• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // REQUIRES: long_tests
10 
11 // <random>
12 
13 // template<class RealType = double>
14 // class piecewise_constant_distribution
15 
16 // template<class _URNG> result_type operator()(_URNG& g);
17 
18 #include <random>
19 #include <vector>
20 #include <iterator>
21 #include <numeric>
22 #include <algorithm>   // for sort
23 #include <cassert>
24 
25 #include "test_macros.h"
26 
27 template <class T>
28 inline
29 T
sqr(T x)30 sqr(T x)
31 {
32     return x*x;
33 }
34 
35 void
test1()36 test1()
37 {
38     typedef std::piecewise_constant_distribution<> D;
39     typedef std::mt19937_64 G;
40     G g;
41     double b[] = {10, 14, 16, 17};
42     double p[] = {25, 62.5, 12.5};
43     const size_t Np = sizeof(p) / sizeof(p[0]);
44     D d(b, b+Np+1, p);
45     const int N = 1000000;
46     std::vector<D::result_type> u;
47     for (int i = 0; i < N; ++i)
48     {
49         D::result_type v = d(g);
50         assert(d.min() <= v && v < d.max());
51         u.push_back(v);
52     }
53     std::vector<double> prob(std::begin(p), std::end(p));
54     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
55     for (std::size_t i = 0; i < prob.size(); ++i)
56         prob[i] /= s;
57     std::sort(u.begin(), u.end());
58     for (std::size_t i = 0; i < Np; ++i)
59     {
60         typedef std::vector<D::result_type>::iterator I;
61         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
62         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
63         const size_t Ni = ub - lb;
64         if (prob[i] == 0)
65             assert(Ni == 0);
66         else
67         {
68             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
69             double mean = std::accumulate(lb, ub, 0.0) / Ni;
70             double var = 0;
71             double skew = 0;
72             double kurtosis = 0;
73             for (I j = lb; j != ub; ++j)
74             {
75                 double dbl = (*j - mean);
76                 double d2 = sqr(dbl);
77                 var += d2;
78                 skew += dbl * d2;
79                 kurtosis += d2 * d2;
80             }
81             var /= Ni;
82             double dev = std::sqrt(var);
83             skew /= Ni * dev * var;
84             kurtosis /= Ni * var * var;
85             kurtosis -= 3;
86             double x_mean = (b[i+1] + b[i]) / 2;
87             double x_var = sqr(b[i+1] - b[i]) / 12;
88             double x_skew = 0;
89             double x_kurtosis = -6./5;
90             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
91             assert(std::abs((var - x_var) / x_var) < 0.01);
92             assert(std::abs(skew - x_skew) < 0.01);
93             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
94         }
95     }
96 }
97 
98 void
test2()99 test2()
100 {
101     typedef std::piecewise_constant_distribution<> D;
102     typedef std::mt19937_64 G;
103     G g;
104     double b[] = {10, 14, 16, 17};
105     double p[] = {0, 62.5, 12.5};
106     const size_t Np = sizeof(p) / sizeof(p[0]);
107     D d(b, b+Np+1, p);
108     const int N = 1000000;
109     std::vector<D::result_type> u;
110     for (int i = 0; i < N; ++i)
111     {
112         D::result_type v = d(g);
113         assert(d.min() <= v && v < d.max());
114         u.push_back(v);
115     }
116     std::vector<double> prob(std::begin(p), std::end(p));
117     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
118     for (std::size_t i = 0; i < prob.size(); ++i)
119         prob[i] /= s;
120     std::sort(u.begin(), u.end());
121     for (std::size_t i = 0; i < Np; ++i)
122     {
123         typedef std::vector<D::result_type>::iterator I;
124         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
125         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
126         const size_t Ni = ub - lb;
127         if (prob[i] == 0)
128             assert(Ni == 0);
129         else
130         {
131             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
132             double mean = std::accumulate(lb, ub, 0.0) / Ni;
133             double var = 0;
134             double skew = 0;
135             double kurtosis = 0;
136             for (I j = lb; j != ub; ++j)
137             {
138                 double dbl = (*j - mean);
139                 double d2 = sqr(dbl);
140                 var += d2;
141                 skew += dbl * d2;
