1 //===- X86.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/Support/Endian.h"
15
16 using namespace llvm;
17 using namespace llvm::support::endian;
18 using namespace llvm::ELF;
19 using namespace lld;
20 using namespace lld::elf;
21
22 namespace {
23 class X86 : public TargetInfo {
24 public:
25 X86();
26 int getTlsGdRelaxSkip(RelType type) const override;
27 RelExpr getRelExpr(RelType type, const Symbol &s,
28 const uint8_t *loc) const override;
29 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
30 void writeGotPltHeader(uint8_t *buf) const override;
31 RelType getDynRel(RelType type) const override;
32 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
33 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
34 void writePltHeader(uint8_t *buf) const override;
35 void writePlt(uint8_t *buf, const Symbol &sym,
36 uint64_t pltEntryAddr) const override;
37 void relocate(uint8_t *loc, const Relocation &rel,
38 uint64_t val) const override;
39
40 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
41 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
42 uint64_t val) const override;
43 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
44 uint64_t val) const override;
45 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
46 uint64_t val) const override;
47 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
48 uint64_t val) const override;
49 };
50 } // namespace
51
X86()52 X86::X86() {
53 copyRel = R_386_COPY;
54 gotRel = R_386_GLOB_DAT;
55 noneRel = R_386_NONE;
56 pltRel = R_386_JUMP_SLOT;
57 iRelativeRel = R_386_IRELATIVE;
58 relativeRel = R_386_RELATIVE;
59 symbolicRel = R_386_32;
60 tlsGotRel = R_386_TLS_TPOFF;
61 tlsModuleIndexRel = R_386_TLS_DTPMOD32;
62 tlsOffsetRel = R_386_TLS_DTPOFF32;
63 pltHeaderSize = 16;
64 pltEntrySize = 16;
65 ipltEntrySize = 16;
66 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
67
68 // Align to the non-PAE large page size (known as a superpage or huge page).
69 // FreeBSD automatically promotes large, superpage-aligned allocations.
70 defaultImageBase = 0x400000;
71 }
72
getTlsGdRelaxSkip(RelType type) const73 int X86::getTlsGdRelaxSkip(RelType type) const {
74 return 2;
75 }
76
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const77 RelExpr X86::getRelExpr(RelType type, const Symbol &s,
78 const uint8_t *loc) const {
79 // There are 4 different TLS variable models with varying degrees of
80 // flexibility and performance. LocalExec and InitialExec models are fast but
81 // less-flexible models. If they are in use, we set DF_STATIC_TLS flag in the
82 // dynamic section to let runtime know about that.
83 if (type == R_386_TLS_LE || type == R_386_TLS_LE_32 || type == R_386_TLS_IE ||
84 type == R_386_TLS_GOTIE)
85 config->hasStaticTlsModel = true;
86
87 switch (type) {
88 case R_386_8:
89 case R_386_16:
90 case R_386_32:
91 return R_ABS;
92 case R_386_TLS_LDO_32:
93 return R_DTPREL;
94 case R_386_TLS_GD:
95 return R_TLSGD_GOTPLT;
96 case R_386_TLS_LDM:
97 return R_TLSLD_GOTPLT;
98 case R_386_PLT32:
99 return R_PLT_PC;
100 case R_386_PC8:
101 case R_386_PC16:
102 case R_386_PC32:
103 return R_PC;
104 case R_386_GOTPC:
105 return R_GOTPLTONLY_PC;
106 case R_386_TLS_IE:
107 return R_GOT;
108 case R_386_GOT32:
109 case R_386_GOT32X:
110 // These relocations are arguably mis-designed because their calculations
111 // depend on the instructions they are applied to. This is bad because we
112 // usually don't care about whether the target section contains valid
113 // machine instructions or not. But this is part of the documented ABI, so
114 // we had to implement as the standard requires.
115 //
116 // x86 does not support PC-relative data access. Therefore, in order to
117 // access GOT contents, a GOT address needs to be known at link-time
118 // (which means non-PIC) or compilers have to emit code to get a GOT
119 // address at runtime (which means code is position-independent but
120 // compilers need to emit extra code for each GOT access.) This decision
121 // is made at compile-time. In the latter case, compilers emit code to
122 // load a GOT address to a register, which is usually %ebx.
