1 //===-- Benchmark function --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 // This file mainly defines a `Benchmark` function.
10 //
11 // The benchmarking process is as follows:
12 // - We start by measuring the time it takes to run the function
13 // `InitialIterations` times. This is called a Sample. From this we can derive
14 // the time it took to run a single iteration.
15 //
16 // - We repeat the previous step with a greater number of iterations to lower
17 // the impact of the measurement. We can derive a more precise estimation of the
18 // runtime for a single iteration.
19 //
20 // - Each sample gives a more accurate estimation of the runtime for a single
21 // iteration but also takes more time to run. We stop the process when:
22 // * The measure stabilize under a certain precision (Epsilon),
23 // * The overall benchmarking time is greater than MaxDuration,
24 // * The overall sample count is greater than MaxSamples,
25 // * The last sample used more than MaxIterations iterations.
26 //
27 // - We also makes sure that the benchmark doesn't run for a too short period of
28 // time by defining MinDuration and MinSamples.
29
30 #ifndef LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
31 #define LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
32
33 #include "benchmark/benchmark.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include <array>
38 #include <chrono>
39 #include <cstdint>
40
41 namespace llvm {
42 namespace libc_benchmarks {
43
44 // Makes sure the binary was compiled in release mode and that frequency
45 // governor is set on performance.
46 void checkRequirements();
47
48 using Duration = std::chrono::duration<double>;
49
50 enum class BenchmarkLog {
51 None, // Don't keep the internal state of the benchmark.
52 Last, // Keep only the last batch.
53 Full // Keep all iterations states, useful for testing or debugging.
54 };
55
56 // An object to configure the benchmark stopping conditions.
57 // See documentation at the beginning of the file for the overall algorithm and
58 // meaning of each field.
59 struct BenchmarkOptions {
60 // The minimum time for which the benchmark is running.
61 Duration MinDuration = std::chrono::seconds(0);
62 // The maximum time for which the benchmark is running.
63 Duration MaxDuration = std::chrono::seconds(10);
64 // The number of iterations in the first sample.
65 uint32_t InitialIterations = 1;
66 // The maximum number of iterations for any given sample.
67 uint32_t MaxIterations = 10000000;
68 // The minimum number of samples.
69 uint32_t MinSamples = 4;
70 // The maximum number of samples.
71 uint32_t MaxSamples = 1000;
72 // The benchmark will stop if the relative difference between the current and
73 // the last estimation is less than epsilon. This is 1% by default.
74 double Epsilon = 0.01;
75 // The number of iterations grows exponentially between each sample.
76 // Must be greater or equal to 1.
77 double ScalingFactor = 1.4;
78 BenchmarkLog Log = BenchmarkLog::None;
79 };
80
81 // The state of a benchmark.
82 enum class BenchmarkStatus {
83 Running,
84 MaxDurationReached,
85 MaxIterationsReached,
86 MaxSamplesReached,
87 PrecisionReached,
88 };
89
90 // The internal state of the benchmark, useful to debug, test or report
91 // statistics.
92 struct BenchmarkState {
93 size_t LastSampleIterations;
94 Duration LastBatchElapsed;
95 BenchmarkStatus CurrentStatus;
96 Duration CurrentBestGuess; // The time estimation for a single run of `foo`.
97 double ChangeRatio; // The change in time estimation between previous and
98 // current samples.
99 };
100
101 // A lightweight result for a benchmark.
102 struct BenchmarkResult {
103 BenchmarkStatus TerminationStatus = BenchmarkStatus::Running;
104 Duration BestGuess = {};
105 llvm::Optional<llvm::SmallVector<BenchmarkState, 16>> MaybeBenchmarkLog;
106 };
107
108 // Stores information about a cache in the host memory system.
109 struct CacheInfo {
110 std::string Type; // e.g. "Instruction", "Data", "Unified".
111 int Level; // 0 is closest to processing unit.
112 int Size; // In bytes.
113 int NumSharing; // The number of processing units (Hyper-Threading Thread)
114 // with which this cache is shared.
115 };
116
117 // Stores information about the host.
118 struct HostState {
119 std::string CpuName; // returns a string compatible with the -march option.
120 double CpuFrequency; // in Hertz.
