1 //===- Chunks.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Chunks.h"
10 #include "InputFiles.h"
11 #include "Symbols.h"
12 #include "Writer.h"
13 #include "SymbolTable.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/BinaryFormat/COFF.h"
17 #include "llvm/Object/COFF.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/Endian.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include <algorithm>
22
23 using namespace llvm;
24 using namespace llvm::object;
25 using namespace llvm::support::endian;
26 using namespace llvm::COFF;
27 using llvm::support::ulittle32_t;
28
29 namespace lld {
30 namespace coff {
31
SectionChunk(ObjFile * f,const coff_section * h)32 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
33 : Chunk(SectionKind), file(f), header(h), repl(this) {
34 // Initialize relocs.
35 setRelocs(file->getCOFFObj()->getRelocations(header));
36
37 // Initialize sectionName.
38 StringRef sectionName;
39 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
40 sectionName = *e;
41 sectionNameData = sectionName.data();
42 sectionNameSize = sectionName.size();
43
44 setAlignment(header->getAlignment());
45
46 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
47
48 // If linker GC is disabled, every chunk starts out alive. If linker GC is
49 // enabled, treat non-comdat sections as roots. Generally optimized object
50 // files will be built with -ffunction-sections or /Gy, so most things worth
51 // stripping will be in a comdat.
52 live = !config->doGC || !isCOMDAT();
53 }
54
55 // SectionChunk is one of the most frequently allocated classes, so it is
56 // important to keep it as compact as possible. As of this writing, the number
57 // below is the size of this class on x64 platforms.
58 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
59
add16(uint8_t * p,int16_t v)60 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
add32(uint8_t * p,int32_t v)61 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
add64(uint8_t * p,int64_t v)62 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
or16(uint8_t * p,uint16_t v)63 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
or32(uint8_t * p,uint32_t v)64 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
65
66 // Verify that given sections are appropriate targets for SECREL
67 // relocations. This check is relaxed because unfortunately debug
68 // sections have section-relative relocations against absolute symbols.
checkSecRel(const SectionChunk * sec,OutputSection * os)69 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
70 if (os)
71 return true;
72 if (sec->isCodeView())
73 return false;
74 error("SECREL relocation cannot be applied to absolute symbols");
75 return false;
76 }
77
applySecRel(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)78 static void applySecRel(const SectionChunk *sec, uint8_t *off,
79 OutputSection *os, uint64_t s) {
80 if (!checkSecRel(sec, os))
81 return;
82 uint64_t secRel = s - os->getRVA();
83 if (secRel > UINT32_MAX) {
84 error("overflow in SECREL relocation in section: " + sec->getSectionName());
85 return;
86 }
87 add32(off, secRel);
88 }
89
applySecIdx(uint8_t * off,OutputSection * os)90 static void applySecIdx(uint8_t *off, OutputSection *os) {
91 // Absolute symbol doesn't have section index, but section index relocation
92 // against absolute symbol should be resolved to one plus the last output
93 // section index. This is required for compatibility with MSVC.