123 //
124 // So, there are two ways to refer to symbol foo's GOT entry: foo@GOT or
125 // foo@GOT(%ebx).
126 //
127 // foo@GOT is not usable in PIC. If we are creating a PIC output and if we
128 // find such relocation, we should report an error. foo@GOT is resolved to
129 // an *absolute* address of foo's GOT entry, because both GOT address and
130 // foo's offset are known. In other words, it's G + A.
131 //
132 // foo@GOT(%ebx) needs to be resolved to a *relative* offset from a GOT to
133 // foo's GOT entry in the table, because GOT address is not known but foo's
134 // offset in the table is known. It's G + A - GOT.
135 //
136 // It's unfortunate that compilers emit the same relocation for these
137 // different use cases. In order to distinguish them, we have to read a
138 // machine instruction.
139 //
140 // The following code implements it. We assume that Loc[0] is the first byte
141 // of a displacement or an immediate field of a valid machine
142 // instruction. That means a ModRM byte is at Loc[-1]. By taking a look at
143 // the byte, we can determine whether the instruction uses the operand as an
144 // absolute address (R_GOT) or a register-relative address (R_GOTPLT).
145 return (loc[-1] & 0xc7) == 0x5 ? R_GOT : R_GOTPLT;
146 case R_386_TLS_GOTIE:
147 return R_GOTPLT;
148 case R_386_GOTOFF:
149 return R_GOTPLTREL;
150 case R_386_TLS_LE:
151 return R_TLS;
152 case R_386_TLS_LE_32:
153 return R_NEG_TLS;
154 case R_386_NONE:
155 return R_NONE;
156 default:
157 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
158 ") against symbol " + toString(s));
159 return R_NONE;
160 }
161 }
162
adjustTlsExpr(RelType type,RelExpr expr) const163 RelExpr X86::adjustTlsExpr(RelType type, RelExpr expr) const {
164 switch (expr) {
165 default:
166 return expr;
167 case R_RELAX_TLS_GD_TO_IE:
168 return R_RELAX_TLS_GD_TO_IE_GOTPLT;
169 case R_RELAX_TLS_GD_TO_LE:
170 return R_RELAX_TLS_GD_TO_LE_NEG;
171 }
172 }
173
writeGotPltHeader(uint8_t * buf) const174 void X86::writeGotPltHeader(uint8_t *buf) const {
175 write32le(buf, mainPart->dynamic->getVA());
176 }
177
writeGotPlt(uint8_t * buf,const Symbol & s) const178 void X86::writeGotPlt(uint8_t *buf, const Symbol &s) const {
179 // Entries in .got.plt initially points back to the corresponding
180 // PLT entries with a fixed offset to skip the first instruction.
181 write32le(buf, s.getPltVA() + 6);
182 }
183
writeIgotPlt(uint8_t * buf,const Symbol & s) const184 void X86::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
185 // An x86 entry is the address of the ifunc resolver function.