142                 kurtosis += d2 * d2;
143             }
144             var /= Ni;
145             double dev = std::sqrt(var);
146             skew /= Ni * dev * var;
147             kurtosis /= Ni * var * var;
148             kurtosis -= 3;
149             double x_mean = (b[i+1] + b[i]) / 2;
150             double x_var = sqr(b[i+1] - b[i]) / 12;
151             double x_skew = 0;
152             double x_kurtosis = -6./5;
153             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
154             assert(std::abs((var - x_var) / x_var) < 0.01);
155             assert(std::abs(skew - x_skew) < 0.01);
156             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
157         }
158     }
159 }
160 
161 void
test3()162 test3()
163 {
164     typedef std::piecewise_constant_distribution<> D;
165     typedef std::mt19937_64 G;
166     G g;
167     double b[] = {10, 14, 16, 17};
168     double p[] = {25, 0, 12.5};
169     const size_t Np = sizeof(p) / sizeof(p[0]);
170     D d(b, b+Np+1, p);
171     const int N = 1000000;
172     std::vector<D::result_type> u;
173     for (int i = 0; i < N; ++i)
174     {
175         D::result_type v = d(g);
176         assert(d.min() <= v && v < d.max());
177         u.push_back(v);
178     }
179     std::vector<double> prob(std::begin(p), std::end(p));
180     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
181     for (std::size_t i = 0; i < prob.size(); ++i)
182         prob[i] /= s;
183     std::sort(u.begin(), u.end());
184     for (std::size_t i = 0; i < Np; ++i)
185     {
186         typedef std::vector<D::result_type>::iterator I;
187         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
188         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
189         const size_t Ni = ub - lb;
190         if (prob[i] == 0)
191             assert(Ni == 0);
192         else
193         {
194             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
195             double mean = std::accumulate(lb, ub, 0.0) / Ni;
196             double var = 0;
197             double skew = 0;
198             double kurtosis = 0;
199             for (I j = lb; j != ub; ++j)
200             {
201                 double dbl = (*j - mean);
202                 double d2 = sqr(dbl);
203                 var += d2;
204                 skew += dbl * d2;
205                 kurtosis += d2 * d2;
206             }
207             var /= Ni;
208             double dev = std::sqrt(var);
209             skew /= Ni * dev * var;
210             kurtosis /= Ni * var * var;
211             kurtosis -= 3;
212             double x_mean = (b[i+1] + b[i]) / 2;
213             double x_var = sqr(b[i+1] - b[i]) / 12;
214             double x_skew = 0;
215             double x_kurtosis = -6./5;
216             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
217             assert(std::abs((var - x_var) / x_var) < 0.01);
218             assert(std::abs(skew - x_skew) < 0.01);
219             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
220         }
221     }
222 }
223 
224 void
test4()225 test4()
226 {
227     typedef std::piecewise_constant_distribution<> D;
228     typedef std::mt19937_64 G;
229     G g;
230     double b[] = {10, 14, 16, 17};
231     double p[] = {25, 62.5, 0};
232     const size_t Np = sizeof(p) / sizeof(p[0]);
233     D d(b, b+Np+1, p);
234     const int N = 1000000;
235     std::vector<D::result_type> u;
236     for (int i = 0; i < N; ++i)
237     {
238         D::result_type v = d(g);
239         assert(d.min() <= v && v < d.max());
240         u.push_back(v);
241     }
242     std::vector<double> prob(std::begin(p), std::end(p));
243     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
244     for (std::size_t i = 0; i < prob.size(); ++i)
245         prob[i] /= s;
246     std::sort(u.begin(), u.end());
247     for (std::size_t i = 0; i < Np; ++i)
248     {
249         typedef std::vector<D::result_type>::iterator I;
250         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
251         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
252         const size_t Ni = ub - lb;
253         if (prob[i] == 0)
254             assert(Ni == 0);
255         else
256         {
257             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
258             double mean = std::accumulate(lb, ub, 0.0) / Ni;
259             double var = 0;