94 if (os)
95 add16(off, os->sectionIndex);
96 else
97 add16(off, DefinedAbsolute::numOutputSections + 1);
98 }
99
applyRelX64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const100 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
101 uint64_t s, uint64_t p) const {
102 switch (type) {
103 case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break;
104 case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break;
105 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
106 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break;
107 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break;
108 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break;
109 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break;
110 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break;
111 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break;
112 case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break;
113 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break;
114 default:
115 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
116 toString(file));
117 }
118 }
119
applyRelX86(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const120 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
121 uint64_t s, uint64_t p) const {
122 switch (type) {
123 case IMAGE_REL_I386_ABSOLUTE: break;
124 case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break;
125 case IMAGE_REL_I386_DIR32NB: add32(off, s); break;
126 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break;
127 case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break;
128 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break;
129 default:
130 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
131 toString(file));
132 }
133 }
134
applyMOV(uint8_t * off,uint16_t v)135 static void applyMOV(uint8_t *off, uint16_t v) {
136 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
137 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
138 }
139
readMOV(uint8_t * off,bool movt)140 static uint16_t readMOV(uint8_t *off, bool movt) {
141 uint16_t op1 = read16le(off);
142 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
143 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
144 " instruction in MOV32T relocation");
145 uint16_t op2 = read16le(off + 2);
146 if ((op2 & 0x8000) != 0)
147 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
148 " instruction in MOV32T relocation");
149 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
150 ((op1 & 0x000f) << 12);
151 }
152
applyMOV32T(uint8_t * off,uint32_t v)153 void applyMOV32T(uint8_t *off, uint32_t v) {
154 uint16_t immW = readMOV(off, false); // read MOVW operand
155 uint16_t immT = readMOV(off + 4, true); // read MOVT operand
156 uint32_t imm = immW | (immT << 16);
157 v += imm; // add the immediate offset
158 applyMOV(off, v); // set MOVW operand
159 applyMOV(off + 4, v >> 16); // set MOVT operand
160 }
161
applyBranch20T(uint8_t * off,int32_t v)162 static void applyBranch20T(uint8_t *off, int32_t v) {
163 if (!isInt<21>(v))
164 error("relocation out of range");
165 uint32_t s = v < 0 ? 1 : 0;
166 uint32_t j1 = (v >> 19) & 1;
167 uint32_t j2 = (v >> 18) & 1;
168 or16(off, (s << 10) | ((v >> 12) & 0x3f));
169 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
170 }
171
applyBranch24T(uint8_t * off,int32_t v)172 void applyBranch24T(uint8_t *off, int32_t v) {
173 if (!isInt<25>(v))
174 error("relocation out of range");
175 uint32_t s = v < 0 ? 1 : 0;
176 uint32_t j1 = ((~v >> 23) & 1) ^ s;
177 uint32_t j2 = ((~v >> 22) & 1) ^ s;
178 or16(off, (s << 10) | ((v >> 12) & 0x3ff));
179 // Clear out the J1 and J2 bits which may be set.
180 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
181 }
182
applyRelARM(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const183 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
184 uint64_t s, uint64_t p) const {
185 // Pointer to thumb code must have the LSB set.
186 uint64_t sx = s;
187 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
188 sx |= 1;
189 switch (type) {
190 case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break;
191 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break;
192 case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break;
193 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
194 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
195 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break;
196 case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break;
197 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break;
198 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break;
199 default:
200 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
201 toString(file));
202 }
203 }
204
205 // Interpret the existing immediate value as a byte offset to the
206 // target symbol, then update the instruction with the immediate as
207 // the page offset from the current instruction to the target.
applyArm64Addr(uint8_t * off,uint64_t s,uint64_t p,int shift)208 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
209 uint32_t orig = read32le(off);
210 uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC);
211 s += imm;
212 imm = (s >> shift) - (p >> shift);
213 uint32_t immLo = (imm & 0x3) << 29;
214 uint32_t immHi = (imm & 0x1FFFFC) << 3;
215 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
216 write32le(off, (orig & ~mask) | immLo | immHi);
217 }
218
219 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
220 // Optionally limit the range of the written immediate by one or more bits
221 // (rangeLimit).
applyArm64Imm(uint8_t * off,uint64_t imm,uint32_t rangeLimit)222 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
223 uint32_t orig = read32le(off);
224 imm += (orig >> 10) & 0xFFF;
225 orig &= ~(0xFFF << 10);
226 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
227 }
228
229 // Add the 12 bit page offset to the existing immediate.
230 // Ldr/str instructions store the opcode immediate scaled
231 // by the load/store size (giving a larger range for larger
232 // loads/stores). The immediate is always (both before and after
233 // fixing up the relocation) stored scaled similarly.