186 write32le(buf, s.getVA());
187 }
188
getDynRel(RelType type) const189 RelType X86::getDynRel(RelType type) const {
190 if (type == R_386_TLS_LE)
191 return R_386_TLS_TPOFF;
192 if (type == R_386_TLS_LE_32)
193 return R_386_TLS_TPOFF32;
194 return type;
195 }
196
writePltHeader(uint8_t * buf) const197 void X86::writePltHeader(uint8_t *buf) const {
198 if (config->isPic) {
199 const uint8_t v[] = {
200 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
201 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
202 0x90, 0x90, 0x90, 0x90 // nop
203 };
204 memcpy(buf, v, sizeof(v));
205 return;
206 }
207
208 const uint8_t pltData[] = {
209 0xff, 0x35, 0, 0, 0, 0, // pushl (GOTPLT+4)
210 0xff, 0x25, 0, 0, 0, 0, // jmp *(GOTPLT+8)
211 0x90, 0x90, 0x90, 0x90, // nop
212 };
213 memcpy(buf, pltData, sizeof(pltData));
214 uint32_t gotPlt = in.gotPlt->getVA();
215 write32le(buf + 2, gotPlt + 4);
216 write32le(buf + 8, gotPlt + 8);
217 }
218
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const219 void X86::writePlt(uint8_t *buf, const Symbol &sym,
220 uint64_t pltEntryAddr) const {
221 unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
222 if (config->isPic) {
223 const uint8_t inst[] = {
224 0xff, 0xa3, 0, 0, 0, 0, // jmp *foo@GOT(%ebx)
225 0x68, 0, 0, 0, 0, // pushl $reloc_offset
226 0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
227 };
228 memcpy(buf, inst, sizeof(inst));
229 write32le(buf + 2, sym.getGotPltVA() - in.gotPlt->getVA());
230 } else {
231 const uint8_t inst[] = {
232 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
233 0x68, 0, 0, 0, 0, // pushl $reloc_offset
234 0xe9, 0, 0, 0, 0, // jmp .PLT0@PC
235 };
236 memcpy(buf, inst, sizeof(inst));
237 write32le(buf + 2, sym.getGotPltVA());
238 }
239
240 write32le(buf + 7, relOff);
241 write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
242 }
243
getImplicitAddend(const uint8_t * buf,RelType type) const244 int64_t X86::getImplicitAddend(const uint8_t *buf, RelType type) const {
245 switch (type) {
246 case R_386_8:
247 case R_386_PC8:
248 return SignExtend64<8>(*buf);
249 case R_386_16:
250 case R_386_PC16:
251 return SignExtend64<16>(read16le(buf));
252 case R_386_32:
253 case R_386_GOT32:
254 case R_386_GOT32X:
255 case R_386_GOTOFF:
256 case R_386_GOTPC:
257 case R_386_PC32:
258 case R_386_PLT32:
259 case R_386_TLS_LDO_32:
260 case R_386_TLS_LE:
261 return SignExtend64<32>(read32le(buf));
262 default:
263 return 0;
264 }
265 }
266
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const267 void X86::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
268 switch (rel.type) {
269 case R_386_8:
270 // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
271 // being used for some 16-bit programs such as boot loaders, so
272 // we want to support them.
273 checkIntUInt(loc, val, 8, rel);
274 *loc = val;
275 break;
276 case R_386_PC8:
277 checkInt(loc, val, 8, rel);
278 *loc = val;
279 break;
280 case R_386_16:
281 checkIntUInt(loc, val, 16, rel);
282 write16le(loc, val);
283 break;
284 case R_386_PC16:
285 // R_386_PC16 is normally used with 16 bit code. In that situation
286 // the PC is 16 bits, just like the addend. This means that it can
287 // point from any 16 bit address to any other if the possibility
288 // of wrapping is included.
289 // The only restriction we have to check then is that the destination
290 // address fits in 16 bits. That is impossible to do here. The problem is
291 // that we are passed the final value, which already had the
292 // current location subtracted from it.
293 // We just check that Val fits in 17 bits. This misses some cases, but
294 // should have no false positives.
