1 //===- AVR.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // AVR is a Harvard-architecture 8-bit micrcontroller designed for small
10 // baremetal programs. All AVR-family processors have 32 8-bit registers.
11 // The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
12 // one supports up to 2^24 data address space and 2^22 code address space.
13 //
14 // Since it is a baremetal programming, there's usually no loader to load
15 // ELF files on AVRs. You are expected to link your program against address
16 // 0 and pull out a .text section from the result using objcopy, so that you
17 // can write the linked code to on-chip flush memory. You can do that with
18 // the following commands:
19 //
20 // ld.lld -Ttext=0 -o foo foo.o
21 // objcopy -O binary --only-section=.text foo output.bin
22 //
23 // Note that the current AVR support is very preliminary so you can't
24 // link any useful program yet, though.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #include "InputFiles.h"
29 #include "Symbols.h"
30 #include "Target.h"
31 #include "lld/Common/ErrorHandler.h"
32 #include "llvm/Object/ELF.h"
33 #include "llvm/Support/Endian.h"
34
35 using namespace llvm;
36 using namespace llvm::object;
37 using namespace llvm::support::endian;
38 using namespace llvm::ELF;
39 using namespace lld;
40 using namespace lld::elf;
41
42 namespace {
43 class AVR final : public TargetInfo {
44 public:
45 AVR();
46 RelExpr getRelExpr(RelType type, const Symbol &s,
47 const uint8_t *loc) const override;
48 void relocate(uint8_t *loc, const Relocation &rel,
49 uint64_t val) const override;
50 };
51 } // namespace
52
AVR()53 AVR::AVR() { noneRel = R_AVR_NONE; }
54
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const55 RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
56 const uint8_t *loc) const {
57 switch (type) {
58 case R_AVR_7_PCREL:
59 case R_AVR_13_PCREL:
60 return R_PC;
61 default:
62 return R_ABS;
63 }
64 }
65
writeLDI(uint8_t * loc,uint64_t val)66 static void writeLDI(uint8_t *loc, uint64_t val) {
67 write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f));
68 }
69
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const70 void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
71 switch (rel.type) {
72 case R_AVR_8:
73 checkUInt(loc, val, 8, rel);
74 *loc = val;
75 break;
76 case R_AVR_16:
77 // Note: this relocation is often used between code and data space, which
78 // are 0x800000 apart in the output ELF file. The bitmask cuts off the high
79 // bit.
80 write16le(loc, val & 0xffff);
81 break;
82 case R_AVR_16_PM:
83 checkAlignment(loc, val, 2, rel);
84 checkUInt(loc, val >> 1, 16, rel);
85 write16le(loc, val >> 1);
86 break;
87 case R_AVR_32:
88 checkUInt(loc, val, 32, rel);
89 write32le(loc, val);
90 break;
91
92 case R_AVR_LDI:
93 checkUInt(loc, val, 8, rel);
94 writeLDI(loc, val & 0xff);
95 break;
96
97 case R_AVR_LO8_LDI_NEG:
98 writeLDI(loc, -val & 0xff);
99 break;
100 case R_AVR_LO8_LDI:
101 writeLDI(loc, val & 0xff);
102 break;
103 case R_AVR_HI8_LDI_NEG:
104 writeLDI(loc, (-val >> 8) & 0xff);
105 break;
106 case R_AVR_HI8_LDI:
107 writeLDI(loc, (val >> 8) & 0xff);
108 break;
109 case R_AVR_HH8_LDI_NEG:
110 writeLDI(loc, (-val >> 16) & 0xff);
111 break;
112 case R_AVR_HH8_LDI:
113 writeLDI(loc, (val >> 16) & 0xff);
114 break;
115 case R_AVR_MS8_LDI_NEG:
116 writeLDI(loc, (-val >> 24) & 0xff);
117 break;
118 case R_AVR_MS8_LDI:
119 writeLDI(loc, (val >> 24) & 0xff);
120 break;
121
122 case R_AVR_LO8_LDI_PM:
123 checkAlignment(loc, val, 2, rel);
124 writeLDI(loc, (val >> 1) & 0xff);
125 break;
126 case R_AVR_HI8_LDI_PM:
127 checkAlignment(loc, val, 2, rel);
128 writeLDI(loc, (val >> 9) & 0xff);
129 break;
130 case R_AVR_HH8_LDI_PM:
131 checkAlignment(loc, val, 2, rel);
132 writeLDI(loc, (val >> 17) & 0xff);
133 break;
134
135 case R_AVR_LO8_LDI_PM_NEG:
136 checkAlignment(loc, val, 2, rel);
137 writeLDI(loc, (-val >> 1) & 0xff);
138 break;
139 case R_AVR_HI8_LDI_PM_NEG:
140 checkAlignment(loc, val, 2, rel);
141 writeLDI(loc, (-val >> 9) & 0xff);
142 break;
143 case R_AVR_HH8_LDI_PM_NEG:
144 checkAlignment(loc, val, 2, rel);
145 writeLDI(loc, (-val >> 17) & 0xff);
146 break;
147
148 case R_AVR_PORT5:
149 checkUInt(loc, val, 5, rel);
150 write16le(loc, (read16le(loc) & 0xff07) | (val << 3));
151 break;
152 case R_AVR_PORT6:
153 checkUInt(loc, val, 6, rel);
154 write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f));
155 break;
156
157 // Since every jump destination is word aligned we gain an extra bit
158 case R_AVR_7_PCREL: {
159 checkInt(loc, val, 7, rel);
160 checkAlignment(loc, val, 2, rel);
161 const uint16_t target = (val - 2) >> 1;
162 write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3));
163 break;
164 }
165 case R_AVR_13_PCREL: {
166 checkAlignment(loc, val, 2, rel);
167 const uint16_t target = (val - 2) >> 1;
168 write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff));
169 break;
170 }
171
172 case R_AVR_6:
173 checkInt(loc, val, 6, rel);
174 write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 |
175 (val & 0x18) << 7 | (val & 0x07));
176 break;
177 case R_AVR_6_ADIW:
178 checkInt(loc, val, 6, rel);
179 write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F));
180 break;
181
182 case R_AVR_CALL: {
183 uint16_t hi = val >> 17;
184 uint16_t lo = val >> 1;
185 write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1));
186 write16le(loc + 2, lo);
187 break;
188 }
189 default:
190 error(getErrorLocation(loc) + "unrecognized relocation " +
191 toString(rel.type));
192 }
193 }
194
getAVRTargetInfo()195 TargetInfo *elf::getAVRTargetInfo() {
196 static AVR target;
197 return ⌖
198 }
199