITH_CC(s390_vstrszh);
15693   INTRINSIC_WITH_CC(s390_vstrszf);
15694 
15695 #undef INTRINSIC_WITH_CC
15696 
15697   default:
15698     return nullptr;
15699   }
15700 }
15701 
15702 namespace {
15703 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
15704 struct NVPTXMmaLdstInfo {
15705   unsigned NumResults;  // Number of elements to load/store
15706   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
15707   unsigned IID_col;
15708   unsigned IID_row;
15709 };
15710 
15711 #define MMA_INTR(geom_op_type, layout) \
15712   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
15713 #define MMA_LDST(n, geom_op_type)                                              \
15714   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
15715 
getNVPTXMmaLdstInfo(unsigned BuiltinID)15716 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
15717   switch (BuiltinID) {
15718   // FP MMA loads
15719   case NVPTX::BI__hmma_m16n16k16_ld_a:
15720     return MMA_LDST(8, m16n16k16_load_a_f16);
15721   case NVPTX::BI__hmma_m16n16k16_ld_b:
15722     return MMA_LDST(8, m16n16k16_load_b_f16);
15723   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15724     return MMA_LDST(4, m16n16k16_load_c_f16);
15725   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15726     return MMA_LDST(8, m16n16k16_load_c_f32);
15727   case NVPTX::BI__hmma_m32n8k16_ld_a:
15728     return MMA_LDST(8, m32n8k16_load_a_f16);
15729   case NVPTX::BI__hmma_m32n8k16_ld_b:
15730     return MMA_LDST(8, m32n8k16_load_b_f16);
15731   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15732     return MMA_LDST(4, m32n8k16_load_c_f16);
15733   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15734     return MMA_LDST(8, m32n8k16_load_c_f32);
15735   case NVPTX::BI__hmma_m8n32k16_ld_a:
15736     return MMA_LDST(8, m8n32k16_load_a_f16);
15737   case NVPTX::BI__hmma_m8n32k16_ld_b:
15738     return MMA_LDST(8, m8n32k16_load_b_f16);
15739   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15740     return MMA_LDST(4, m8n32k16_load_c_f16);
15741   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15742     return MMA_LDST(8, m8n32k16_load_c_f32);
15743 
15744   // Integer MMA loads
15745   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15746     return MMA_LDST(2, m16n16k16_load_a_s8);
15747   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15748     return MMA_LDST(2, m16n16k16_load_a_u8);
15749   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15750     return MMA_LDST(2, m16n16k16_load_b_s8);
15751   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15752     return MMA_LDST(2, m16n16k16_load_b_u8);
15753   case NVPTX::BI__imma_m16n16k16_ld_c:
15754     return MMA_LDST(8, m16n16k16_load_c_s32);
15755   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15756     return MMA_LDST(4, m32n8k16_load_a_s8);
15757   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15758     return MMA_LDST(4, m32n8k16_load_a_u8);
15759   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15760     return MMA_LDST(1, m32n8k16_load_b_s8);
15761   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15762     return MMA_LDST(1, m32n8k16_load_b_u8);
15763   case NVPTX::BI__imma_m32n8k16_ld_c:
15764     return MMA_LDST(8, m32n8k16_load_c_s32);
15765   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15766     return MMA_LDST(1, m8n32k16_load_a_s8);
15767   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15768     return MMA_LDST(1, m8n32k16_load_a_u8);
15769   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15770     return MMA_LDST(4, m8n32k16_load_b_s8);
15771   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15772     return MMA_LDST(4, m8n32k16_load_b_u8);
15773   case NVPTX::BI__imma_m8n32k16_ld_c:
15774     return MMA_LDST(8, m8n32k16_load_c_s32);
15775 
15776   // Sub-integer MMA loads.
15777   // Only row/col layout is supported by A/B fragments.
15778   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15779     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
15780   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15781     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
15782   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15783     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
15784   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15785     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
15786   case NVPTX::BI__imma_m8n8k32_ld_c:
15787     return MMA_LDST(2, m8n8k32_load_c_s32);
15788   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15789     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
15790   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15791     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
15792   case NVPTX::BI__bmma_m8n8k128_ld_c:
15793     return MMA_LDST(2, m8n8k128_load_c_s32);
15794 
15795   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
15796   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
15797   // use fragment C for both loads and stores.
15798   // FP MMA stores.
15799   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15800     return MMA_LDST(4, m16n16k16_store_d_f16);
15801   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15802     return MMA_LDST(8, m16n16k16_store_d_f32);
15803   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15804     return MMA_LDST(4, m32n8k16_store_d_f16);
15805   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15806     return MMA_LDST(8, m32n8k16_store_d_f32);
15807   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15808     return MMA_LDST(4, m8n32k16_store_d_f16);
15809   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15810     return MMA_LDST(8, m8n32k16_store_d_f32);
15811 
15812   // Integer and sub-integer MMA stores.
15813   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
15814   // name, integer loads/stores use LLVM's i32.
15815   case NVPTX::BI__imma_m16n16k16_st_c_i32:
15816     return MMA_LDST(8, m16n16k16_store_d_s32);
15817   case NVPTX::BI__imma_m32n8k16_st_c_i32:
15818     return MMA_LDST(8, m32n8k16_store_d_s32);
15819   case NVPTX::BI__imma_m8n32k16_st_c_i32:
15820     return MMA_LDST(8, m8n32k16_store_d_s32);
15821   case NVPTX::BI__imma_m8n8k32_st_c_i32:
15822     return MMA_LDST(2, m8n8k32_store_d_s32);
15823   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
15824     return MMA_LDST(2, m8n8k128_store_d_s32);
15825 
15826   default:
15827     llvm_unreachable("Unknown MMA builtin");
15828   }
15829 }
15830 #undef MMA_LDST
15831 #undef MMA_INTR
15832 
15833 
15834 struct NVPTXMmaInfo {
15835   unsigned NumEltsA;
15836   unsigned NumEltsB;
15837   unsigned NumEltsC;
15838   unsigned NumEltsD;
15839   std::array<unsigned, 8> Variants;
15840 
getMMAIntrinsic__anon777ffcf60e11::NVPTXMmaInfo15841   unsigned getMMAIntrinsic(int Layout, bool Satf) {
15842     unsigned Index = Layout * 2 + Satf;
15843     if (Index >= Variants.size())
15844       return 0;
15845     return Variants[Index];
15846   }
15847 };
15848 
15849   // Returns an intrinsic that matches Layout and Satf for valid combinations of
15850   // Layout and Satf, 0 otherwise.
getNVPTXMmaInfo(unsigned BuiltinID)15851 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
15852   // clang-format off
15853 #define MMA_VARIANTS(geom, type) {{                                 \
15854       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
15855       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
15856       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15857       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15858       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
15859       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
15860       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
15861       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
15862     }}
15863 // Sub-integer MMA only supports row.col layout.
15864 #define MMA_VARIANTS_I4(geom, type) {{ \
15865       0, \
15866       0, \
15867       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15868       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15869       0, \
15870       0, \
15871       0, \
15872       0  \
15873     }}
15874 // b1 MMA does not support .satfinite.