295 checkInt(loc, val, 17, rel);
296 write16le(loc, val);
297 break;
298 case R_386_32:
299 case R_386_GOT32:
300 case R_386_GOT32X:
301 case R_386_GOTOFF:
302 case R_386_GOTPC:
303 case R_386_PC32:
304 case R_386_PLT32:
305 case R_386_RELATIVE:
306 case R_386_TLS_DTPMOD32:
307 case R_386_TLS_DTPOFF32:
308 case R_386_TLS_GD:
309 case R_386_TLS_GOTIE:
310 case R_386_TLS_IE:
311 case R_386_TLS_LDM:
312 case R_386_TLS_LDO_32:
313 case R_386_TLS_LE:
314 case R_386_TLS_LE_32:
315 case R_386_TLS_TPOFF:
316 case R_386_TLS_TPOFF32:
317 checkInt(loc, val, 32, rel);
318 write32le(loc, val);
319 break;
320 default:
321 llvm_unreachable("unknown relocation");
322 }
323 }
324
relaxTlsGdToLe(uint8_t * loc,const Relocation &,uint64_t val) const325 void X86::relaxTlsGdToLe(uint8_t *loc, const Relocation &, uint64_t val) const {
326 // Convert
327 // leal x@tlsgd(, %ebx, 1),
328 // call __tls_get_addr@plt
329 // to
330 // movl %gs:0,%eax
331 // subl $x@ntpoff,%eax
332 const uint8_t inst[] = {
333 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
334 0x81, 0xe8, 0, 0, 0, 0, // subl Val(%ebx), %eax
335 };
336 memcpy(loc - 3, inst, sizeof(inst));
337 write32le(loc + 5, val);
338 }
339
relaxTlsGdToIe(uint8_t * loc,const Relocation &,uint64_t val) const340 void X86::relaxTlsGdToIe(uint8_t *loc, const Relocation &, uint64_t val) const {
341 // Convert
342 // leal x@tlsgd(, %ebx, 1),
343 // call __tls_get_addr@plt
344 // to
345 // movl %gs:0, %eax
346 // addl x@gotntpoff(%ebx), %eax
347 const uint8_t inst[] = {
348 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
349 0x03, 0x83, 0, 0, 0, 0, // addl Val(%ebx), %eax
350 };
351 memcpy(loc - 3, inst, sizeof(inst));
352 write32le(loc + 5, val);
353 }
354
355 // In some conditions, relocations can be optimized to avoid using GOT.
356 // This function does that for Initial Exec to Local Exec case.
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const357 void X86::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
358 uint64_t val) const {
359 // Ulrich's document section 6.2 says that @gotntpoff can
360 // be used with MOVL or ADDL instructions.
361 // @indntpoff is similar to @gotntpoff, but for use in
362 // position dependent code.
363 uint8_t reg = (loc[-1] >> 3) & 7;
364
365 if (rel.type == R_386_TLS_IE) {
366 if (loc[-1] == 0xa1) {
367 // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
368 // This case is different from the generic case below because
369 // this is a 5 byte instruction while below is 6 bytes.
370 loc[-1] = 0xb8;
371 } else if (loc[-2] == 0x8b) {
372 // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
373 loc[-2] = 0xc7;
374 loc[-1] = 0xc0 | reg;
375 } else {
376 // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
377 loc[-2] = 0x81;
378 loc[-1] = 0xc0 | reg;
379 }
380 } else {
381 assert(rel.type == R_386_TLS_GOTIE);
382 if (loc[-2] == 0x8b) {
383 // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
384 loc[-2] = 0xc7;
385 loc[-1] = 0xc0 | reg;
386 } else {
387 // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
388 loc[-2] = 0x8d;
389 loc[-1] = 0x80 | (reg << 3) | reg;
390 }
391 }
392 write32le(loc, val);
393 }
394
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const395 void X86::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
396 uint64_t val) const {
397 if (rel.type == R_386_TLS_LDO_32) {
398 write32le(loc, val);
399 return;
400 }
401
402 // Convert
403 // leal foo(%reg),%eax
404 // call ___tls_get_addr
405 // to
406 // movl %gs:0,%eax
407 // nop
408 // leal 0(%esi,1),%esi
409 const uint8_t inst[] = {
410 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
411 0x90, // nop
412 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
413 };