260             double skew = 0;
261             double kurtosis = 0;
262             for (I j = lb; j != ub; ++j)
263             {
264                 double dbl = (*j - mean);
265                 double d2 = sqr(dbl);
266                 var += d2;
267                 skew += dbl * d2;
268                 kurtosis += d2 * d2;
269             }
270             var /= Ni;
271             double dev = std::sqrt(var);
272             skew /= Ni * dev * var;
273             kurtosis /= Ni * var * var;
274             kurtosis -= 3;
275             double x_mean = (b[i+1] + b[i]) / 2;
276             double x_var = sqr(b[i+1] - b[i]) / 12;
277             double x_skew = 0;
278             double x_kurtosis = -6./5;
279             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
280             assert(std::abs((var - x_var) / x_var) < 0.01);
281             assert(std::abs(skew - x_skew) < 0.01);
282             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
283         }
284     }
285 }
286 
287 void
test5()288 test5()
289 {
290     typedef std::piecewise_constant_distribution<> D;
291     typedef std::mt19937_64 G;
292     G g;
293     double b[] = {10, 14, 16, 17};
294     double p[] = {25, 0, 0};
295     const size_t Np = sizeof(p) / sizeof(p[0]);
296     D d(b, b+Np+1, p);
297     const int N = 100000;
298     std::vector<D::result_type> u;
299     for (int i = 0; i < N; ++i)
300     {
301         D::result_type v = d(g);
302         assert(d.min() <= v && v < d.max());
303         u.push_back(v);
304     }
305     std::vector<double> prob(std::begin(p), std::end(p));
306     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
307     for (std::size_t i = 0; i < prob.size(); ++i)
308         prob[i] /= s;
309     std::sort(u.begin(), u.end());
310     for (std::size_t i = 0; i < Np; ++i)
311     {
312         typedef std::vector<D::result_type>::iterator I;
313         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
314         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
315         const size_t Ni = ub - lb;
316         if (prob[i] == 0)
317             assert(Ni == 0);
318         else
319         {
320             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
321             double mean = std::accumulate(lb, ub, 0.0) / Ni;
322             double var = 0;
323             double skew = 0;
324             double kurtosis = 0;
325             for (I j = lb; j != ub; ++j)
326             {
327                 double dbl = (*j - mean);
328                 double d2 = sqr(dbl);
329                 var += d2;
330                 skew += dbl * d2;
331                 kurtosis += d2 * d2;
332             }
333             var /= Ni;
334             double dev = std::sqrt(var);
335             skew /= Ni * dev * var;
336             kurtosis /= Ni * var * var;
337             kurtosis -= 3;
338             double x_mean = (b[i+1] + b[i]) / 2;
339             double x_var = sqr(b[i+1] - b[i]) / 12;
340             double x_skew = 0;
341             double x_kurtosis = -6./5;
342             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
343             assert(std::abs((var - x_var) / x_var) < 0.01);
344             assert(std::abs(skew - x_skew) < 0.01);
345             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
346         }
347     }
348 }
349 
350 void
test6()351 test6()
352 {
353     typedef std::piecewise_constant_distribution<> D;
354     typedef std::mt19937_64 G;
355     G g;
356     double b[] = {10, 14, 16, 17};
357     double p[] = {0, 25, 0};
358     const size_t Np = sizeof(p) / sizeof(p[0]);
359     D d(b, b+Np+1, p);
360     const int N = 100000;
361     std::vector<D::result_type> u;
362     for (int i = 0; i < N; ++i)
363     {
364         D::result_type v = d(g);
365         assert(d.min() <= v && v < d.max());
366         u.push_back(v);
367     }
368     std::vector<double> prob(std::begin(p), std::end(p));
369     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
370     for (std::size_t i = 0; i < prob.size(); ++i)
371         prob[i] /= s;
372     std::sort(u.begin(), u.end());
373     for (std::size_t i = 0; i < Np; ++i)
374     {
375         typedef std::vector<D::result_type>::iterator I;
376         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
377         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
378         const size_t Ni = ub - lb;