234 // Even if larger loads/stores have a larger range, limit the
235 // effective offset to 12 bit, since it is intended to be a
236 // page offset.
applyArm64Ldr(uint8_t * off,uint64_t imm)237 static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
238 uint32_t orig = read32le(off);
239 uint32_t size = orig >> 30;
240 // 0x04000000 indicates SIMD/FP registers
241 // 0x00800000 indicates 128 bit
242 if ((orig & 0x4800000) == 0x4800000)
243 size += 4;
244 if ((imm & ((1 << size) - 1)) != 0)
245 error("misaligned ldr/str offset");
246 applyArm64Imm(off, imm >> size, size);
247 }
248
applySecRelLow12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)249 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
250 OutputSection *os, uint64_t s) {
251 if (checkSecRel(sec, os))
252 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
253 }
254
applySecRelHigh12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)255 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
256 OutputSection *os, uint64_t s) {
257 if (!checkSecRel(sec, os))
258 return;
259 uint64_t secRel = (s - os->getRVA()) >> 12;
260 if (0xfff < secRel) {
261 error("overflow in SECREL_HIGH12A relocation in section: " +
262 sec->getSectionName());
263 return;
264 }
265 applyArm64Imm(off, secRel & 0xfff, 0);
266 }
267
applySecRelLdr(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)268 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
269 OutputSection *os, uint64_t s) {
270 if (checkSecRel(sec, os))
271 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
272 }
273
applyArm64Branch26(uint8_t * off,int64_t v)274 void applyArm64Branch26(uint8_t *off, int64_t v) {
275 if (!isInt<28>(v))
276 error("relocation out of range");
277 or32(off, (v & 0x0FFFFFFC) >> 2);
278 }
279
applyArm64Branch19(uint8_t * off,int64_t v)280 static void applyArm64Branch19(uint8_t *off, int64_t v) {
281 if (!isInt<21>(v))
282 error("relocation out of range");
283 or32(off, (v & 0x001FFFFC) << 3);
284 }
285
applyArm64Branch14(uint8_t * off,int64_t v)286 static void applyArm64Branch14(uint8_t *off, int64_t v) {
287 if (!isInt<16>(v))
288 error("relocation out of range");
289 or32(off, (v & 0x0000FFFC) << 3);
290 }
291
applyRelARM64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p) const292 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
293 uint64_t s, uint64_t p) const {
294 switch (type) {
295 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
296 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break;
297 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
298 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
299 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break;
300 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break;
301 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break;
302 case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break;
303 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break;
304 case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break;
305 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break;
306 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break;
307 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
308 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break;
309 case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break;
310 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break;
311 default:
312 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
313 toString(file));
314 }
315 }
316
maybeReportRelocationToDiscarded(const SectionChunk * fromChunk,Defined * sym,const coff_relocation & rel)317 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
318 Defined *sym,
319 const coff_relocation &rel) {
320 // Don't report these errors when the relocation comes from a debug info
321 // section or in mingw mode. MinGW mode object files (built by GCC) can
322 // have leftover sections with relocations against discarded comdat
323 // sections. Such sections are left as is, with relocations untouched.
324 if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw)
325 return;
326
327 // Get the name of the symbol. If it's null, it was discarded early, so we
328 // have to go back to the object file.
329 ObjFile *file = fromChunk->file;
330 StringRef name;
331 if (sym) {
332 name = sym->getName();
333 } else {
334 COFFSymbolRef coffSym =
335 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
336 name = check(file->getCOFFObj()->getSymbolName(coffSym));
337 }
338
339 std::vector<std::string> symbolLocations =
340 getSymbolLocations(file, rel.SymbolTableIndex);
341
342 std::string out;
343 llvm::raw_string_ostream os(out);
344 os << "relocation against symbol in discarded section: " + name;
345 for (const std::string &s : symbolLocations)
346 os << s;
347 error(os.str());
348 }
349
writeTo(uint8_t * buf) const350 void SectionChunk::writeTo(uint8_t *buf) const {
351 if (!hasData)
352 return;
353 // Copy section contents from source object file to output file.
354 ArrayRef<uint8_t> a = getContents();
355 if (!a.empty())
356 memcpy(buf, a.data(), a.size());
357
358 // Apply relocations.