15875 #define MMA_VARIANTS_B1(geom, type) {{ \
15876       0, \
15877       0, \
15878       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15879       0, \
15880       0, \
15881       0, \
15882       0, \
15883       0  \
15884     }}
15885     // clang-format on
15886     switch (BuiltinID) {
15887     // FP MMA
15888     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
15889     // NumEltsN of return value are ordered as A,B,C,D.
15890     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
15891       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
15892     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
15893       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
15894     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
15895       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
15896     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
15897       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
15898     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
15899       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
15900     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
15901       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
15902     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
15903       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
15904     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
15905       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
15906     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
15907       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
15908     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
15909       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
15910     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
15911       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
15912     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
15913       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
15914 
15915     // Integer MMA
15916     case NVPTX::BI__imma_m16n16k16_mma_s8:
15917       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
15918     case NVPTX::BI__imma_m16n16k16_mma_u8:
15919       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
15920     case NVPTX::BI__imma_m32n8k16_mma_s8:
15921       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
15922     case NVPTX::BI__imma_m32n8k16_mma_u8:
15923       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
15924     case NVPTX::BI__imma_m8n32k16_mma_s8:
15925       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
15926     case NVPTX::BI__imma_m8n32k16_mma_u8:
15927       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
15928 
15929     // Sub-integer MMA
15930     case NVPTX::BI__imma_m8n8k32_mma_s4:
15931       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
15932     case NVPTX::BI__imma_m8n8k32_mma_u4:
15933       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
15934     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
15935       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
15936     default:
15937       llvm_unreachable("Unexpected builtin ID.");
15938     }
15939 #undef MMA_VARIANTS
15940 #undef MMA_VARIANTS_I4
15941 #undef MMA_VARIANTS_B1
15942 }
15943 
15944 } // namespace
15945 
15946 Value *
EmitNVPTXBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15947 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
15948   auto MakeLdg = [&](unsigned IntrinsicID) {
15949     Value *Ptr = EmitScalarExpr(E->getArg(0));
15950     clang::CharUnits Align =
15951         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
15952     return Builder.CreateCall(
15953         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15954                                        Ptr->getType()}),
15955         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
15956   };
15957   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
15958     Value *Ptr = EmitScalarExpr(E->getArg(0));
15959     return Builder.CreateCall(
15960         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15961                                        Ptr->getType()}),
15962         {Ptr, EmitScalarExpr(E->getArg(1))});
15963   };
15964   switch (BuiltinID) {
15965   case NVPTX::BI__nvvm_atom_add_gen_i:
15966   case NVPTX::BI__nvvm_atom_add_gen_l:
15967   case NVPTX::BI__nvvm_atom_add_gen_ll:
15968     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
15969 
15970   case NVPTX::BI__nvvm_atom_sub_gen_i:
15971   case NVPTX::BI__nvvm_atom_sub_gen_l:
15972   case NVPTX::BI__nvvm_atom_sub_gen_ll:
15973     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
15974 
15975   case NVPTX::BI__nvvm_atom_and_gen_i:
15976   case NVPTX::BI__nvvm_atom_and_gen_l:
15977   case NVPTX::BI__nvvm_atom_and_gen_ll:
15978     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
15979 
15980   case NVPTX::BI__nvvm_atom_or_gen_i:
15981   case NVPTX::BI__nvvm_atom_or_gen_l:
15982   case NVPTX::BI__nvvm_atom_or_gen_ll:
15983     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
15984 
15985   case NVPTX::BI__nvvm_atom_xor_gen_i:
15986   case NVPTX::BI__nvvm_atom_xor_gen_l:
15987   case NVPTX::BI__nvvm_atom_xor_gen_ll:
15988     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
15989 
15990   case NVPTX::BI__nvvm_atom_xchg_gen_i:
15991   case NVPTX::BI__nvvm_atom_xchg_gen_l:
15992   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
15993     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
15994 
15995   case NVPTX::BI__nvvm_atom_max_gen_i:
15996   case NVPTX::BI__nvvm_atom_max_gen_l:
15997   case NVPTX::BI__nvvm_atom_max_gen_ll:
15998     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
15999 
16000   case NVPTX::BI__nvvm_atom_max_gen_ui:
16001   case NVPTX::BI__nvvm_atom_max_gen_ul:
16002   case NVPTX::BI__nvvm_atom_max_gen_ull:
16003     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
16004 
16005   case NVPTX::BI__nvvm_atom_min_gen_i:
16006   case NVPTX::BI__nvvm_atom_min_gen_l:
16007   case NVPTX::BI__nvvm_atom_min_gen_ll:
16008     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
16009 
16010   case NVPTX::BI__nvvm_atom_min_gen_ui:
16011   case NVPTX::BI__nvvm_atom_min_gen_ul:
16012   case NVPTX::BI__nvvm_atom_min_gen_ull:
16013     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
16014 
16015   case NVPTX::BI__nvvm_atom_cas_gen_i:
16016   case NVPTX::BI__nvvm_atom_cas_gen_l:
16017   case NVPTX::BI__nvvm_atom_cas_gen_ll:
16018     // __nvvm_atom_cas_gen_* should return the old value rather than the
16019     // success flag.
16020     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
16021 
16022   case NVPTX::BI__nvvm_atom_add_gen_f:
16023   case NVPTX::BI__nvvm_atom_add_gen_d: {
16024     Value *Ptr = EmitScalarExpr(E->getArg(0));
16025     Value *Val = EmitScalarExpr(E->getArg(1));
16026     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
16027                                    AtomicOrdering::SequentiallyConsistent);
16028   }
16029 
16030   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
16031     Value *Ptr = EmitScalarExpr(E->getArg(0));
16032     Value *Val = EmitScalarExpr(E->getArg(1));
16033     Function *FnALI32 =
16034         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
16035     return Builder.CreateCall(FnALI32, {Ptr, Val});
16036   }
16037 
16038   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
16039     Value *Ptr = EmitScalarExpr(E->getArg(0));
16040     Value *Val = EmitScalarExpr(E->getArg(1));
16041     Function *FnALD32 =
16042         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
16043     return Builder.CreateCall(FnALD32, {Ptr, Val});
16044   }
16045 
16046   case NVPTX::BI__nvvm_ldg_c:
16047   case NVPTX::BI__nvvm_ldg_c2:
16048   case NVPTX::BI__nvvm_ldg_c4:
16049   case NVPTX::BI__nvvm_ldg_s:
16050   case NVPTX::BI__nvvm_ldg_s2:
16051   case NVPTX::BI__nvvm_ldg_s4:
16052   case NVPTX::BI__nvvm_ldg_i:
16053   case NVPTX::BI__nvvm_ldg_i2:
16054   case NVPTX::BI__nvvm_ldg_i4:
16055   case NVPTX::BI__nvvm_ldg_l:
16056   case NVPTX::BI__nvvm_ldg_ll:
16057   case NVPTX::BI__nvvm_ldg_ll2:
16058   case NVPTX::BI__nvvm_ldg_uc:
16059   case NVPTX::BI__nvvm_ldg_uc2:
16060   case NVPTX::BI__nvvm_ldg_uc4:
16061   case NVPTX::BI__nvvm_ldg_us:
16062   case NVPTX::BI__nvvm_ldg_us2:
16063   case NVPTX::BI__nvvm_ldg_us4:
16064   case NVPTX::BI__nvvm_ldg_ui:
16065   case NVPTX::BI__nvvm_ldg_ui2:
16066   case NVPTX::BI__nvvm_ldg_ui4:
16067   case NVPTX::BI__nvvm_ldg_ul:
16068   case NVPTX::BI__nvvm_ldg_ull:
16069   case NVPTX::BI__nvvm_ldg_ull2:
16070     // PTX Interoperability section 2.2: "For a vector with an even number of
16071     // elements, its alignment is set to number of elements times the alignment
16072     // of its member: n*alignof(t)."