379         if (prob[i] == 0)
380             assert(Ni == 0);
381         else
382         {
383             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
384             double mean = std::accumulate(lb, ub, 0.0) / Ni;
385             double var = 0;
386             double skew = 0;
387             double kurtosis = 0;
388             for (I j = lb; j != ub; ++j)
389             {
390                 double dbl = (*j - mean);
391                 double d2 = sqr(dbl);
392                 var += d2;
393                 skew += dbl * d2;
394                 kurtosis += d2 * d2;
395             }
396             var /= Ni;
397             double dev = std::sqrt(var);
398             skew /= Ni * dev * var;
399             kurtosis /= Ni * var * var;
400             kurtosis -= 3;
401             double x_mean = (b[i+1] + b[i]) / 2;
402             double x_var = sqr(b[i+1] - b[i]) / 12;
403             double x_skew = 0;
404             double x_kurtosis = -6./5;
405             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
406             assert(std::abs((var - x_var) / x_var) < 0.01);
407             assert(std::abs(skew - x_skew) < 0.01);
408             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
409         }
410     }
411 }
412 
413 void
test7()414 test7()
415 {
416     typedef std::piecewise_constant_distribution<> D;
417     typedef std::mt19937_64 G;
418     G g;
419     double b[] = {10, 14, 16, 17};
420     double p[] = {0, 0, 1};
421     const size_t Np = sizeof(p) / sizeof(p[0]);
422     D d(b, b+Np+1, p);
423     const int N = 100000;
424     std::vector<D::result_type> u;
425     for (int i = 0; i < N; ++i)
426     {
427         D::result_type v = d(g);
428         assert(d.min() <= v && v < d.max());
429         u.push_back(v);
430     }
431     std::vector<double> prob(std::begin(p), std::end(p));
432     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
433     for (std::size_t i = 0; i < prob.size(); ++i)
434         prob[i] /= s;
435     std::sort(u.begin(), u.end());
436     for (std::size_t i = 0; i < Np; ++i)
437     {
438         typedef std::vector<D::result_type>::iterator I;
439         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
440         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
441         const size_t Ni = ub - lb;
442         if (prob[i] == 0)
443             assert(Ni == 0);
444         else
445         {
446             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
447             double mean = std::accumulate(lb, ub, 0.0) / Ni;
448             double var = 0;
449             double skew = 0;
450             double kurtosis = 0;
451             for (I j = lb; j != ub; ++j)
452             {
453                 double dbl = (*j - mean);
454                 double d2 = sqr(dbl);
455                 var += d2;
456                 skew += dbl * d2;
457                 kurtosis += d2 * d2;
458             }
459             var /= Ni;
460             double dev = std::sqrt(var);
461             skew /= Ni * dev * var;
462             kurtosis /= Ni * var * var;
463             kurtosis -= 3;
464             double x_mean = (b[i+1] + b[i]) / 2;
465             double x_var = sqr(b[i+1] - b[i]) / 12;
466             double x_skew = 0;
467             double x_kurtosis = -6./5;
468             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
469             assert(std::abs((var - x_var) / x_var) < 0.01);
470             assert(std::abs(skew - x_skew) < 0.01);
471             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
472         }
473     }
474 }
475 
476 void
test8()477 test8()
478 {
479     typedef std::piecewise_constant_distribution<> D;
480     typedef std::mt19937_64 G;
481     G g;
482     double b[] = {10, 14, 16};
483     double p[] = {75, 25};
484     const size_t Np = sizeof(p) / sizeof(p[0]);
485     D d(b, b+Np+1, p);
486     const int N = 100000;
487     std::vector<D::result_type> u;
488     for (int i = 0; i < N; ++i)
489     {
490         D::result_type v = d(g);
491         assert(d.min() <= v && v < d.max());
492         u.push_back(v);
493     }
494     std::vector<double> prob(std::begin(p), std::end(p));
495     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
496     for (std::size_t i = 0; i < prob.size(); ++i)
497         prob[i] /= s;
498     std::sort(u.begin(), u.end());