414 memcpy(loc - 2, inst, sizeof(inst));
415 }
416
417 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
418 // entries containing endbr32 instructions. A PLT entry will be split into two
419 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
420 namespace {
421 class IntelIBT : public X86 {
422 public:
423 IntelIBT();
424 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
425 void writePlt(uint8_t *buf, const Symbol &sym,
426 uint64_t pltEntryAddr) const override;
427 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
428
429 static const unsigned IBTPltHeaderSize = 16;
430 };
431 } // namespace
432
IntelIBT()433 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
434
writeGotPlt(uint8_t * buf,const Symbol & s) const435 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
436 uint64_t va =
437 in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
438 write32le(buf, va);
439 }
440
writePlt(uint8_t * buf,const Symbol & sym,uint64_t) const441 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
442 uint64_t /*pltEntryAddr*/) const {
443 if (config->isPic) {
444 const uint8_t inst[] = {
445 0xf3, 0x0f, 0x1e, 0xfb, // endbr32
446 0xff, 0xa3, 0, 0, 0, 0, // jmp *name@GOT(%ebx)
447 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
448 };
449 memcpy(buf, inst, sizeof(inst));
450 write32le(buf + 6, sym.getGotPltVA() - in.gotPlt->getVA());
451 return;
452 }
453
454 const uint8_t inst[] = {
455 0xf3, 0x0f, 0x1e, 0xfb, // endbr32
456 0xff, 0x25, 0, 0, 0, 0, // jmp *foo@GOT
457 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
458 };
459 memcpy(buf, inst, sizeof(inst));
460 write32le(buf + 6, sym.getGotPltVA());
461 }
462
writeIBTPlt(uint8_t * buf,size_t numEntries) const463 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
464 writePltHeader(buf);
465 buf += IBTPltHeaderSize;
466
467 const uint8_t inst[] = {
468 0xf3, 0x0f, 0x1e, 0xfb, // endbr32
469 0x68, 0, 0, 0, 0, // pushl $reloc_offset
470 0xe9, 0, 0, 0, 0, // jmpq .PLT0@PC
471 0x66, 0x90, // nop
472 };
473
474 for (size_t i = 0; i < numEntries; ++i) {
475 memcpy(buf, inst, sizeof(inst));
476 write32le(buf + 5, i * sizeof(object::ELF32LE::Rel));
477 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
478 buf += sizeof(inst);
479 }
480 }
481
482 namespace {
483 class RetpolinePic : public X86 {
484 public:
485 RetpolinePic();
486 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
487 void writePltHeader(uint8_t *buf) const override;
488 void writePlt(uint8_t *buf, const Symbol &sym,
489 uint64_t pltEntryAddr) const override;
490 };
491
492 class RetpolineNoPic : public X86 {
493 public:
494 RetpolineNoPic();
495 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
496 void writePltHeader(uint8_t *buf) const override;
497 void writePlt(uint8_t *buf, const Symbol &sym,
498 uint64_t pltEntryAddr) const override;
499 };
500 } // namespace
501
RetpolinePic()502 RetpolinePic::RetpolinePic() {
503 pltHeaderSize = 48;
504 pltEntrySize = 32;
505 ipltEntrySize = 32;
506 }
507
writeGotPlt(uint8_t * buf,const Symbol & s) const508 void RetpolinePic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
509 write32le(buf, s.getPltVA() + 17);
510 }
511
writePltHeader(uint8_t * buf) const512 void RetpolinePic::writePltHeader(uint8_t *buf) const {
513 const uint8_t insn[] = {
514 0xff, 0xb3, 4, 0, 0, 0, // 0: pushl 4(%ebx)
515 0x50, // 6: pushl %eax
516 0x8b, 0x83, 8, 0, 0, 0, // 7: mov 8(%ebx), %eax
517 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: call next
518 0xf3, 0x90, // 12: loop: pause
519 0x0f, 0xae, 0xe8, // 14: lfence
520 0xeb, 0xf9, // 17: jmp loop
521 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
522 0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