359 size_t inputSize = getSize();
360 for (size_t i = 0, e = relocsSize; i < e; i++) {
361 const coff_relocation &rel = relocsData[i];
362
363 // Check for an invalid relocation offset. This check isn't perfect, because
364 // we don't have the relocation size, which is only known after checking the
365 // machine and relocation type. As a result, a relocation may overwrite the
366 // beginning of the following input section.
367 if (rel.VirtualAddress >= inputSize) {
368 error("relocation points beyond the end of its parent section");
369 continue;
370 }
371
372 uint8_t *off = buf + rel.VirtualAddress;
373
374 auto *sym =
375 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
376
377 // Get the output section of the symbol for this relocation. The output
378 // section is needed to compute SECREL and SECTION relocations used in debug
379 // info.
380 Chunk *c = sym ? sym->getChunk() : nullptr;
381 OutputSection *os = c ? c->getOutputSection() : nullptr;
382
383 // Skip the relocation if it refers to a discarded section, and diagnose it
384 // as an error if appropriate. If a symbol was discarded early, it may be
385 // null. If it was discarded late, the output section will be null, unless
386 // it was an absolute or synthetic symbol.
387 if (!sym ||
388 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
389 maybeReportRelocationToDiscarded(this, sym, rel);
390 continue;
391 }
392
393 uint64_t s = sym->getRVA();
394
395 // Compute the RVA of the relocation for relative relocations.
396 uint64_t p = rva + rel.VirtualAddress;
397 switch (config->machine) {
398 case AMD64:
399 applyRelX64(off, rel.Type, os, s, p);
400 break;
401 case I386:
402 applyRelX86(off, rel.Type, os, s, p);
403 break;
404 case ARMNT:
405 applyRelARM(off, rel.Type, os, s, p);
406 break;
407 case ARM64:
408 applyRelARM64(off, rel.Type, os, s, p);
409 break;
410 default:
411 llvm_unreachable("unknown machine type");
412 }
413 }
414 }
415
addAssociative(SectionChunk * child)416 void SectionChunk::addAssociative(SectionChunk *child) {
417 // Insert this child at the head of the list.
418 assert(child->assocChildren == nullptr &&
419 "associated sections cannot have their own associated children");
420 child->assocChildren = assocChildren;
421 assocChildren = child;
422 }
423
getBaserelType(const coff_relocation & rel)424 static uint8_t getBaserelType(const coff_relocation &rel) {
425 switch (config->machine) {
426 case AMD64:
427 if (rel.Type == IMAGE_REL_AMD64_ADDR64)
428 return IMAGE_REL_BASED_DIR64;
429 return IMAGE_REL_BASED_ABSOLUTE;
430 case I386:
431 if (rel.Type == IMAGE_REL_I386_DIR32)
432 return IMAGE_REL_BASED_HIGHLOW;
433 return IMAGE_REL_BASED_ABSOLUTE;
434 case ARMNT:
435 if (rel.Type == IMAGE_REL_ARM_ADDR32)
436 return IMAGE_REL_BASED_HIGHLOW;
437 if (rel.Type == IMAGE_REL_ARM_MOV32T)
438 return IMAGE_REL_BASED_ARM_MOV32T;
439 return IMAGE_REL_BASED_ABSOLUTE;
440 case ARM64:
441 if (rel.Type == IMAGE_REL_ARM64_ADDR64)
442 return IMAGE_REL_BASED_DIR64;
443 return IMAGE_REL_BASED_ABSOLUTE;
444 default:
445 llvm_unreachable("unknown machine type");
446 }
447 }
448
449 // Windows-specific.
450 // Collect all locations that contain absolute addresses, which need to be
451 // fixed by the loader if load-time relocation is needed.
452 // Only called when base relocation is enabled.
getBaserels(std::vector<Baserel> * res)453 void SectionChunk::getBaserels(std::vector<Baserel> *res) {
454 for (size_t i = 0, e = relocsSize; i < e; i++) {
455 const coff_relocation &rel = relocsData[i];
456 uint8_t ty = getBaserelType(rel);
457 if (ty == IMAGE_REL_BASED_ABSOLUTE)
458 continue;
459 Symbol *target = file->getSymbol(rel.SymbolTableIndex);
460 if (!target || isa<DefinedAbsolute>(target))
461 continue;
462 res->emplace_back(rva + rel.VirtualAddress, ty);
463 }
464 }
465
466 // MinGW specific.