499     for (std::size_t i = 0; i < Np; ++i)
500     {
501         typedef std::vector<D::result_type>::iterator I;
502         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
503         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
504         const size_t Ni = ub - lb;
505         if (prob[i] == 0)
506             assert(Ni == 0);
507         else
508         {
509             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
510             double mean = std::accumulate(lb, ub, 0.0) / Ni;
511             double var = 0;
512             double skew = 0;
513             double kurtosis = 0;
514             for (I j = lb; j != ub; ++j)
515             {
516                 double dbl = (*j - mean);
517                 double d2 = sqr(dbl);
518                 var += d2;
519                 skew += dbl * d2;
520                 kurtosis += d2 * d2;
521             }
522             var /= Ni;
523             double dev = std::sqrt(var);
524             skew /= Ni * dev * var;
525             kurtosis /= Ni * var * var;
526             kurtosis -= 3;
527             double x_mean = (b[i+1] + b[i]) / 2;
528             double x_var = sqr(b[i+1] - b[i]) / 12;
529             double x_skew = 0;
530             double x_kurtosis = -6./5;
531             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
532             assert(std::abs((var - x_var) / x_var) < 0.01);
533             assert(std::abs(skew - x_skew) < 0.01);
534             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
535         }
536     }
537 }
538 
539 void
test9()540 test9()
541 {
542     typedef std::piecewise_constant_distribution<> D;
543     typedef std::mt19937_64 G;
544     G g;
545     double b[] = {10, 14, 16};
546     double p[] = {0, 25};
547     const size_t Np = sizeof(p) / sizeof(p[0]);
548     D d(b, b+Np+1, p);
549     const int N = 100000;
550     std::vector<D::result_type> u;
551     for (int i = 0; i < N; ++i)
552     {
553         D::result_type v = d(g);
554         assert(d.min() <= v && v < d.max());
555         u.push_back(v);
556     }
557     std::vector<double> prob(std::begin(p), std::end(p));
558     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
559     for (std::size_t i = 0; i < prob.size(); ++i)
560         prob[i] /= s;
561     std::sort(u.begin(), u.end());
562     for (std::size_t i = 0; i < Np; ++i)
563     {
564         typedef std::vector<D::result_type>::iterator I;
565         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
566         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
567         const size_t Ni = ub - lb;
568         if (prob[i] == 0)
569             assert(Ni == 0);
570         else
571         {
572             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
573             double mean = std::accumulate(lb, ub, 0.0) / Ni;
574             double var = 0;
575             double skew = 0;
576             double kurtosis = 0;
577             for (I j = lb; j != ub; ++j)
578             {
579                 double dbl = (*j - mean);
580                 double d2 = sqr(dbl);
581                 var += d2;
582                 skew += dbl * d2;
583                 kurtosis += d2 * d2;
584             }
585             var /= Ni;
586             double dev = std::sqrt(var);
587             skew /= Ni * dev * var;
588             kurtosis /= Ni * var * var;
589             kurtosis -= 3;
590             double x_mean = (b[i+1] + b[i]) / 2;
591             double x_var = sqr(b[i+1] - b[i]) / 12;
592             double x_skew = 0;
593             double x_kurtosis = -6./5;
594             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
595             assert(std::abs((var - x_var) / x_var) < 0.01);
596             assert(std::abs(skew - x_skew) < 0.01);
597             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
598         }
599     }
600 }
601 
602 void
test10()603 test10()
604 {
605     typedef std::piecewise_constant_distribution<> D;
606     typedef std::mt19937_64 G;
607     G g;
608     double b[] = {10, 14, 16};
609     double p[] = {1, 0};
610     const size_t Np = sizeof(p) / sizeof(p[0]);
611     D d(b, b+Np+1, p);
612     const int N = 100000;
613     std::vector<D::result_type> u;
614     for (int i = 0; i < N; ++i)
615     {
616         D::result_type v = d(g);
617         assert(d.min() <= v && v < d.max());
618         u.push_back(v);
619     }