121 std::vector<CacheInfo> Caches;
122
123 static HostState get();
124 };
125
126 namespace internal {
127
128 struct Measurement {
129 size_t Iterations = 0;
130 Duration Elapsed = {};
131 };
132
133 // Updates the estimation of the elapsed time for a single iteration.
134 class RefinableRuntimeEstimation {
135 Duration TotalTime = {};
136 size_t TotalIterations = 0;
137
138 public:
update(const Measurement & M)139 Duration update(const Measurement &M) {
140 assert(M.Iterations > 0);
141 // Duration is encoded as a double (see definition).
142 // `TotalTime` and `M.Elapsed` are of the same magnitude so we don't expect
143 // loss of precision due to radically different scales.
144 TotalTime += M.Elapsed;
145 TotalIterations += M.Iterations;
146 return TotalTime / TotalIterations;
147 }
148 };
149
150 // This class tracks the progression of the runtime estimation.
151 class RuntimeEstimationProgression {
152 RefinableRuntimeEstimation RRE;
153
154 public:
155 Duration CurrentEstimation = {};
156
157 // Returns the change ratio between our best guess so far and the one from the
158 // new measurement.
computeImprovement(const Measurement & M)159 double computeImprovement(const Measurement &M) {
160 const Duration NewEstimation = RRE.update(M);
161 const double Ratio = fabs(((CurrentEstimation / NewEstimation) - 1.0));
162 CurrentEstimation = NewEstimation;
163 return Ratio;
164 }
165 };
166
167 } // namespace internal
168
169 // Measures the runtime of `foo` until conditions defined by `Options` are met.
170 //
171 // To avoid measurement's imprecisions we measure batches of `foo`.
172 // The batch size is growing by `ScalingFactor` to minimize the effect of
173 // measuring.
174 //
175 // Note: The benchmark is not responsible for serializing the executions of
176 // `foo`. It is not suitable for measuring, very small & side effect free
177 // functions, as the processor is free to execute several executions in
178 // parallel.
179 //
180 // - Options: A set of parameters controlling the stopping conditions for the
181 // benchmark.
182 // - foo: The function under test. It takes one value and returns one value.
183 // The input value is used to randomize the execution of `foo` as part of a
184 // batch to mitigate the effect of the branch predictor. Signature:
185 // `ProductType foo(ParameterProvider::value_type value);`
186 // The output value is a product of the execution of `foo` and prevents the
187 // compiler from optimizing out foo's body.
188 // - ParameterProvider: An object responsible for providing a range of
189 // `Iterations` values to use as input for `foo`. The `value_type` of the
190 // returned container has to be compatible with `foo` argument.
191 // Must implement one of:
192 // `Container<ParameterType> generateBatch(size_t Iterations);`
193 // `const Container<ParameterType>& generateBatch(size_t Iterations);`
194 // - Clock: An object providing the current time. Must implement:
195 // `std::chrono::time_point now();`
196 template <typename Function, typename ParameterProvider,
197 typename BenchmarkClock = const std::chrono::high_resolution_clock>
198 BenchmarkResult benchmark(const BenchmarkOptions &Options,
199 ParameterProvider &PP, Function foo,
200 BenchmarkClock &Clock = BenchmarkClock()) {
201 BenchmarkResult Result;
202 internal::RuntimeEstimationProgression REP;
203 Duration TotalBenchmarkDuration = {};
204 size_t Iterations = std::max(Options.InitialIterations, uint32_t(1));
205 size_t Samples = 0;
206 if (Options.ScalingFactor < 1.0)
207 report_fatal_error("ScalingFactor should be >= 1");
208 if (Options.Log != BenchmarkLog::None)
209 Result.MaybeBenchmarkLog.emplace();
210 for (;;) {
211 // Request a new Batch of size `Iterations`.
212 const auto &Batch = PP.generateBatch(Iterations);
213
214 // Measuring this Batch.
215 const auto StartTime = Clock.now();
216 for (const auto Parameter : Batch) {
217 const auto Production = foo(Parameter);
218 benchmark::DoNotOptimize(Production);
219 }
220 const auto EndTime = Clock.now();
221 const Duration Elapsed = EndTime - StartTime;
222
223 // Updating statistics.
224 ++Samples;
225 TotalBenchmarkDuration += Elapsed;
226 const double ChangeRatio = REP.computeImprovement({Iterations, Elapsed});
227 Result.BestGuess = REP.CurrentEstimation;
228
229 // Stopping condition.