467 // Check whether a static relocation of type Type can be deferred and
468 // handled at runtime as a pseudo relocation (for references to a module
469 // local variable, which turned out to actually need to be imported from
470 // another DLL) This returns the size the relocation is supposed to update,
471 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
472 // relocation.
getRuntimePseudoRelocSize(uint16_t type)473 static int getRuntimePseudoRelocSize(uint16_t type) {
474 // Relocations that either contain an absolute address, or a plain
475 // relative offset, since the runtime pseudo reloc implementation
476 // adds 8/16/32/64 bit values to a memory address.
477 //
478 // Given a pseudo relocation entry,
479 //
480 // typedef struct {
481 // DWORD sym;
482 // DWORD target;
483 // DWORD flags;
484 // } runtime_pseudo_reloc_item_v2;
485 //
486 // the runtime relocation performs this adjustment:
487 // *(base + .target) += *(base + .sym) - (base + .sym)
488 //
489 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
490 // IMAGE_REL_I386_DIR32, where the memory location initially contains
491 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
492 // where the memory location originally contains the relative offset to the
493 // IAT slot.
494 //
495 // This requires the target address to be writable, either directly out of
496 // the image, or temporarily changed at runtime with VirtualProtect.
497 // Since this only operates on direct address values, it doesn't work for
498 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
499 switch (config->machine) {
500 case AMD64:
501 switch (type) {
502 case IMAGE_REL_AMD64_ADDR64:
503 return 64;
504 case IMAGE_REL_AMD64_ADDR32:
505 case IMAGE_REL_AMD64_REL32:
506 case IMAGE_REL_AMD64_REL32_1:
507 case IMAGE_REL_AMD64_REL32_2:
508 case IMAGE_REL_AMD64_REL32_3:
509 case IMAGE_REL_AMD64_REL32_4:
510 case IMAGE_REL_AMD64_REL32_5:
511 return 32;
512 default:
513 return 0;
514 }
515 case I386:
516 switch (type) {
517 case IMAGE_REL_I386_DIR32:
518 case IMAGE_REL_I386_REL32:
519 return 32;
520 default:
521 return 0;
522 }
523 case ARMNT:
524 switch (type) {
525 case IMAGE_REL_ARM_ADDR32:
526 return 32;
527 default:
528 return 0;
529 }
530 case ARM64:
531 switch (type) {
532 case IMAGE_REL_ARM64_ADDR64:
533 return 64;
534 case IMAGE_REL_ARM64_ADDR32:
535 return 32;
536 default:
537 return 0;
538 }
539 default:
540 llvm_unreachable("unknown machine type");
541 }
542 }
543
544 // MinGW specific.
545 // Append information to the provided vector about all relocations that
546 // need to be handled at runtime as runtime pseudo relocations (references
547 // to a module local variable, which turned out to actually need to be
548 // imported from another DLL).
getRuntimePseudoRelocs(std::vector<RuntimePseudoReloc> & res)549 void SectionChunk::getRuntimePseudoRelocs(
550 std::vector<RuntimePseudoReloc> &res) {
551 for (const coff_relocation &rel : getRelocs()) {
552 auto *target =
553 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
554 if (!target || !target->isRuntimePseudoReloc)
555 continue;
556 int sizeInBits = getRuntimePseudoRelocSize(rel.Type);
557 if (sizeInBits == 0) {
558 error("unable to automatically import from " + target->getName() +
559 " with relocation type " +
560 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
561 toString(file));
562 continue;
563 }
564 // sizeInBits is used to initialize the Flags field; currently no
565 // other flags are defined.
566 res.emplace_back(
567 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits));
568 }
569 }
570
isCOMDAT() const571 bool SectionChunk::isCOMDAT() const {
572 return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
573 }
574
printDiscardedMessage() const575 void SectionChunk::printDiscardedMessage() const {
576 // Removed by dead-stripping. If it's removed by ICF, ICF already
577 // printed out the name, so don't repeat that here.