620     std::vector<double> prob(std::begin(p), std::end(p));
621     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
622     for (std::size_t i = 0; i < prob.size(); ++i)
623         prob[i] /= s;
624     std::sort(u.begin(), u.end());
625     for (std::size_t i = 0; i < Np; ++i)
626     {
627         typedef std::vector<D::result_type>::iterator I;
628         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
629         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
630         const size_t Ni = ub - lb;
631         if (prob[i] == 0)
632             assert(Ni == 0);
633         else
634         {
635             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
636             double mean = std::accumulate(lb, ub, 0.0) / Ni;
637             double var = 0;
638             double skew = 0;
639             double kurtosis = 0;
640             for (I j = lb; j != ub; ++j)
641             {
642                 double dbl = (*j - mean);
643                 double d2 = sqr(dbl);
644                 var += d2;
645                 skew += dbl * d2;
646                 kurtosis += d2 * d2;
647             }
648             var /= Ni;
649             double dev = std::sqrt(var);
650             skew /= Ni * dev * var;
651             kurtosis /= Ni * var * var;
652             kurtosis -= 3;
653             double x_mean = (b[i+1] + b[i]) / 2;
654             double x_var = sqr(b[i+1] - b[i]) / 12;
655             double x_skew = 0;
656             double x_kurtosis = -6./5;
657             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
658             assert(std::abs((var - x_var) / x_var) < 0.01);
659             assert(std::abs(skew - x_skew) < 0.01);
660             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
661         }
662     }
663 }
664 
665 void
test11()666 test11()
667 {
668     typedef std::piecewise_constant_distribution<> D;
669     typedef std::mt19937_64 G;
670     G g;
671     double b[] = {10, 14};
672     double p[] = {1};
673     const size_t Np = sizeof(p) / sizeof(p[0]);
674     D d(b, b+Np+1, p);
675     const int N = 100000;
676     std::vector<D::result_type> u;
677     for (int i = 0; i < N; ++i)
678     {
679         D::result_type v = d(g);
680         assert(d.min() <= v && v < d.max());
681         u.push_back(v);
682     }
683     std::vector<double> prob(std::begin(p), std::end(p));
684     double s = std::accumulate(prob.begin(), prob.end(), 0.0);
685     for (std::size_t i = 0; i < prob.size(); ++i)
686         prob[i] /= s;
687     std::sort(u.begin(), u.end());
688     for (std::size_t i = 0; i < Np; ++i)
689     {
690         typedef std::vector<D::result_type>::iterator I;
691         I lb = std::lower_bound(u.begin(), u.end(), b[i]);
692         I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
693         const size_t Ni = ub - lb;
694         if (prob[i] == 0)
695             assert(Ni == 0);
696         else
697         {
698             assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
699             double mean = std::accumulate(lb, ub, 0.0) / Ni;
700             double var = 0;
701             double skew = 0;
702             double kurtosis = 0;
703             for (I j = lb; j != ub; ++j)
704             {
705                 double dbl = (*j - mean);
706                 double d2 = sqr(dbl);
707                 var += d2;
708                 skew += dbl * d2;
709                 kurtosis += d2 * d2;
710             }
711             var /= Ni;
712             double dev = std::sqrt(var);
713             skew /= Ni * dev * var;
714             kurtosis /= Ni * var * var;
715             kurtosis -= 3;
716             double x_mean = (b[i+1] + b[i]) / 2;
717             double x_var = sqr(b[i+1] - b[i]) / 12;
718             double x_skew = 0;
719             double x_kurtosis = -6./5;
720             assert(std::abs((mean - x_mean) / x_mean) < 0.01);
721             assert(std::abs((var - x_var) / x_var) < 0.01);
722             assert(std::abs(skew - x_skew) < 0.01);
723             assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
724         }
725     }
726 }
727 
main(int,char **)728 int main(int, char**)
729 {
730     test1();
731     test2();
732     test3();
733     test4();
734     test5();
735     test6();
736     test7();
737     test8();
738     test9();
739     test10();
740     test11();
741 
742   return 0;
743 }
744