16073     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
16074   case NVPTX::BI__nvvm_ldg_f:
16075   case NVPTX::BI__nvvm_ldg_f2:
16076   case NVPTX::BI__nvvm_ldg_f4:
16077   case NVPTX::BI__nvvm_ldg_d:
16078   case NVPTX::BI__nvvm_ldg_d2:
16079     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
16080 
16081   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
16082   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
16083   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
16084     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
16085   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
16086   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
16087   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
16088     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
16089   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
16090   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
16091     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
16092   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
16093   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
16094     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
16095   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
16096   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
16097   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
16098     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
16099   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
16100   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
16101   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
16102     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
16103   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
16104   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
16105   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
16106   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
16107   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
16108   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
16109     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
16110   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
16111   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
16112   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
16113   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
16114   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
16115   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
16116     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
16117   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
16118   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
16119   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
16120   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
16121   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
16122   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
16123     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
16124   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
16125   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
16126   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
16127   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
16128   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
16129   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
16130     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
16131   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
16132     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
16133   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
16134     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
16135   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
16136     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
16137   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
16138     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
16139   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
16140   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
16141   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
16142     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
16143   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
16144   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
16145   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
16146     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
16147   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
16148   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
16149   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
16150     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
16151   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
16152   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
16153   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
16154     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
16155   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
16156   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
16157   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
16158     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
16159   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
16160   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
16161   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
16162     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
16163   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
16164   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
16165   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
16166     Value *Ptr = EmitScalarExpr(E->getArg(0));
16167     return Builder.CreateCall(
16168         CGM.getIntrinsic(
16169             Intrinsic::nvvm_atomic_cas_gen_i_cta,
16170             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16171         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16172   }
16173   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
16174   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
16175   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
16176     Value *Ptr = EmitScalarExpr(E->getArg(0));
16177     return Builder.CreateCall(
16178         CGM.getIntrinsic(
16179             Intrinsic::nvvm_atomic_cas_gen_i_sys,
16180             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16181         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16182   }
16183   case NVPTX::BI__nvvm_match_all_sync_i32p:
16184   case NVPTX::BI__nvvm_match_all_sync_i64p: {
16185     Value *Mask = EmitScalarExpr(E->getArg(0));
16186     Value *Val = EmitScalarExpr(E->getArg(1));
16187     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
16188     Value *ResultPair = Builder.CreateCall(
16189         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
16190                              ? Intrinsic::nvvm_match_all_sync_i32p
16191                              : Intrinsic::nvvm_match_all_sync_i64p),
16192         {Mask, Val});
16193     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
16194                                      PredOutPtr.getElementType());
16195     Builder.CreateStore(Pred, PredOutPtr);
16196     return Builder.CreateExtractValue(ResultPair, 0);
16197   }
16198 
16199   // FP MMA loads
16200   case NVPTX::BI__hmma_m16n16k16_ld_a:
16201   case NVPTX::BI__hmma_m16n16k16_ld_b:
16202   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16203   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16204   case NVPTX::BI__hmma_m32n8k16_ld_a:
16205   case NVPTX::BI__hmma_m32n8k16_ld_b:
16206   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16207   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16208   case NVPTX::BI__hmma_m8n32k16_ld_a:
16209   case NVPTX::BI__hmma_m8n32k16_ld_b:
16210   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16211   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16212   // Integer MMA loads.
16213   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16214   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16215   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16216   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16217   case NVPTX::BI__imma_m16n16k16_ld_c:
16218   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16219   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16220   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16221   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16222   case NVPTX::BI__imma_m32n8k16_ld_c:
16223   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16224   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16225   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16226   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16227   case NVPTX::BI__imma_m8n32k16_ld_c:
16228   // Sub-integer MMA loads.
16229   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16230   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16231   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16232   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16233   case NVPTX::BI__imma_m8n8k32_ld_c:
16234   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16235   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16236   case NVPTX::BI__bmma_m8n8k128_ld_c:
16237   {
16238     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16239     Value *Src = EmitScalarExpr(E->getArg(1));
16240     Value *Ldm = EmitScalarExpr(E->getArg(2));
16241     Optional<llvm::APSInt> isColMajorArg =
16242         E->getArg(3)->getIntegerConstantExpr(getContext());
16243     if (!isColMajorArg)
16244       return nullptr;
16245     bool isColMajor = isColMajorArg->getSExtValue();
16246     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16247     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16248     if (IID == 0)
16249       return nullptr;
16250 
16251     Value *Result =
16252         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
16253 
16254     // Save returned values.