578 if (sym && this == repl)
579 message("Discarded " + sym->getName());
580 }
581
getDebugName() const582 StringRef SectionChunk::getDebugName() const {
583 if (sym)
584 return sym->getName();
585 return "";
586 }
587
getContents() const588 ArrayRef<uint8_t> SectionChunk::getContents() const {
589 ArrayRef<uint8_t> a;
590 cantFail(file->getCOFFObj()->getSectionContents(header, a));
591 return a;
592 }
593
consumeDebugMagic()594 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
595 assert(isCodeView());
596 return consumeDebugMagic(getContents(), getSectionName());
597 }
598
consumeDebugMagic(ArrayRef<uint8_t> data,StringRef sectionName)599 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
600 StringRef sectionName) {
601 if (data.empty())
602 return {};
603
604 // First 4 bytes are section magic.
605 if (data.size() < 4)
606 fatal("the section is too short: " + sectionName);
607
608 if (!sectionName.startswith(".debug$"))
609 fatal("invalid section: " + sectionName);
610
611 uint32_t magic = support::endian::read32le(data.data());
612 uint32_t expectedMagic = sectionName == ".debug$H"
613 ? DEBUG_HASHES_SECTION_MAGIC
614 : DEBUG_SECTION_MAGIC;
615 if (magic != expectedMagic) {
616 warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
617 utohexstr(magic));
618 return {};
619 }
620 return data.slice(4);
621 }
622
findByName(ArrayRef<SectionChunk * > sections,StringRef name)623 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
624 StringRef name) {
625 for (SectionChunk *c : sections)
626 if (c->getSectionName() == name)
627 return c;
628 return nullptr;
629 }
630
replace(SectionChunk * other)631 void SectionChunk::replace(SectionChunk *other) {
632 p2Align = std::max(p2Align, other->p2Align);
633 other->repl = repl;
634 other->live = false;
635 }
636
getSectionNumber() const637 uint32_t SectionChunk::getSectionNumber() const {
638 DataRefImpl r;
639 r.p = reinterpret_cast<uintptr_t>(header);
640 SectionRef s(r, file->getCOFFObj());
641 return s.getIndex() + 1;
642 }
643
CommonChunk(const COFFSymbolRef s)644 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
645 // The value of a common symbol is its size. Align all common symbols smaller
646 // than 32 bytes naturally, i.e. round the size up to the next power of two.
647 // This is what MSVC link.exe does.
648 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
649 hasData = false;
650 }
651
getOutputCharacteristics() const652 uint32_t CommonChunk::getOutputCharacteristics() const {
653 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
654 IMAGE_SCN_MEM_WRITE;
655 }
656
writeTo(uint8_t * buf) const657 void StringChunk::writeTo(uint8_t *buf) const {
658 memcpy(buf, str.data(), str.size());
659 buf[str.size()] = '\0';
660 }
661
ImportThunkChunkX64(Defined * s)662 ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) {
663 // Intel Optimization Manual says that all branch targets
664 // should be 16-byte aligned. MSVC linker does this too.
665 setAlignment(16);
666 }
667
writeTo(uint8_t * buf) const668 void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
669 memcpy(buf, importThunkX86, sizeof(importThunkX86));
670 // The first two bytes is a JMP instruction. Fill its operand.
671 write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
672 }
673
getBaserels(std::vector<Baserel> * res)674 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
675 res->emplace_back(getRVA() + 2);
676 }
677
writeTo(uint8_t * buf) const678 void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
679 memcpy(buf, importThunkX86, sizeof(importThunkX86));
680 // The first two bytes is a JMP instruction. Fill its operand.
681 write32le(buf + 2,
682 impSymbol->getRVA() + config->imageBase);
683 }
684
getBaserels(std::vector<Baserel> * res)685 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
686 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
687 }
688
writeTo(uint8_t * buf) const689 void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
690 memcpy(buf, importThunkARM, sizeof(importThunkARM));
691 // Fix mov.w and mov.t operands.