230 if (TotalBenchmarkDuration >= Options.MinDuration &&
231 Samples >= Options.MinSamples && ChangeRatio < Options.Epsilon)
232 Result.TerminationStatus = BenchmarkStatus::PrecisionReached;
233 else if (Samples >= Options.MaxSamples)
234 Result.TerminationStatus = BenchmarkStatus::MaxSamplesReached;
235 else if (TotalBenchmarkDuration >= Options.MaxDuration)
236 Result.TerminationStatus = BenchmarkStatus::MaxDurationReached;
237 else if (Iterations >= Options.MaxIterations)
238 Result.TerminationStatus = BenchmarkStatus::MaxIterationsReached;
239
240 if (Result.MaybeBenchmarkLog) {
241 auto &BenchmarkLog = *Result.MaybeBenchmarkLog;
242 if (Options.Log == BenchmarkLog::Last && !BenchmarkLog.empty())
243 BenchmarkLog.pop_back();
244 BenchmarkState BS;
245 BS.LastSampleIterations = Iterations;
246 BS.LastBatchElapsed = Elapsed;
247 BS.CurrentStatus = Result.TerminationStatus;
248 BS.CurrentBestGuess = Result.BestGuess;
249 BS.ChangeRatio = ChangeRatio;
250 BenchmarkLog.push_back(BS);
251 }
252
253 if (Result.TerminationStatus != BenchmarkStatus::Running)
254 return Result;
255
256 if (Options.ScalingFactor > 1 &&
257 Iterations * Options.ScalingFactor == Iterations)
258 report_fatal_error(
259 "`Iterations *= ScalingFactor` is idempotent, increase ScalingFactor "
260 "or InitialIterations.");
261
262 Iterations *= Options.ScalingFactor;
263 }
264 }
265
266 // Interprets `Array` as a circular buffer of `Size` elements.
267 template <typename T> class CircularArrayRef {
268 llvm::ArrayRef<T> Array;
269 size_t Size;
270
271 public:
272 using value_type = T;
273 using reference = T &;
274 using const_reference = const T &;
275 using difference_type = ssize_t;
276 using size_type = size_t;
277
278 class const_iterator
279 : public std::iterator<std::input_iterator_tag, T, ssize_t> {
280 llvm::ArrayRef<T> Array;
281 size_t Index;
282
283 public:
284 explicit const_iterator(llvm::ArrayRef<T> Array, size_t Index = 0)
Array(Array)285 : Array(Array), Index(Index) {}
286 const_iterator &operator++() {
287 ++Index;
288 return *this;
289 }
290 bool operator==(const_iterator Other) const { return Index == Other.Index; }
291 bool operator!=(const_iterator Other) const { return !(*this == Other); }
292 const T &operator*() const { return Array[Index % Array.size()]; }
293 };
294
CircularArrayRef(llvm::ArrayRef<T> Array,size_t Size)295 CircularArrayRef(llvm::ArrayRef<T> Array, size_t Size)
296 : Array(Array), Size(Size) {
297 assert(Array.size() > 0);
298 }
299
begin()300 const_iterator begin() const { return const_iterator(Array); }
end()301 const_iterator end() const { return const_iterator(Array, Size); }
302 };
303
304 // A convenient helper to produce a CircularArrayRef from an ArrayRef.
305 template <typename T>
cycle(llvm::ArrayRef<T> Array,size_t Size)306 CircularArrayRef<T> cycle(llvm::ArrayRef<T> Array, size_t Size) {
307 return {Array, Size};
308 }
309
310 // Creates an std::array which storage size is constrained under `Bytes`.
311 template <typename T, size_t Bytes>
312 using ByteConstrainedArray = std::array<T, Bytes / sizeof(T)>;
313
314 // A convenient helper to produce a CircularArrayRef from a
315 // ByteConstrainedArray.
316 template <typename T, size_t N>
cycle(const std::array<T,N> & Container,size_t Size)317 CircularArrayRef<T> cycle(const std::array<T, N> &Container, size_t Size) {
318 return {llvm::ArrayRef<T>(Container.cbegin(), Container.cend()), Size};
319 }
320
321 } // namespace libc_benchmarks
322 } // namespace llvm
323
324 #endif // LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
325