16255     assert(II.NumResults);
16256     if (II.NumResults == 1) {
16257       Builder.CreateAlignedStore(Result, Dst.getPointer(),
16258                                  CharUnits::fromQuantity(4));
16259     } else {
16260       for (unsigned i = 0; i < II.NumResults; ++i) {
16261         Builder.CreateAlignedStore(
16262             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
16263                                   Dst.getElementType()),
16264             Builder.CreateGEP(Dst.getPointer(),
16265                               llvm::ConstantInt::get(IntTy, i)),
16266             CharUnits::fromQuantity(4));
16267       }
16268     }
16269     return Result;
16270   }
16271 
16272   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16273   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16274   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16275   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16276   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16277   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16278   case NVPTX::BI__imma_m16n16k16_st_c_i32:
16279   case NVPTX::BI__imma_m32n8k16_st_c_i32:
16280   case NVPTX::BI__imma_m8n32k16_st_c_i32:
16281   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16282   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
16283     Value *Dst = EmitScalarExpr(E->getArg(0));
16284     Address Src = EmitPointerWithAlignment(E->getArg(1));
16285     Value *Ldm = EmitScalarExpr(E->getArg(2));
16286     Optional<llvm::APSInt> isColMajorArg =
16287         E->getArg(3)->getIntegerConstantExpr(getContext());
16288     if (!isColMajorArg)
16289       return nullptr;
16290     bool isColMajor = isColMajorArg->getSExtValue();
16291     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16292     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16293     if (IID == 0)
16294       return nullptr;
16295     Function *Intrinsic =
16296         CGM.getIntrinsic(IID, Dst->getType());
16297     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
16298     SmallVector<Value *, 10> Values = {Dst};
16299     for (unsigned i = 0; i < II.NumResults; ++i) {
16300       Value *V = Builder.CreateAlignedLoad(
16301           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16302           CharUnits::fromQuantity(4));
16303       Values.push_back(Builder.CreateBitCast(V, ParamType));
16304     }
16305     Values.push_back(Ldm);
16306     Value *Result = Builder.CreateCall(Intrinsic, Values);
16307     return Result;
16308   }
16309 
16310   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
16311   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
16312   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16313   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16314   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16315   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16316   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16317   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16318   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16319   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16320   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16321   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16322   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16323   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16324   case NVPTX::BI__imma_m16n16k16_mma_s8:
16325   case NVPTX::BI__imma_m16n16k16_mma_u8:
16326   case NVPTX::BI__imma_m32n8k16_mma_s8:
16327   case NVPTX::BI__imma_m32n8k16_mma_u8:
16328   case NVPTX::BI__imma_m8n32k16_mma_s8:
16329   case NVPTX::BI__imma_m8n32k16_mma_u8:
16330   case NVPTX::BI__imma_m8n8k32_mma_s4:
16331   case NVPTX::BI__imma_m8n8k32_mma_u4:
16332   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
16333     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16334     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
16335     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
16336     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
16337     Optional<llvm::APSInt> LayoutArg =
16338         E->getArg(4)->getIntegerConstantExpr(getContext());
16339     if (!LayoutArg)
16340       return nullptr;
16341     int Layout = LayoutArg->getSExtValue();
16342     if (Layout < 0 || Layout > 3)
16343       return nullptr;
16344     llvm::APSInt SatfArg;
16345     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
16346       SatfArg = 0;  // .b1 does not have satf argument.
16347     else if (Optional<llvm::APSInt> OptSatfArg =
16348                  E->getArg(5)->getIntegerConstantExpr(getContext()))
16349       SatfArg = *OptSatfArg;
16350     else
16351       return nullptr;
16352     bool Satf = SatfArg.getSExtValue();
16353     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
16354     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
16355     if (IID == 0)  // Unsupported combination of Layout/Satf.
16356       return nullptr;
16357 
16358     SmallVector<Value *, 24> Values;
16359     Function *Intrinsic = CGM.getIntrinsic(IID);
16360     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
16361     // Load A
16362     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
16363       Value *V = Builder.CreateAlignedLoad(
16364           Builder.CreateGEP(SrcA.getPointer(),
16365                             llvm::ConstantInt::get(IntTy, i)),
16366           CharUnits::fromQuantity(4));
16367       Values.push_back(Builder.CreateBitCast(V, AType));
16368     }
16369     // Load B
16370     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
16371     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
16372       Value *V = Builder.CreateAlignedLoad(
16373           Builder.CreateGEP(SrcB.getPointer(),
16374                             llvm::ConstantInt::get(IntTy, i)),
16375           CharUnits::fromQuantity(4));
16376       Values.push_back(Builder.CreateBitCast(V, BType));
16377     }
16378     // Load C
16379     llvm::Type *CType =
16380         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
16381     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
16382       Value *V = Builder.CreateAlignedLoad(
16383           Builder.CreateGEP(SrcC.getPointer(),
16384                             llvm::ConstantInt::get(IntTy, i)),
16385           CharUnits::fromQuantity(4));
16386       Values.push_back(Builder.CreateBitCast(V, CType));
16387     }
16388     Value *Result = Builder.CreateCall(Intrinsic, Values);
16389     llvm::Type *DType = Dst.getElementType();
16390     for (unsigned i = 0; i < MI.NumEltsD; ++i)
16391       Builder.CreateAlignedStore(
16392           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16393           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16394           CharUnits::fromQuantity(4));
16395     return Result;
16396   }
16397   default:
16398     return nullptr;
16399   }
16400 }
16401 
16402 namespace {
16403 struct BuiltinAlignArgs {
16404   llvm::Value *Src = nullptr;
16405   llvm::Type *SrcType = nullptr;
16406   llvm::Value *Alignment = nullptr;
16407   llvm::Value *Mask = nullptr;
16408   llvm::IntegerType *IntType = nullptr;
16409 
BuiltinAlignArgs__anon777ffcf61111::BuiltinAlignArgs16410   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16411     QualType AstType = E->getArg(0)->getType();
16412     if (AstType->isArrayType())
16413       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16414     else
16415       Src = CGF.EmitScalarExpr(E->getArg(0));
16416     SrcType = Src->getType();
16417     if (SrcType->isPointerTy()) {
16418       IntType = IntegerType::get(
16419           CGF.getLLVMContext(),
16420           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16421     } else {
16422       assert(SrcType->isIntegerTy());
16423       IntType = cast<llvm::IntegerType>(SrcType);
16424     }
16425     Alignment = CGF.EmitScalarExpr(E->getArg(1));
16426     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16427     auto *One = llvm::ConstantInt::get(IntType, 1);
16428     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16429   }
16430 };
16431 } // namespace
16432 
16433 /// Generate (x & (y-1)) == 0.
EmitBuiltinIsAligned(const CallExpr * E)16434 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16435   BuiltinAlignArgs Args(E, *this);
16436   llvm::Value *SrcAddress = Args.Src;
16437   if (Args.SrcType->isPointerTy())
16438     SrcAddress =
16439         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16440   return RValue::get(Builder.CreateICmpEQ(
16441       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16442       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16443 }
16444 
16445 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16446 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16447 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16448 /// TODO: actually use ptrmask once most optimization passes know about it.
EmitBuiltinAlignTo(const CallExpr * E,bool AlignUp)16449 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16450   BuiltinAlignArgs Args(E, *this);
16451   llvm::Value *SrcAddr = Args.Src;
16452   if (Args.Src->getType()->isPointerTy())
16453     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16454   llvm::Value *SrcForMask = SrcAddr;
16455   if (AlignUp) {
16456     // When aligning up we have to first add the mask to ensure we go over the
16457     // next alignment value and then align down to the next valid multiple.
16458     // By adding the mask, we ensure that align_up on an already aligned
16459     // value will not change the value.
16460     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16461   }
16462   // Invert the mask to only clear the lower bits.
16463   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16464   llvm::Value *Result =
16465       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16466   if (Args.Src->getType()->isPointerTy()) {
16467     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16468     // Result = Builder.CreateIntrinsic(
16469     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16470     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16471     Result->setName("aligned_intptr");
16472     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16473     // The result must point to the same underlying allocation. This means we
16474     // can use an inbounds GEP to enable better optimization.
16475     Value *Base = EmitCastToVoidPtr(Args.Src);
16476     if (getLangOpts().isSignedOverflowDefined())
16477       Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16478     else
16479       Result = EmitCheckedInBoundsGEP(Base, Difference,
16480                                       /*SignedIndices=*/true,
16481                                       /*isSubtraction=*/!AlignUp,
16482                                       E->getExprLoc(), "aligned_result");
16483     Result = Builder.CreatePointerCast(Result, Args.SrcType);
16484     // Emit an alignment assumption to ensure that the new alignment is
16485     // propagated to loads/stores, etc.