523 0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
524 0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
525 0x89, 0xc8, // 2b: mov %ecx, %eax
526 0x59, // 2d: pop %ecx
527 0xc3, // 2e: ret
528 0xcc, // 2f: int3; padding
529 };
530 memcpy(buf, insn, sizeof(insn));
531 }
532
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const533 void RetpolinePic::writePlt(uint8_t *buf, const Symbol &sym,
534 uint64_t pltEntryAddr) const {
535 unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
536 const uint8_t insn[] = {
537 0x50, // pushl %eax
538 0x8b, 0x83, 0, 0, 0, 0, // mov foo@GOT(%ebx), %eax
539 0xe8, 0, 0, 0, 0, // call plt+0x20
540 0xe9, 0, 0, 0, 0, // jmp plt+0x12
541 0x68, 0, 0, 0, 0, // pushl $reloc_offset
542 0xe9, 0, 0, 0, 0, // jmp plt+0
543 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
544 };
545 memcpy(buf, insn, sizeof(insn));
546
547 uint32_t ebx = in.gotPlt->getVA();
548 unsigned off = pltEntryAddr - in.plt->getVA();
549 write32le(buf + 3, sym.getGotPltVA() - ebx);
550 write32le(buf + 8, -off - 12 + 32);
551 write32le(buf + 13, -off - 17 + 18);
552 write32le(buf + 18, relOff);
553 write32le(buf + 23, -off - 27);
554 }
555
RetpolineNoPic()556 RetpolineNoPic::RetpolineNoPic() {
557 pltHeaderSize = 48;
558 pltEntrySize = 32;
559 ipltEntrySize = 32;
560 }
561
writeGotPlt(uint8_t * buf,const Symbol & s) const562 void RetpolineNoPic::writeGotPlt(uint8_t *buf, const Symbol &s) const {
563 write32le(buf, s.getPltVA() + 16);
564 }
565
writePltHeader(uint8_t * buf) const566 void RetpolineNoPic::writePltHeader(uint8_t *buf) const {
567 const uint8_t insn[] = {
568 0xff, 0x35, 0, 0, 0, 0, // 0: pushl GOTPLT+4
569 0x50, // 6: pushl %eax
570 0xa1, 0, 0, 0, 0, // 7: mov GOTPLT+8, %eax
571 0xe8, 0x0f, 0x00, 0x00, 0x00, // c: call next
572 0xf3, 0x90, // 11: loop: pause
573 0x0f, 0xae, 0xe8, // 13: lfence
574 0xeb, 0xf9, // 16: jmp loop
575 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 18: int3
576 0xcc, 0xcc, 0xcc, // 1f: int3; .align 16
577 0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
578 0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
579 0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
580 0x89, 0xc8, // 2b: mov %ecx, %eax
581 0x59, // 2d: pop %ecx
582 0xc3, // 2e: ret
583 0xcc, // 2f: int3; padding
584 };
585 memcpy(buf, insn, sizeof(insn));
586
587 uint32_t gotPlt = in.gotPlt->getVA();
588 write32le(buf + 2, gotPlt + 4);
589 write32le(buf + 8, gotPlt + 8);
590 }
591
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const592 void RetpolineNoPic::writePlt(uint8_t *buf, const Symbol &sym,
593 uint64_t pltEntryAddr) const {
594 unsigned relOff = in.relaPlt->entsize * sym.pltIndex;
595 const uint8_t insn[] = {
596 0x50, // 0: pushl %eax
597 0xa1, 0, 0, 0, 0, // 1: mov foo_in_GOT, %eax
598 0xe8, 0, 0, 0, 0, // 6: call plt+0x20
599 0xe9, 0, 0, 0, 0, // b: jmp plt+0x11
600 0x68, 0, 0, 0, 0, // 10: pushl $reloc_offset
601 0xe9, 0, 0, 0, 0, // 15: jmp plt+0
602 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
603 0xcc, // 1f: int3; padding
604 };
605 memcpy(buf, insn, sizeof(insn));
606
607 unsigned off = pltEntryAddr - in.plt->getVA();
608 write32le(buf + 2, sym.getGotPltVA());
609 write32le(buf + 7, -off - 11 + 32);
610 write32le(buf + 12, -off - 16 + 17);
611 write32le(buf + 17, relOff);
612 write32le(buf + 22, -off - 26);
613 }
614
getX86TargetInfo()615 TargetInfo *elf::getX86TargetInfo() {
616 if (config->zRetpolineplt) {
617 if (config->isPic) {
618 static RetpolinePic t;
619 return &t;
620 }
621 static RetpolineNoPic t;
622 return &t;
623 }
624
625 if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
626 static IntelIBT t;
627 return &t;
628 }
629
630 static X86 t;
631 return &t;
632 }
633