692 applyMOV32T(buf, impSymbol->getRVA() + config->imageBase);
693 }
694
writeTo(uint8_t * buf) const695 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
696 int64_t off = impSymbol->getRVA() & 0xfff;
697 memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
698 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
699 applyArm64Ldr(buf + 4, off);
700 }
701
702 // A Thumb2, PIC, non-interworking range extension thunk.
703 const uint8_t armThunk[] = {
704 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4)
705 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4)
706 0xe7, 0x44, // L1: add pc, ip
707 };
708
getSize() const709 size_t RangeExtensionThunkARM::getSize() const {
710 assert(config->machine == ARMNT);
711 return sizeof(armThunk);
712 }
713
writeTo(uint8_t * buf) const714 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
715 assert(config->machine == ARMNT);
716 uint64_t offset = target->getRVA() - rva - 12;
717 memcpy(buf, armThunk, sizeof(armThunk));
718 applyMOV32T(buf, uint32_t(offset));
719 }
720
721 // A position independent ARM64 adrp+add thunk, with a maximum range of
722 // +/- 4 GB, which is enough for any PE-COFF.
723 const uint8_t arm64Thunk[] = {
724 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
725 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest
726 0x00, 0x02, 0x1f, 0xd6, // br x16
727 };
728
getSize() const729 size_t RangeExtensionThunkARM64::getSize() const {
730 assert(config->machine == ARM64);
731 return sizeof(arm64Thunk);
732 }
733
writeTo(uint8_t * buf) const734 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
735 assert(config->machine == ARM64);
736 memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
737 applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
738 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
739 }
740
getBaserels(std::vector<Baserel> * res)741 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
742 res->emplace_back(getRVA());
743 }
744
getSize() const745 size_t LocalImportChunk::getSize() const { return config->wordsize; }
746
writeTo(uint8_t * buf) const747 void LocalImportChunk::writeTo(uint8_t *buf) const {
748 if (config->is64()) {
749 write64le(buf, sym->getRVA() + config->imageBase);
750 } else {
751 write32le(buf, sym->getRVA() + config->imageBase);
752 }
753 }
754
writeTo(uint8_t * buf) const755 void RVATableChunk::writeTo(uint8_t *buf) const {
756 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
757 size_t cnt = 0;
758 for (const ChunkAndOffset &co : syms)
759 begin[cnt++] = co.inputChunk->getRVA() + co.offset;
760 std::sort(begin, begin + cnt);
761 assert(std::unique(begin, begin + cnt) == begin + cnt &&
762 "RVA tables should be de-duplicated");
763 }
764
765 // MinGW specific, for the "automatic import of variables from DLLs" feature.
getSize() const766 size_t PseudoRelocTableChunk::getSize() const {
767 if (relocs.empty())
768 return 0;
769 return 12 + 12 * relocs.size();
770 }
771
772 // MinGW specific.
writeTo(uint8_t * buf) const773 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
774 if (relocs.empty())
775 return;
776
777 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
778 // This is the list header, to signal the runtime pseudo relocation v2
779 // format.
780 table[0] = 0;
781 table[1] = 0;
782 table[2] = 1;
783
784 size_t idx = 3;
785 for (const RuntimePseudoReloc &rpr : relocs) {
786 table[idx + 0] = rpr.sym->getRVA();
787 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
788 table[idx + 2] = rpr.flags;
789 idx += 3;
790 }
791 }
792
793 // Windows-specific. This class represents a block in .reloc section.
794 // The format is described here.
795 //
796 // On Windows, each DLL is linked against a fixed base address and
797 // usually loaded to that address. However, if there's already another
798 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
799 // contain .reloc sections which contain offsets that need to be fixed
800 // up at runtime. If the loader finds that a DLL cannot be loaded to its
801 // desired base address, it loads it to somewhere else, and add <actual
802 // base address> - <desired base address> to each offset that is
803 // specified by the .reloc section. In ELF terms, .reloc sections
804 // contain relative relocations in REL format (as opposed to RELA.)