16486     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
16487   }
16488   assert(Result->getType() == Args.SrcType);
16489   return RValue::get(Result);
16490 }
16491 
EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,const CallExpr * E)16492 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
16493                                                    const CallExpr *E) {
16494   switch (BuiltinID) {
16495   case WebAssembly::BI__builtin_wasm_memory_size: {
16496     llvm::Type *ResultType = ConvertType(E->getType());
16497     Value *I = EmitScalarExpr(E->getArg(0));
16498     Function *Callee =
16499         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
16500     return Builder.CreateCall(Callee, I);
16501   }
16502   case WebAssembly::BI__builtin_wasm_memory_grow: {
16503     llvm::Type *ResultType = ConvertType(E->getType());
16504     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
16505                      EmitScalarExpr(E->getArg(1))};
16506     Function *Callee =
16507         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
16508     return Builder.CreateCall(Callee, Args);
16509   }
16510   case WebAssembly::BI__builtin_wasm_tls_size: {
16511     llvm::Type *ResultType = ConvertType(E->getType());
16512     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
16513     return Builder.CreateCall(Callee);
16514   }
16515   case WebAssembly::BI__builtin_wasm_tls_align: {
16516     llvm::Type *ResultType = ConvertType(E->getType());
16517     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
16518     return Builder.CreateCall(Callee);
16519   }
16520   case WebAssembly::BI__builtin_wasm_tls_base: {
16521     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
16522     return Builder.CreateCall(Callee);
16523   }
16524   case WebAssembly::BI__builtin_wasm_throw: {
16525     Value *Tag = EmitScalarExpr(E->getArg(0));
16526     Value *Obj = EmitScalarExpr(E->getArg(1));
16527     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
16528     return Builder.CreateCall(Callee, {Tag, Obj});
16529   }
16530   case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
16531     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
16532     return Builder.CreateCall(Callee);
16533   }
16534   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
16535     Value *Addr = EmitScalarExpr(E->getArg(0));
16536     Value *Expected = EmitScalarExpr(E->getArg(1));
16537     Value *Timeout = EmitScalarExpr(E->getArg(2));
16538     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
16539     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16540   }
16541   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
16542     Value *Addr = EmitScalarExpr(E->getArg(0));
16543     Value *Expected = EmitScalarExpr(E->getArg(1));
16544     Value *Timeout = EmitScalarExpr(E->getArg(2));
16545     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
16546     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16547   }
16548   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
16549     Value *Addr = EmitScalarExpr(E->getArg(0));
16550     Value *Count = EmitScalarExpr(E->getArg(1));
16551     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
16552     return Builder.CreateCall(Callee, {Addr, Count});
16553   }
16554   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
16555   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
16556   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
16557   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
16558     Value *Src = EmitScalarExpr(E->getArg(0));
16559     llvm::Type *ResT = ConvertType(E->getType());
16560     Function *Callee =
16561         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
16562     return Builder.CreateCall(Callee, {Src});
16563   }
16564   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
16565   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
16566   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
16567   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
16568     Value *Src = EmitScalarExpr(E->getArg(0));
16569     llvm::Type *ResT = ConvertType(E->getType());
16570     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
16571                                         {ResT, Src->getType()});
16572     return Builder.CreateCall(Callee, {Src});
16573   }
16574   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
16575   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
16576   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
16577   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
16578   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
16579     Value *Src = EmitScalarExpr(E->getArg(0));
16580     llvm::Type *ResT = ConvertType(E->getType());
16581     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
16582                                         {ResT, Src->getType()});
16583     return Builder.CreateCall(Callee, {Src});
16584   }
16585   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
16586   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
16587   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
16588   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
16589   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
16590     Value *Src = EmitScalarExpr(E->getArg(0));
16591     llvm::Type *ResT = ConvertType(E->getType());
16592     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
16593                                         {ResT, Src->getType()});
16594     return Builder.CreateCall(Callee, {Src});
16595   }
16596   case WebAssembly::BI__builtin_wasm_min_f32:
16597   case WebAssembly::BI__builtin_wasm_min_f64:
16598   case WebAssembly::BI__builtin_wasm_min_f32x4:
16599   case WebAssembly::BI__builtin_wasm_min_f64x2: {
16600     Value *LHS = EmitScalarExpr(E->getArg(0));
16601     Value *RHS = EmitScalarExpr(E->getArg(1));
16602     Function *Callee =
16603         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
16604     return Builder.CreateCall(Callee, {LHS, RHS});
16605   }
16606   case WebAssembly::BI__builtin_wasm_max_f32:
16607   case WebAssembly::BI__builtin_wasm_max_f64:
16608   case WebAssembly::BI__builtin_wasm_max_f32x4:
16609   case WebAssembly::BI__builtin_wasm_max_f64x2: {
16610     Value *LHS = EmitScalarExpr(E->getArg(0));
16611     Value *RHS = EmitScalarExpr(E->getArg(1));
16612     Function *Callee =
16613         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
16614     return Builder.CreateCall(Callee, {LHS, RHS});
16615   }
16616   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
16617   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
16618     Value *LHS = EmitScalarExpr(E->getArg(0));
16619     Value *RHS = EmitScalarExpr(E->getArg(1));
16620     Function *Callee =
16621         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
16622     return Builder.CreateCall(Callee, {LHS, RHS});
16623   }
16624   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
16625   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
16626     Value *LHS = EmitScalarExpr(E->getArg(0));
16627     Value *RHS = EmitScalarExpr(E->getArg(1));
16628     Function *Callee =
16629         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
16630     return Builder.CreateCall(Callee, {LHS, RHS});
16631   }
16632   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16633   case WebAssembly::BI__builtin_wasm_floor_f32x4:
16634   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16635   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16636   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16637   case WebAssembly::BI__builtin_wasm_floor_f64x2:
16638   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16639   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
16640     unsigned IntNo;
16641     switch (BuiltinID) {
16642     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16643     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16644       IntNo = Intrinsic::wasm_ceil;
16645       break;
16646     case WebAssembly::BI__builtin_wasm_floor_f32x4:
16647     case WebAssembly::BI__builtin_wasm_floor_f64x2:
16648       IntNo = Intrinsic::wasm_floor;
16649       break;
16650     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16651     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16652       IntNo = Intrinsic::wasm_trunc;
16653       break;
16654     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16655     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
16656       IntNo = Intrinsic::wasm_nearest;
16657       break;
16658     default:
16659       llvm_unreachable("unexpected builtin ID");
16660     }
16661     Value *Value = EmitScalarExpr(E->getArg(0));
16662     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16663     return Builder.CreateCall(Callee, Value);
16664   }
16665   case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
16666     Value *Src = EmitScalarExpr(E->getArg(0));
16667     Value *Indices = EmitScalarExpr(E->getArg(1));
16668     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
16669     return Builder.CreateCall(Callee, {Src, Indices});
16670   }
16671   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16672   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16673   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16674   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16675   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16676   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16677   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16678   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
16679     llvm::APSInt LaneConst =
16680         *E->getArg(1)->getIntegerConstantExpr(getContext());
16681     Value *Vec = EmitScalarExpr(E->getArg(0));
16682     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16683     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
16684     switch (BuiltinID) {
16685     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16686     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16687       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
16688     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16689     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16690       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
16691     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16692     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16693     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16694     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
16695       return Extract;
16696     default:
16697       llvm_unreachable("unexpected builtin ID");
16698     }
16699   }
16700   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16701   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
16702   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16703   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16704   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16705   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
16706     llvm::APSInt LaneConst =
16707         *E->getArg(1)->getIntegerConstantExpr(getContext());
16708     Value *Vec = EmitScalarExpr(E->getArg(0));
16709     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16710     Value *Val = EmitScalarExpr(E->getArg(2));
16711     switch (BuiltinID) {
16712     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16713     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
16714       llvm::Type *ElemType =
16715           cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
16716       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
16717       return Builder.CreateInsertElement(Vec, Trunc, Lane);
16718     }
16719     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16720     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16721     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16722     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
16723       return Builder.CreateInsertElement(Vec, Val, Lane);
16724     default:
16725       llvm_unreachable("unexpected builtin ID");
16726     }
16727   }
16728   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16729   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16730   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16731   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16732   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16733   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16734   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16735   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
16736     unsigned IntNo;
16737     switch (BuiltinID) {
16738     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16739     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16740       IntNo = Intrinsic::sadd_sat;
16741       break;
16742     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16743     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16744       IntNo = Intrinsic::uadd_sat;
16745       break;
16746     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16747     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16748       IntNo = Intrinsic::wasm_sub_saturate_signed;
16749       break;
16750     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16751     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
16752       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
16753       break;
16754     default:
16755       llvm_unreachable("unexpected builtin ID");
16756     }
16757     Value *LHS = EmitScalarExpr(E->getArg(0));
16758     Value *RHS = EmitScalarExpr(E->getArg(1));
16759     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16760     return Builder.CreateCall(Callee, {LHS, RHS});
16761   }
16762   case WebAssembly::BI__builtin_wasm_abs_i8x16:
16763   case WebAssembly::BI__builtin_wasm_abs_i16x8:
16764   case WebAssembly::BI__builtin_wasm_abs_i32x4: {
16765     Value *Vec = EmitScalarExpr(E->getArg(0));
16766     Value *Neg = Builder.CreateNeg(Vec, "neg");
16767     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
16768     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
16769     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
16770   }
16771   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16772   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16773   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16774   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16775   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16776   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16777   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16778   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16779   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16780   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16781   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16782   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
16783     Value *LHS = EmitScalarExpr(E->getArg(0));
16784     Value *RHS = EmitScalarExpr(E->getArg(1));
16785     Value *ICmp;
16786     switch (BuiltinID) {
16787     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16788     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16789     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16790       ICmp = Builder.CreateICmpSLT(LHS, RHS);
16791       break;
16792     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16793     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16794     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16795       ICmp = Builder.CreateICmpULT(LHS, RHS);
16796       break;
16797     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16798     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16799     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16800       ICmp = Builder.CreateICmpSGT(LHS, RHS);
16801       break;
16802     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16803     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16804     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
16805       ICmp = Builder.CreateICmpUGT(LHS, RHS);
16806       break;
16807     default:
16808       llvm_unreachable("unexpected builtin ID");
16809     }
16810     return Builder.CreateSelect(ICmp, LHS, RHS);
16811   }
16812   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
16813   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
16814     Value *LHS = EmitScalarExpr(E->getArg(0));
16815     Value *RHS = EmitScalarExpr(E->getArg(1));
16816     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
16817                                         ConvertType(E->getType()));
16818     return Builder.CreateCall(Callee, {LHS, RHS});
16819   }
16820   case WebAssembly::BI__builtin_wasm_q15mulr_saturate_s_i16x8: {
16821     Value *LHS = EmitScalarExpr(E->getArg(0));
16822     Value *RHS = EmitScalarExpr(E->getArg(1));
16823     Function *Callee =
16824         CGM.getIntrinsic(Intrinsic::wasm_q15mulr_saturate_signed);
16825     return Builder.CreateCall(Callee, {LHS, RHS});
16826   }
16827   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
16828   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
16829   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
16830   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
16831   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
16832   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
16833   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
16834   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
16835   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
16836   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
16837   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
16838   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: {
16839     Value *LHS = EmitScalarExpr(E->getArg(0));
16840     Value *RHS = EmitScalarExpr(E->getArg(1));
16841     unsigned IntNo;
16842     switch (BuiltinID) {
16843     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
16844     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
16845     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
16846       IntNo = Intrinsic::wasm_extmul_low_signed;
16847       break;
16848     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
16849     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
16850     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
16851       IntNo = Intrinsic::wasm_extmul_low_unsigned;
16852       break;
16853     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
16854     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
16855     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
16856       IntNo = Intrinsic::wasm_extmul_high_signed;
16857       break;
16858     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
16859     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
16860     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2:
16861       IntNo = Intrinsic::wasm_extmul_high_unsigned;
16862       break;
16863     default:
16864       llvm_unreachable("unexptected builtin ID");
16865     }
16866 
16867     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16868     return Builder.CreateCall(Callee, {LHS, RHS});
16869   }
16870   case WebAssembly::BI__builtin_wasm_bitselect: {
16871     Value *V1 = EmitScalarExpr(E->getArg(0));
16872     Value *V2 = EmitScalarExpr(E->getArg(1));
16873     Value *C = EmitScalarExpr(E->getArg(2));
16874     Function *Callee =
16875         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
16876     return Builder.CreateCall(Callee, {V1, V2, C});
16877   }
16878   case WebAssembly::BI__builtin_wasm_signselect_i8x16:
16879   case WebAssembly::BI__builtin_wasm_signselect_i16x8:
16880   case WebAssembly::BI__builtin_wasm_signselect_i32x4:
16881   case WebAssembly::BI__builtin_wasm_signselect_i64x2: {
16882     Value *V1 = EmitScalarExpr(E->getArg(0));
16883     Value *V2 = EmitScalarExpr(E->getArg(1));
16884     Value *C = EmitScalarExpr(E->getArg(2));
16885     Function *Callee =
16886         CGM.getIntrinsic(Intrinsic::wasm_signselect, ConvertType(E->getType()));
16887     return Builder.CreateCall(Callee, {V1, V2, C});
16888   }
16889   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
16890     Value *LHS = EmitScalarExpr(E->getArg(0));
16891     Value *RHS = EmitScalarExpr(E->getArg(1));
16892     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
16893     return Builder.CreateCall(Callee, {LHS, RHS});
16894   }
16895   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
16896     Value *Vec = EmitScalarExpr(E->getArg(0));
16897     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt);
16898     return Builder.CreateCall(Callee, {Vec});
16899   }
16900   case WebAssembly::BI__builtin_wasm_eq_i64x2: {
16901     Value *LHS = EmitScalarExpr(E->getArg(0));
16902     Value *RHS = EmitScalarExpr(E->getArg(1));
16903     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_eq);
16904     return Builder.CreateCall(Callee, {LHS, RHS});
16905   }
16906   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16907   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16908   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16909   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16910   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16911   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16912   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16913   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
16914     unsigned IntNo;
16915     switch (BuiltinID) {
16916     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16917     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16918     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16919     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16920       IntNo = Intrinsic::wasm_anytrue;
16921       break;
16922     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16923     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16924     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16925     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
16926       IntNo = Intrinsic::wasm_alltrue;
16927       break;
16928     default:
16929       llvm_unreachable("unexpected builtin ID");
16930     }
16931     Value *Vec = EmitScalarExpr(E->getArg(0));
16932     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
16933     return Builder.CreateCall(Callee, {Vec});
16934   }
16935   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
16936   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
16937   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
16938   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
16939     Value *Vec = EmitScalarExpr(E->getArg(0));
16940     Function *Callee =
16941         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
16942     return Builder.CreateCall(Callee, {Vec});
16943   }
16944   case WebAssembly::BI__builtin_wasm_abs_f32x4:
16945   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
16946     Value *Vec = EmitScalarExpr(E->getArg(0));
16947     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
16948     return Builder.CreateCall(Callee, {Vec});
16949   }
16950   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
16951   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
16952     Value *Vec = EmitScalarExpr(E->getArg(0));
16953     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
16954     return Builder.CreateCall(Callee, {Vec});
16955   }
16956   case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16957   case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16958   case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16959   case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
16960     Value *A = EmitScalarExpr(E->getArg(0));
16961     Value *B = EmitScalarExpr(E->getArg(1));
16962     Value *C = EmitScalarExpr(E->getArg(2));
16963     unsigned IntNo;
16964     switch (BuiltinID) {
16965     case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16966     case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16967       IntNo = Intrinsic::wasm_qfma;
16968       break;
16969     case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16970     case WebAssembly::BI__builtin_wasm_qfms_f64x2:
16971       IntNo = Intrinsic::wasm_qfms;
16972       break;
16973     default:
16974       llvm_unreachable("unexpected builtin ID");
16975     }
16976     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
16977     return Builder.CreateCall(Callee, {A, B, C});
16978   }
16979   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16980   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16981   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16982   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
16983     Value *Low = EmitScalarExpr(E->getArg(0));
16984     Value *High = EmitScalarExpr(E->getArg(1));
16985     unsigned IntNo;
16986     switch (BuiltinID) {
16987     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16988     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16989       IntNo = Intrinsic::wasm_narrow_signed;
16990       break;
16991     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16992     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
16993       IntNo = Intrinsic::wasm_narrow_unsigned;
16994       break;
16995     default:
16996       llvm_unreachable("unexpected builtin ID");
16997     }
16998     Function *Callee =
16999         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
17000     return Builder.CreateCall(Callee, {Low, High});
17001   }
17002   case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2:
17003   case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2:
17004   case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2:
17005   case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2: {
17006     Value *Vec = EmitScalarExpr(E->getArg(0));
17007     unsigned IntNo;
17008     switch (BuiltinID) {
17009     case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2:
17010       IntNo = Intrinsic::wasm_widen_low_signed;
17011       break;
17012     case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2:
17013       IntNo = Intrinsic::wasm_widen_high_signed;
17014       break;
17015     case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2:
17016       IntNo = Intrinsic::wasm_widen_low_unsigned;
17017       break;
17018     case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2:
17019       IntNo = Intrinsic::wasm_widen_high_unsigned;
17020       break;
17021     }
17022     Function *Callee = CGM.getIntrinsic(IntNo);
17023     return Builder.CreateCall(Callee, Vec);
17024   }
17025   case WebAssembly::BI__builtin_wasm_load32_zero: {
17026     Value *Ptr = EmitScalarExpr(E->getArg(0));
17027     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero);
17028     return Builder.CreateCall(Callee, {Ptr});
17029   }
17030   case WebAssembly::BI__builtin_wasm_load64_zero: {
17031     Value *Ptr = EmitScalarExpr(E->getArg(0));
17032     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero);
17033     return Builder.CreateCall(Callee, {Ptr});
17034   }
17035   case WebAssembly::BI__builtin_wasm_load8_lane:
17036   case WebAssembly::BI__builtin_wasm_load16_lane:
17037   case WebAssembly::BI__builtin_wasm_load32_lane:
17038   case WebAssembly::BI__builtin_wasm_load64_lane:
17039   case WebAssembly::BI__builtin_wasm_store8_lane:
17040   case WebAssembly::BI__builtin_wasm_store16_lane:
17041   case WebAssembly::BI__builtin_wasm_store32_lane:
17042   case WebAssembly::BI__builtin_wasm_store64_lane: {
17043     Value *Ptr = EmitScalarExpr(E->getArg(0));
17044     Value *Vec = EmitScalarExpr(E->getArg(1));
17045     Optional<llvm::APSInt> LaneIdxConst =
17046         E->getArg(2)->getIntegerConstantExpr(getContext());
17047     assert(LaneIdxConst && "Constant arg isn't actually constant?");
17048     Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst);
17049     unsigned IntNo;
17050     switch (BuiltinID) {
17051     case WebAssembly::BI__builtin_wasm_load8_lane:
17052       IntNo = Intrinsic::wasm_load8_lane;
17053       break;
17054     case WebAssembly::BI__builtin_wasm_load16_lane:
17055       IntNo = Intrinsic::wasm_load16_lane;
17056       break;
17057     case WebAssembly::BI__builtin_wasm_load32_lane:
17058       IntNo = Intrinsic::wasm_load32_lane;
17059       break;
17060     case WebAssembly::BI__builtin_wasm_load64_lane:
17061       IntNo = Intrinsic::wasm_load64_lane;
17062       break;
17063     case WebAssembly::BI__builtin_wasm_store8_lane:
17064       IntNo = Intrinsic::wasm_store8_lane;
17065       break;
17066     case WebAssembly::BI__builtin_wasm_store16_lane:
17067       IntNo = Intrinsic::wasm_store16_lane;
17068       break;
17069     case WebAssembly::BI__builtin_wasm_store32_lane:
17070       IntNo = Intrinsic::wasm_store32_lane;
17071       break;
17072     case WebAssembly::BI__builtin_wasm_store64_lane:
17073       IntNo = Intrinsic::wasm_store64_lane;
17074       break;
17075     default:
17076       llvm_unreachable("unexpected builtin ID");
17077     }
17078     Function *Callee = CGM.getIntrinsic(IntNo);
17079     return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx});
17080   }
17081   case WebAssembly::BI__builtin_wasm_shuffle_v8x16: {
17082     Value *Ops[18];
17083     size_t OpIdx = 0;
17084     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
17085     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
17086     while (OpIdx < 18) {
17087       Optional<llvm::APSInt> LaneConst =
17088           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
17089       assert(LaneConst && "Constant arg isn't actually constant?");
17090       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
17091     }
17092     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
17093     return Builder.CreateCall(Callee, Ops);
17094   }
17095   default:
17096     return nullptr;
17097   }
17098 }
17099 
17100 static std::pair<Intrinsic::ID, unsigned>
getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID)17101 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
17102   struct Info {
17103     unsigned BuiltinID;
17104     Intrinsic::ID IntrinsicID;
17105     unsigned VecLen;
17106   };
17107   Info Infos[] = {
17108 #define CUSTOM_BUILTIN_MAPPING(x,s) \
17109   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
17110     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
17111     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
17112     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
17113     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
17114     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
17115     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
17116     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
17117     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
17118     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
17119     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
17120     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
17121     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
17122     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
17123     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
17124     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
17125     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
17126     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
17127     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
17128     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
17129     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
17130     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
17131     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
17132     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
17133     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
17134     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
17135     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
17136     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
17137     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
17138     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
17139     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
17140 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
17141 #undef CUSTOM_BUILTIN_MAPPING
17142   };
17143 
17144   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
17145   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
17146   (void)SortOnce;
17147 
17148   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
17149                                    Info{BuiltinID, 0, 0}, CmpInfo);
17150   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
17151     return {Intrinsic::not_intrinsic, 0};
17152 
17153   return {F->IntrinsicID, F->VecLen};
17154 }
17155 
EmitHexagonBuiltinExpr(unsigned BuiltinID,const CallExpr * E)17156 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
17157                                                const CallExpr *E) {
17158   Intrinsic::ID ID;
17159   unsigned VecLen;
17160   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
17161 
17162   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
17163     // The base pointer is passed by address, so it needs to be loaded.