805 //
806 // This already significantly reduces the size of relocations compared
807 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
808 // it was invented for PCs in the late '80s or early '90s.) Offsets in
809 // .reloc are grouped by page where the page size is 12 bits, and
810 // offsets sharing the same page address are stored consecutively to
811 // represent them with less space. This is very similar to the page
812 // table which is grouped by (multiple stages of) pages.
813 //
814 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
815 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
816 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
817 // are represented like this:
818 //
819 // 0x00000 -- page address (4 bytes)
820 // 16 -- size of this block (4 bytes)
821 // 0xA030 -- entries (2 bytes each)
822 // 0xA500
823 // 0xA700
824 // 0xAA00
825 // 0x20000 -- page address (4 bytes)
826 // 12 -- size of this block (4 bytes)
827 // 0xA004 -- entries (2 bytes each)
828 // 0xA008
829 //
830 // Usually we have a lot of relocations for each page, so the number of
831 // bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk(uint32_t page,Baserel * begin,Baserel * end)832 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
833 // Block header consists of 4 byte page RVA and 4 byte block size.
834 // Each entry is 2 byte. Last entry may be padding.
835 data.resize(alignTo((end - begin) * 2 + 8, 4));
836 uint8_t *p = data.data();
837 write32le(p, page);
838 write32le(p + 4, data.size());
839 p += 8;
840 for (Baserel *i = begin; i != end; ++i) {
841 write16le(p, (i->type << 12) | (i->rva - page));
842 p += 2;
843 }
844 }
845
writeTo(uint8_t * buf) const846 void BaserelChunk::writeTo(uint8_t *buf) const {
847 memcpy(buf, data.data(), data.size());
848 }
849
getDefaultType()850 uint8_t Baserel::getDefaultType() {
851 switch (config->machine) {
852 case AMD64:
853 case ARM64:
854 return IMAGE_REL_BASED_DIR64;
855 case I386:
856 case ARMNT:
857 return IMAGE_REL_BASED_HIGHLOW;
858 default:
859 llvm_unreachable("unknown machine type");
860 }
861 }
862
863 MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {};
864
MergeChunk(uint32_t alignment)865 MergeChunk::MergeChunk(uint32_t alignment)
866 : builder(StringTableBuilder::RAW, alignment) {
867 setAlignment(alignment);
868 }
869
addSection(SectionChunk * c)870 void MergeChunk::addSection(SectionChunk *c) {
871 assert(isPowerOf2_32(c->getAlignment()));
872 uint8_t p2Align = llvm::Log2_32(c->getAlignment());
873 assert(p2Align < array_lengthof(instances));
874 auto *&mc = instances[p2Align];
875 if (!mc)
876 mc = make<MergeChunk>(c->getAlignment());
877 mc->sections.push_back(c);
878 }
879
finalizeContents()880 void MergeChunk::finalizeContents() {
881 assert(!finalized && "should only finalize once");
882 for (SectionChunk *c : sections)
883 if (c->live)
884 builder.add(toStringRef(c->getContents()));
885 builder.finalize();
886 finalized = true;
887 }
888
assignSubsectionRVAs()889 void MergeChunk::assignSubsectionRVAs() {
890 for (SectionChunk *c : sections) {
891 if (!c->live)
892 continue;
893 size_t off = builder.getOffset(toStringRef(c->getContents()));
894 c->setRVA(rva + off);
895 }
896 }
897
getOutputCharacteristics() const898 uint32_t MergeChunk::getOutputCharacteristics() const {
899 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
900 }
901
getSize() const902 size_t MergeChunk::getSize() const {
903 return builder.getSize();
904 }
905
writeTo(uint8_t * buf) const906 void MergeChunk::writeTo(uint8_t *buf) const {
907 builder.write(buf);
908 }
909
910 // MinGW specific.
getSize() const911 size_t AbsolutePointerChunk::getSize() const { return config->wordsize; }
912
writeTo(uint8_t * buf) const913 void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
914 if (config->is64()) {
915 write64le(buf, value);
916 } else {
917 write32le(buf, value);
918 }
919 }
920
921 } // namespace coff
922 } // namespace lld
923