17164     Address A = EmitPointerWithAlignment(E->getArg(0));
17165     Address BP = Address(
17166         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
17167     llvm::Value *Base = Builder.CreateLoad(BP);
17168     // The treatment of both loads and stores is the same: the arguments for
17169     // the builtin are the same as the arguments for the intrinsic.
17170     // Load:
17171     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
17172     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
17173     // Store:
17174     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
17175     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
17176     SmallVector<llvm::Value*,5> Ops = { Base };
17177     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
17178       Ops.push_back(EmitScalarExpr(E->getArg(i)));
17179 
17180     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
17181     // The load intrinsics generate two results (Value, NewBase), stores
17182     // generate one (NewBase). The new base address needs to be stored.
17183     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
17184                                   : Result;
17185     llvm::Value *LV = Builder.CreateBitCast(
17186         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
17187     Address Dest = EmitPointerWithAlignment(E->getArg(0));
17188     llvm::Value *RetVal =
17189         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
17190     if (IsLoad)
17191       RetVal = Builder.CreateExtractValue(Result, 0);
17192     return RetVal;
17193   };
17194 
17195   // Handle the conversion of bit-reverse load intrinsics to bit code.
17196   // The intrinsic call after this function only reads from memory and the
17197   // write to memory is dealt by the store instruction.
17198   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
17199     // The intrinsic generates one result, which is the new value for the base
17200     // pointer. It needs to be returned. The result of the load instruction is
17201     // passed to intrinsic by address, so the value needs to be stored.
17202     llvm::Value *BaseAddress =
17203         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
17204 
17205     // Expressions like &(*pt++) will be incremented per evaluation.
17206     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
17207     // per call.
17208     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
17209     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
17210                        DestAddr.getAlignment());
17211     llvm::Value *DestAddress = DestAddr.getPointer();
17212 
17213     // Operands are Base, Dest, Modifier.
17214     // The intrinsic format in LLVM IR is defined as
17215     // { ValueType, i8* } (i8*, i32).
17216     llvm::Value *Result = Builder.CreateCall(
17217         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
17218 
17219     // The value needs to be stored as the variable is passed by reference.
17220     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
17221 
17222     // The store needs to be truncated to fit the destination type.
17223     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
17224     // to be handled with stores of respective destination type.
17225     DestVal = Builder.CreateTrunc(DestVal, DestTy);
17226 
17227     llvm::Value *DestForStore =
17228         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
17229     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
17230     // The updated value of the base pointer is returned.
17231     return Builder.CreateExtractValue(Result, 1);
17232   };
17233 
17234   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
17235     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
17236                                      : Intrinsic::hexagon_V6_vandvrt;
17237     return Builder.CreateCall(CGM.getIntrinsic(ID),
17238                               {Vec, Builder.getInt32(-1)});
17239   };
17240   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
17241     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
17242                                      : Intrinsic::hexagon_V6_vandqrt;
17243     return Builder.CreateCall(CGM.getIntrinsic(ID),
17244                               {Pred, Builder.getInt32(-1)});
17245   };
17246 
17247   switch (BuiltinID) {
17248   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
17249   // and the corresponding C/C++ builtins use loads/stores to update
17250   // the predicate.
17251   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
17252   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
17253   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
17254   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
17255     // Get the type from the 0-th argument.
17256     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
17257     Address PredAddr = Builder.CreateBitCast(
17258         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
17259     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
17260     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
17261         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
17262 
17263     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
17264     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
17265         PredAddr.getAlignment());
17266     return Builder.CreateExtractValue(Result, 0);
17267   }
17268 
17269   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
17270   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
17271   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
17272   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
17273   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
17274   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
17275   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
17276   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
17277   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
17278   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
17279   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
17280   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
17281     return MakeCircOp(ID, /*IsLoad=*/true);
17282   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
17283   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
17284   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
17285   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
17286   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
17287   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
17288   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
17289   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
17290   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
17291   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
17292     return MakeCircOp(ID, /*IsLoad=*/false);
17293   case Hexagon::BI__builtin_brev_ldub:
17294     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
17295   case Hexagon::BI__builtin_brev_ldb:
17296     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
17297   case Hexagon::BI__builtin_brev_lduh:
17298     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
17299   case Hexagon::BI__builtin_brev_ldh:
17300     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
17301   case Hexagon::BI__builtin_brev_ldw:
17302     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
17303   case Hexagon::BI__builtin_brev_ldd:
17304     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
17305 
17306   default: {
17307     if (ID == Intrinsic::not_intrinsic)
17308       return nullptr;
17309 
17310     auto IsVectorPredTy = [](llvm::Type *T) {
17311       return T->isVectorTy() &&
17312              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
17313     };
17314 
17315     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
17316     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
17317     SmallVector<llvm::Value*,4> Ops;
17318     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
17319       llvm::Type *T = IntrTy->getParamType(i);
17320       const Expr *A = E->getArg(i);
17321       if (IsVectorPredTy(T)) {
17322         // There will be an implicit cast to a boolean vector. Strip it.
17323         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
17324           if (Cast->getCastKind() == CK_BitCast)
17325             A = Cast->getSubExpr();
17326         }
17327         Ops.push_back(V2Q(EmitScalarExpr(A)));
17328       } else {
17329         Ops.push_back(EmitScalarExpr(A));
17330       }
17331     }
17332 
17333     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
17334     if (IsVectorPredTy(IntrTy->getReturnType()))
17335       Call = Q2V(Call);
17336 
17337     return Call;
17338   } // default
17339   } // switch
17340 
17341   return nullptr;
17342 }
17343